
Hyperstability of a Cauchy-Jensen type functional equation
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1. Introduction

In 1940, Ulam [29] raised the following question: Under what conditions does there
exist an additive mapping near an approximately additive mapping?
Let X and Y be Banach spaces with norms ‖.‖ and ‖.‖, respectively. In 1941, Hyers [12]
showed that if ε > 0 and f : X → Y such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε,

for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

‖f(x)− T (x)‖ ≤ ε,

for all x ∈ X. In 1978, Rassias [27] introduced the following inequality, that we call
Cauchy-Rassias inequality. Assume that there exist constants θ ≥ 0 and p ∈ [0, 1) such
that

‖f(x+ y)− f(x)− f(y)‖ ≤ θ(‖x‖p + ‖y‖p),
for all x, y ∈ X. Rassias [27] showed that there exists a unique R-linear mapping T :
X → Y such that

‖f(x)− T (x)‖ ≤ 2θ

2− 2p
‖x‖p,
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for all x ∈ X. The above inequality has produced a lot of influence on the development
of what we now call the Hyers-Ulam-Rassias stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms, or the stability of the
equation of homomorphism, was studied by a number of mathematicians (see [8], [14]-[17]
and [26]).

Recently, interesting results concerning Cauchy-Jensen functional equation

f

(
x+ y

2

)
+ f

(
x− y

2

)
= f(x) (1.1)

have been obtained in [1],[10],[13],[19],[20] and [21].

We say a functional equation D is hyperstable if any function f satisfying the equation
D approximately is a true solution of D. It seems that the first hyperstability result was
published in [3] and concerned the ring homomorphisms. However, The term hyperstability
has been used for the first time in [18]. Quite often the hyperstability is confused with
superstability, which admits also bounded functions. The term hyperstability has been
used for the first time in [18], however it seems that the first hyperstability result was
published in [3] and concerned the ring homomorphisms. Numerous papers on this subject
have been published and we refer to [2], [4], [5], [6], [11], [22].

Throughout this paper, we present the hyperstability results for the Cauchy-Jensen
functional equation (1.1) in Banach spaces.

The method of the proofs used in the main results is based on a fixed point result that
can be derived from [7] (Theorem 1). To present it we need the following three hypothesis:

(H1) X is a nonempty set, Y is a Banach space, f1, ..., fk : X −→ X and L1, ..., Lk :
X −→ R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality

‖T ξ(x)− T µ(x)‖ ≤
k∑

i=1

Li(x)‖ξ (fi(x))− µ (fi(x)) ‖, ξ, µ ∈ Y X , x ∈ X.

(H3) Λ : RX
+ −→ RX

+ is a linear operator defined by

Λδ(x) :=
k∑

i=1

Li(x)δ (fi(x)) , δ ∈ RX
+ , x ∈ X.

The following theorem is the basic tool in this paper. We use it to assert the existence of
a unique fixed point of operator T : Y X −→ Y X .

Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions ε : X −→ R+ and
ϕ : X −→ Y fulfil the following two conditions

‖T ϕ(x)− ϕ(x)‖ ≤ ε(x), x ∈ X,

ε∗(x) :=
∞∑
n=0

Λnε(x) <∞, x ∈ X.
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Then there exits a unique fixed point ψ of T with

‖ϕ(x)− ψ(x)‖ ≤ ε∗(x), x ∈ X.
Moreover

ψ(x) := lim
n→∞

T nϕ(x), x ∈ X.

2. Hyperstability results

The following theorems are the main results in this paper and concern the hyperstability
of equation (1.1).

Theorem 2.1. Let X be a normed space, Y be a Banach space, c ≥ 0, p, q ∈ R, p+q < 0
and let f : X −→ Y satisfy∥∥∥∥f (x+ y

2

)
+ f

(
x− y

2

)
− f(x)

∥∥∥∥ ≤ c‖x‖p · ‖y‖q (2.1)

for all x, y ∈ X \ {0}. Then f is Cauchy-Jensen on X \ {0}.

Proof. since p+ q < 0, one of p, q must be negative. Assume that q < 0 and replace y by
mx, where m ∈ N, in (2.1). We get that∥∥∥∥f (1 +m

2
x

)
+ f

(
1−m

2
x

)
− f(x)

∥∥∥∥ ≤ cmq‖x‖p+q (2.2)

for all x ∈ X \ {0}. Write

Tmξ(x) := ξ

(
1 +m

2
x

)
+ ξ

(
1−m

2
x

)
, x ∈ X \ {0}, ξ ∈ Y X\{0},

εm(x) := cmq‖x‖p+q, x ∈ X \ {0},
then (2.2) takes the following form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}.
Define

Λmη(x) := η

(
1 +m

2
x

)
+ η

(
1−m

2
x

)
, x ∈ X \ {0}, η ∈ RX\{0}

+ .

Then it is easily seen that Λm has the form described in (H3) with k = 2 and
f1(x) = 1+m

2
x, f2(x) = 1−m

2
x, L1(x) = L2(x) = 1 for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X \ {0}, we get that

‖Tmξ(x)− Tmµ(x)‖ =

∥∥∥∥ξ(1 +m

2
x

)
+ ξ

(
1−m

2
x

)
− µ

(
1 +m

2
x

)
− µ

(
1−m

2
x

)∥∥∥∥
≤
∥∥∥∥(ξ − µ)

(
1 +m

2
x

)∥∥∥∥+

∥∥∥∥(ξ − µ)

(
1−m

2
x

)∥∥∥∥ =
2∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖.
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So, (H2) is valid. Next, we can find m0 ∈ N such that∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q

< 1 for all m ≥ m0.

Therefore, we obtain that

ε∗m(x) :=
∞∑
n=0

Λn
mεm(x)

= cmq‖x‖p+q

∞∑
n=0

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)n

=
cmq‖x‖p+q

1−
∣∣1+m

2

∣∣p+q −
∣∣1−m

2

∣∣p+q , x ∈ X \ {0},m ≥ m0.

Hence, according to Theorem 1.1, for each m ≥ m0 there exists a unique solution
Am : X \ {0} → Y of the equation

Am(x) = Am

(
1 +m

2
x

)
+ Am

(
1−m

2
x

)
, x ∈ X \ {0}

such that

‖f(x)− Am(x)‖ ≤ cmq‖x‖p+q

1−
∣∣1+m

2

∣∣p+q −
∣∣1−m

2

∣∣p+q , x ∈ X \ {0},m ≥ m0.

Moreover,

Am(x) := lim
n→∞

T n
mf(x), x ∈ X \ {0}.

To prove that Am satisfies the Cauchy-Jensen equation on X \ {0}, we show that

∥∥∥∥T n
mf

(
x+ y

2

)
+ T n

mf

(
x− y

2

)
− T n

mf(x)

∥∥∥∥ ≤ c

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)n

‖x‖p‖y‖q

(2.3)
for every x, y ∈ X \ {0} and every n ∈ N0.

If n = 0, then (2.3) is simply (2.1). So, take r ∈ N0 and suppose that (2.3) holds for
n = r. Then

∥∥∥∥T r+1
m f

(
x+ y

2

)
+ T r+1

m f

(
x− y

2

)
− T r+1

m f(x)

∥∥∥∥ =

∥∥∥∥T r
mf

(
1 +m

2

x+ y

2

)
+ T r

mf

(
1−m

2

x+ y

2

)

+T r
mf

(
1 +m

2

x− y
2

)
+ T r

mf

(
1−m

2

x− y
2

)
− T r

mf

(
1 +m

2
x

)
− T r

mf

(
1−m

2
x

)
‖
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≤
∥∥∥∥T n

mf

(
1 +m

2

x+ y

2

)
+ T n

mf

(
1 +m

2

x− y
2

)
− T n

mf(
1 +m

2
x)

∥∥∥∥
+

∥∥∥∥T n
mf

(
1−m

2

x+ y

2

)
+ T n

mf

(
1−m

2

x− y
2

)
− T n

mf(
1−m

2
x)

∥∥∥∥
≤ c

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)r (∥∥∥∥1 +m

2
x

∥∥∥∥p · ∥∥∥∥1 +m

2
y

∥∥∥∥q +

∥∥∥∥1−m
2

x

∥∥∥∥p · ∥∥∥∥1−m
2

y

∥∥∥∥q)

= c

(∣∣∣∣1 +m

2

∣∣∣∣p+q

+

∣∣∣∣1−m2

∣∣∣∣p+q
)r+1

‖x‖p · ‖y‖q, x, y ∈ X \ {0}.

Thus, by induction we have shown that (2.3) holds for all n ∈ N0. Letting n −→ ∞ in
(2.3), we obtain that

Am(x) = Am

(
x+ y

2
x

)
+ Am

(
x− y

2
x

)
, x, y ∈ X \ {0}.

So, we obtain a sequence {Am}m≥m0 of Cauchy-Jensen functions on X \ {0} such that

‖f(x)− Am(x)‖ ≤ cmq‖x‖p+q

1−
∣∣1+m

2

∣∣p+q −
∣∣1−m

2

∣∣p+q , x ∈ X \ {0}.

It follows, with m −→∞, that f is Cauchy-Jensen on X \ {0}.
�

In a similar way we can prove the following two theorems.

Theorem 2.2. Let X be a normed space, Y be a Banach space, c ≥ 0, p, q ∈ R, p+q > 0
and let f : X −→ Y satisfies (2.1). Then f is Cauchy-Jensen on X \ {0}.

Proof. We note that (2.1), with x replaced by y by 1
m
x where m ∈ N, gives∥∥∥∥f (m+ 1

2m
x

)
+ f

(
m− 1

2m
x

)
− f(x)

∥∥∥∥ ≤ c

mq
‖x‖p+q (2.4)

for all x ∈ X \ {0}. Define operators Tm : Y X\{0} → Y X\{0} and Λm : RX\{0}
+ → RX\{0}

+ by

Tmξ(x) := ξ

(
m+ 1

2m
x

)
+ ξ

(
m− 1

2m
x

)
, x ∈ X \ {0}, ξ ∈ Y X\{0},

Λmδ(x) := δ

(
m+ 1

2m
x

)
+ δ

(
m− 1

2m
x

)
, x ∈ X \ {0}, δ ∈ RX\{0}

+ .

Then it is easily seen that Λm has the form described in (H3) with k = 2 and

f1(x) =
m+ 1

2m
x, f2(x) =

m− 1

2m
x, L1(x) = L2(x) = 1

for x ∈ X \ {0}. Further, (2.4) can be written in the form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0},
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with
εm(x) :=

c

mq
‖x‖p+q.

Moreover, for every ξ, µ ∈ Y X\{0} and x ∈ X \ {0}, we have

‖Tmξ(x)− Tmµ(x)‖ =

∥∥∥∥ξ(m+ 1

2m
x

)
+ ξ

(
m− 1

2m
x

)
− µ

(
m+ 1

2m
x

)
− µ

(
m− 1

2m
x

)∥∥∥∥
≤
∥∥∥∥(ξ − µ)

(
m+ 1

2m
x

)∥∥∥∥+

∥∥∥∥(ξ − µ)

(
m− 1

2m
x

)∥∥∥∥ =
2∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖

and hypothesis (H2) holds, too. We can find m0 ∈ N such that∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q

< 1 for all m ≥ m0.

Note yet that we have

ε∗m(x) :=
∞∑
n=0

Λn
mεm(x)

=
c

mq
‖x‖p+q

∞∑
n=0

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)n

=
c‖x‖p+q

mq(1−
∣∣1+m

2

∣∣p+q −
∣∣1−m

2

∣∣p+q
)
, x ∈ X \ {0},m ≥ m0.

Consequently, in view of Theorem 1.1, for each m ≥ m0 there exists a unique solution
Am : X \ {0} → Y of the equation

Am(x) = Am

(
m+ 1

2m
x

)
+ Am

(
m− 1

2m
x

)
, x ∈ X \ {0}

such that

‖f(x)− Am(x)‖ ≤ c‖x‖p+q

mq(1−
∣∣m+1

2m

∣∣p+q −
∣∣m−1

2m

∣∣p+q
)
, x ∈ X \ {0},m ≥ m0.

Moreover,
Am(x) := lim

n→∞
T n
mf(x), x ∈ X \ {0}.

we show that

∥∥∥∥T n
mf

(
x+ y

2

)
+ T n

mf

(
x− y

2

)
− T n

mf(x)

∥∥∥∥ ≤ c

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

−
∣∣∣∣m− 1

2m

∣∣∣∣p+q
)n

‖x‖p‖y‖q

(2.5)
for every x, y ∈ X \ {0} and every n ∈ N0.
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If n = 0, then (2.5) is simply (2.1). So, take r ∈ N0 and suppose that (2.5) holds for
n = r. Then∥∥∥∥T r+1

m f

(
x+ y

2

)
+ T r+1

m f

(
x− y

2

)
− T r+1

m f(x)

∥∥∥∥ =

∥∥∥∥T r
mf

(
m+ 1

2m

x+ y

2

)
+ T r

mf

(
m− 1

2m

x+ y

2

)

+T r
mf

(
m+ 1

2m

x− y
2

)
+ T r

mf

(
m− 1

2m

x− y
2

)
− T r

mf

(
m+ 1

2m
x

)
− T r

mf

(
m− 1

2m
x

)
‖

≤
∥∥∥∥T n

mf

(
m+ 1

2m

x+ y

2

)
+ T n

mf

(
m+ 1

2m

x− y
2

)
− T n

mf(
m+ 1

2m
x)

∥∥∥∥
+

∥∥∥∥T n
mf

(
m− 1

2m

x+ y

2

)
+ T n

mf

(
m− 1

2m

x− y
2

)
− T n

mf(
m− 1

2m
x)

∥∥∥∥
≤ c

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)r (∥∥∥∥m+ 1

2m
x

∥∥∥∥p · ∥∥∥∥m+ 1

2m
y

∥∥∥∥q +

∥∥∥∥m− 1

2m
x

∥∥∥∥p · ∥∥∥∥m− 1

2m
y

∥∥∥∥q)

= c

(∣∣∣∣m+ 1

2m

∣∣∣∣p+q

+

∣∣∣∣m− 1

2m

∣∣∣∣p+q
)r+1

‖x‖p · ‖y‖q, x, y ∈ X \ {0}.

Thus, by induction we have shown that (2.5) holds for all n ∈ N0. Letting n −→ ∞ in
(2.5), we obtain that

Am(x) = Am

(
x+ y

2
x

)
+ Am

(
x− y

2
x

)
, x, y ∈ X \ {0}.

So, we obtain a sequence {Am}m≥m0 of Cauchy-Jensen functions on X \ {0} such that

‖f(x)− Am(x)‖ ≤ c‖x‖p+q

mq(1−
∣∣m+1

2m

∣∣p+q −
∣∣m−1

2m

∣∣p+q
)
, x ∈ X \ {0}.

It follows, with m −→∞, that f is Cauchy-Jensen on X \ {0}. �

Theorem 2.3. Let X be a normed space, Y be a Banach space, c ≥ 0, p < 0 and let
f : X −→ Y satisfy∥∥∥∥f (x+ y

2

)
+ f

(
x− y

2

)
− f(x)

∥∥∥∥ ≤ c(‖x‖p + ‖y‖p) (2.6)

for all x, y ∈ X \ {0}. Then f is Cauchy-Jensen on X \ {0}.
Proof. Replacing x by (m+ 2)x and y by −mx, where m ∈ N, in (2.6). Thus

‖f(x) + f((m+ 1)x)− f((m+ 2)x)‖ ≤ c((m+ 2)p +mp)‖x‖p (2.7)

for all x ∈ X \ {0}. Write

Tmξ(x) := ξ((m+ 2)x)− ξ((m+ 1)x), x ∈ X \ {0}, ξ ∈ Y X\{0},

εm(x) := c((m+ 2)p +mp)‖x‖p.
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Inequality (2.7) takes the following form

‖Tmf(x)− f(x)‖ ≤ εm(x), x ∈ X \ {0}.
The following linear operator Λm : RX\{0}

+ −→ RX\{0}
+ witch is defined by

Λmη(x) := η((m+ 2)x) + η((m+ 1)x), η ∈ RX\{0}
+ , x ∈ X \ {0}

has the form described in (H3) with k = 2 and f1(x) = (m+2)x, f2(x) = (m+1)x, L1(x) =
L2(x) = 1 ,for x ∈ X \ {0}.

Moreover, for every ξ, µ ∈ Y X\{0},x ∈ X \ {0}

‖Tmξ(x)− Tmµ(x)‖ = ‖ξ ((m+ 2)x)− ξ ((m+ 1)x)− µ ((m+ 2)x) + µ ((m+ 1)x)‖

≤ ‖(ξ − µ) ((m+ 2)x)‖+ ‖(ξ − µ) ((m+ 1)x)‖ =
2∑

i=1

Li(x)‖(ξ − µ)(fi(x))‖.

So, (H2) is valid. Now, we can find m0 ∈ N such that

(m+ 2)p + (m+ 1)p < 1 for all m ≥ m0.

Therefore, we obtain that

ε∗m(x) :=
∞∑
n=0

Λn
mεm(x)

= c((m+ 2)p +mp)
∞∑
n=0

Λn
m (‖(m+ 2)x‖p + ‖(m+ 1)x‖p)

= c((m+ 2)p +mp)‖x‖p
∞∑
n=0

((m+ 2)p + (m+ 1)p)n

=
c((m+ 2)p +mp)‖x‖p

1− (m+ 2)p − (m+ 1)p
, x ∈ X \ {0},m ≥ m0.

The rest of the proof is similar to the proof of Theorem 2.1.
�

References

[1] C. Baak, CauchyRassias stability of CauchyJensen additive mappings in Banach spaces, Acta Math.
Sin. (Engl. Ser.), 22 (6) (2006) 17891796.

[2] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, Acta Math. Hungar.
doi: 10.1007/s10474-013-0347-3

[3] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function
rings, Duke Math. J., 16(1949), 385-397
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