

SCIENCEDOMAIN international

www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	Advances in Research
Manuscript Number:	2014_AIR_11388
Title of the Manuscript:	Crack-growth on canvas paintings during transport simulation monitored with digital holographic speckle interferometry
Type of the Article	Original Research Article

PART 2:

FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
Authors have made a good effort in addressing all the points in my previous comments. The	1. Thank you, I tried again to make clearer the aim by adding few more sentences in
paper has improved quite significantly and it is now clearer. Some points:	the abstract.
1- My first comment about the objective has been clarified in the author's response.	
However, I just wanted to state that it may be a bit obscure to the reader, just in case	2. Thank you for your thorough reading and care to the article findings. We found this
the authors might want to clarify it in the paper.	function as more appropriate to the obtained data or most of the obtained data. If the
2- About my comment regarding fitting the data to the function y=exp(a+bx+cx^2) of	reviewer suggests putting more trials as the one presented in the comments we can
course I understand why fitting experimental data to math functions is done. And	accept the comment. But we had to choose on basis of best data fitting. As physical
now I understand that the exponential growth is important per se, which seems to be	mechanisms are concerned for iteration an explanation could be the bifurcation
a major finding in the investigation. My comment was regarding two aspects of this	process as seen on data; caused when the deposited energy is higher than the cohesion
particular fit: first the variation between results, explained to the different test cases,	energy; so according to this first data there is an indication of crack doubling, by
of course, but also I have some concerns about the variable x. In the first case, it is	accepting it we concluded the exponential function fitting not only to data points but
just an iteration cycle, when each cycle not only accumulates to the previous effects	to the physical mechanism as well. However, since this theoretical acceptance is not
but also vary on the applied stress. I understand why this is done, but it brings me to	proven yet experimentally and remains only an indication to approximate a
the second aspect: the function itself. Why choosing the exponential of a 2 nd degree	theoretical behavior, we can also remove the graphical representations and the
polynomial? Does it have any physical significance? I doubt it due to the nature of the	equations without removing the "concept" of exponential growth.
x variable.	Hence I accept a third revision if the reviewer thinks that could benefit the paper.
For instance a quick MATLAB fit gives these results with a completely different	3. Lines 170-171 explain the before and after. It is not the vibration load but the
exponential function (the default used)	surface alteration that is measured before and after the induced ΔT on surface
	temperature. This is a reference state to capture fringe generation by existing known
General model Exp1:	defects prior to vibration loading. So we have first a reference evaluation and then we
$f(x) = a^* exp(b^*x)$	start the loading which is measured during the simulation process that is recorded at
Coefficients (with 95% confidence bounds):	each and any vibration cycle. But you are right is not clear enough; I tried to clarify it
a = 0.04105 (0.01666, 0.06544)	better.
$b = 0.5499 \ (0.4876, 0.6121)$	
	In regards to the acquisition speed the limit is practical not theoretical. It is an
Goodness of fit:	algorithm driven by a pc and takes 5 records with pi/2 difference so the sooner the
SSE: 0.3093	detector can record the fastest the image is recorded. However after each set of
R-square: 0.9959	images there is an interval -again practical limitation of the frame grabber These
Adjusted R-square: 0.9951	practical limitations are implied in all techniques depended on digital detectors - so
RMSE: 0.2487	pixel intensity depended- and frame grabbers and processors. In our detector the
	frame acquisition is max 15 frames/sec. The technical details of the system are
That is why I asked, but it is not a major concern anyway. I am sure the authors	considered out of the scope of the paper which is to highlight the potential of crack
have a good reason for choosing this function, just suggested they might want to	detection before it becomes visible on the surface.
explain it.	
3- About the real-time application the author's response states that the information is	The technique can be affected by low vibration noise but due to phase shifted 5-set
obtained during the vibration cycle. Well, I was confused because in lines 173-174	algorithm the effect is not crucial as in other phase shifted techniques.
and table 1 it seems to indicate they are acquired *after* the vibration cycle. But	
anyway as I could not find the acquisition speed of the 5 frame set, I wondered if, for	4. Corrected.
instance, high frequency vibrations could not alter the measurements significantly,	
as usually is the case in these techniques. But I understand the research is not yet at	5. Thank you for your advice and help.

on

SCIENCEDOMAIN international

www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

this point. I was just curious.	
4- I found what seem to be some small typos the authors may want to correct. In line 94,	
for instance, I guess the authors mean ½ lambda of the laser wavelength, not lambda.	
Also in figure 1 Uo and Ur do not appear as such on the schema (o and U), and what L	
is, is not specified. In figure 8 the legend marks one curve as B (which is not given,	
but is clearly the number of generated cracks) and "Polynomial Fit of Book4_B",	
which I don't know what it is.	
5- English grammar and writing has been improved, but I'd advise that a native speaker	
checks the paper for mistakes and some sentence re-writing for clarity.	