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Hyperstability of a Cauchy-Jensen type functional equation

Abstract. In this paper, we establish some hyperstability results concerning the
Cauchy - Jensen functional equation
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in Banach spaces.

1. INTRODUCTION

In 1940, Ulam [29] raised the following question: Under what conditions does there
exist an additive mapping near an approximately additive mapping?
Let X and Y be Banach spaces with norms ||.|| and ||.||, respectively. In 1941, Hyers [12]
showed that if € > 0 and f : X — Y such that

1f(z+y) = fl@) = fWl <e
for all x,y € X, then there exists a unique additive mapping 7" : X — Y such that

[f () = T(2)|| <

for all z € X. In 1978, Rassias [27] introduced the following inequality, that we call
Cauchy-Rassias inequality. Assume that there exist constants § > 0 and p € [0, 1) such
that

1z +y) = fl) = F < 0 l” + lyl”),

for all x,y € X. Rassias [27] showed that there exists a unique R-linear mapping 7' :

X — Y such that
20
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If () = T(2)]| <

1
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for all x € X. The above inequality has produced a lot of influence on the development
of what we now call the Hyers-Ulam-Rassias stability of functional equations. Beginning
around the year 1980 the topic of approximate homomorphisms, or the stability of the
equation of homomorphism, was studied by a number of mathematicians (see [§], [14]-[17]
and [26]).

Recently, interesting results concerning Cauchy-Jensen functional equation

r(552) v (55Y) —rw (L)
have been obtained in [1],[10],[13],[19],[20] and [21].

We say a functional equation ® is hyperstable if any function f satisfying the equation
® approximately is a true solution of ®. It seems that the first hyperstability result was
published in [3] and concerned the ring homomorphisms. However, The term hyperstability
has been used for the first time in [I8]. Quite often the hyperstability is confused with
superstability, which admits also bounded functions. The term hyperstability has been
used for the first time in [I8], however it seems that the first hyperstability result was
published in [3] and concerned the ring homomorphisms. Numerous papers on this subject
have been published and we refer to [2], [4], [5], [6], [11], [22].

Throughout this paper, we present the hyperstability results for the Cauchy-Jensen
functional equation in Banach spaces.

The method of the proofs used in the main results is based on a fixed point result that
can be derived from [7] (Theorem 1). To present it we need the following three hypothesis:

(H1) X is a nonempty set, Y is a Banach space, fi,..., fr : X — X and Ly, ..., Ly

X — R, are given.
(H2) 7 :YX — Y ¥ is an operator satisfying the inequality

N

[TE() =T Z )€ (fi(z)) — p(fil2)) [, Luey®, zeX.

(H3) A:RY — R is a linear operator defined by

k
AS(z) =Y Li(x)d (fi(x)), §eRY, zeX.
i=1
The following theorem is the basic tool in this paper. We use it to assert the existence of
a unique fixed point of operator 7 : Y X — Y X,

Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions ¢ : X — Ry and
v : X — Y fulfil the following two conditions

[To(x) —p(@)l <e(@),  reX,

:ZAns(x)<oo, r e X.
n=0



Then there ezits a unique fized point ¥ of T with

[o(z) —¥(z)|| <e*(z), zeX.
Moreover
Y(w) = lim T"p(x), zeX.

2. HYPERSTABILITY RESULTS

The following theorems are the main results in this paper and concern the hyperstability
of equation (1.1)).

Theorem 2.1. Let X be a normed space, Y be a Banach space, c > 0, p,g e R, p+q <0
and let f: X — Y satisfy

(52) 1 (52) o

for all xz,y € X\ {0}. Then f is Cauchy-Jensen on X \ {0}.

< cfl]l” - flyll® (2.1)

Proof. since p+ q < 0, one of p, ¢ must be negative. Assume that ¢ < 0 and replace y by
mx, where m € N, in (2.1). We get that

(52 (5o

for all z € X \ {0}. Write

Tt () —f(Hm )+§(1_2ma:), v € X\ {0}, ¢ ey,

< emf||z||Pte (2.2)

en(2) = emta|?*, @€ X\ {0},
then takes the following form
[T f () = f(@)]| < em(z), 2 € X \{0}.
Define
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Then it is easily seen that A,, has the form described in (H3) with k£ = 2 and
filz) =82, fo(z) = 522, Li(z) = Ly(z) =1 for z € X \ {0}.
Moreover, for every &, € YX\MO and 2 € X \ {0}, we get that

I7g(o) - Tosl = | (570 ) + € (157) —u<1§mx) - (A52)

<= (57) |+ - (5

1 1—
Amn(l’)::n( +mx>+n< mx), v € X\ {0}, n e RPN

1

)H D€ - (@)



So, (H2) is valid. Next, we can find my € N such that

p+q

1
tm <1 forall m > my.

2

Therefore, we obtain that

P oy
=

iAZﬂbem(CL’)
n=0
= omd||z|PTe i <

n=0
_ }1+m‘p+q i ‘17m ’p+q7

1+mp+q

2

2

p+q> "

z e X\ {0},m>mo.

‘1—m

Hence, according to Theorem [I.1]} for each m > mg there exists a unique solution
A, X\ {0} = Y of the equation

Am(x):Am(lzmx> + A (1_27”1;), re X\ {0}

such that

Cm11||x||p+q

Hf(*r) —Am(l’)H —1_ ‘H_m’p-‘rq i |1,_m|p+q7 LS X\{O}vm > my.
2 2

Moreover,

Ap(z) == lim T2 f(z), € X\ {0},

To prove that A, satisfies the Cauchy-Jensen equation on X \ {0}, we show that

_ ptq pta\ "
‘ (x +y) + Trgf (JJ 5 y) — mf(a:) <c ( T ) Hpr”qu

(2.3)
for every x,y € X \ {0} and every n € Ny.
If n =0, then (2.3)) is simply (2.1)). So, take r € Ny and suppose that (2.3) holds for
n =r. Then

((52) s (57 o
T

f(l—ma:— )_Trgf(lzmx)_ﬁ;f(lgmx) H

2

'l—m

1 11—
g (L) oy (e

—I—T,fj(l—i_mx_ >



l4+mz+y l+maz—y I+m
<|7f | —— O T
< Tmf( SR >+ mf< 55 ) Tnf(—5—1)
ey l—-mx+y F TS l—mz—y Tnf(l m )
- — x
I\ T2 ™\ 2 2 2
1_|_mp+q 1_mp+q " 1+m p 1+m 4 1_m P 1_m a
2 2 2 2 2 2
r+1
1+mp+q l—mp+q
— ¢ ( 2 O [P lyll?, 2,y € X\ {0}.

Thus, by induction we have shown that (2.3) holds for all n € Ny. Letting n — oo in
(2.3]), we obtain that

A(z) = A, (5’3‘2*%) + A, (i%) zy € X\ {ob.

So, we obtain a sequence {A, }m>m, of Cauchy-Jensen functions on X \ {0} such that

1/ () = Am(2)] < Tttt £ € XA\ {0)
Sl e

It follows, with m — oo, that f is Cauchy-Jensen on X \ {0}.

In a similar way we can prove the following two theorems.

Theorem 2.2. Let X be a normed space, Y be a Banach space, ¢ > 0, p,g e R, p+q > 0
and let f : X — Y satisfies (2.1). Then f is Cauchy-Jensen on X \ {0}.

Proof. We note that 1D with z replaced by y by #w where m € N, gives
m+1 m—1
‘f (—2m x) +f< 5 x) — f(=)

for all z € X \ {0}. Define operators Ty, : Y3\ — Yy X\ and A,, : RFVO — RO py
1 —1
Tub(@) =€ (”” ) +¢ (m :c) L weX\ {0} gev

i p+q
< — el (2.4)

om 2m
. m+1 m—1 X\{0}
Amé(:t).—(S(zm x>—|—5( 5 x), re X\ {0}, deR‘.
Then it is easily seen that A,, has the form described in (H3) with k£ = 2 and
m+1 m—1

for x € X \ {0}. Further, (2.4) can be written in the form
[T f(2) = f(2)]| < em(z), =€ X\{0},
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with .
o p+q
en(@) = ]|,

Moreover, for every &, u € YA\ and 2 € X \ {0}, we have
m+1 m—1 m+1 m—1
(7o) = Tono)] = g (B0e ) 6 (Bt ) (Bte) - (Bt

< 6= (Tsta) |+ e - (te) | - ZL (E = W)

and hypothesis (H2) holds, too. We can find my € N such that

1

p+q

-1
m <1 forall m > my.

2m

m—+1

p+q
2m ‘

Note yet that we have

en(@) = ) Alen(x)

o) -+ + n
D S i i Lt
me n=0 2m 2m
cf ][
- mQ(l_‘Hﬂ‘p+q_{1—_m|p+q ’ xGX\{O},msz
2 2

Consequently, in view of Theorem [1.1] for each m > my there exists a unique solution
A, X\ {0} = Y of the equation

A(x) = A, (m; 1x> + A <m27;1x> C zex\{0)

m
such that
clj|P*
| f(z) — (@) < ma(1 — 7,2L_;1|p+q_ %‘p+q)’ r € X\ {0}, m > my.
Moreover,

Ap(z) = lim T f(z), ze€ X\ {0}

n—0o0

we show that
(S5 e (*

for every x,y € X \ {0} and every n € Ny.

p+q m—l

2m

pta\ "
[P [|y[?

) —mﬂx)H < ('m—“
(2.5)
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If n =0, then (2.5)) is simply (2.1)). So, take r € Ny and suppose that (2.5)) holds for
n =r. Then

Tr-i-lf (x+y) +7~r+1f( ) Tr—i—lf( )

+7_n,;f(m+lx )—i—Trf( ) (m—i—l )_Trzf(n”;;blx) H
Y

o (mE+lx+y m—1lx+y
Tmf< 2m 2 ) Trf( 2m 2 )

2m 2

f( ) ( )— f( )
Tnf< ) ( ) T f ()
m 2m
o (| m_1p+q m41 | fm41 |7 |fm—1 | |lm—1 |
c|l|l—— — x T 9 v om
- 2m 2m 2m 2m Y 2my
+
m_|_1p+q m_1p+q
“(W “om el llyle, 2,y € X\ {0}

Thus, by induction we have shown that (2.5)) holds for all n € Ny. Letting n — oo in

, we obtain that

2
So, we obtain a sequence {A, }m>m, of Cauchy-Jensen functions on X \ {0} such that

cf ||
IUWQ-—Am@0H§7n%1_ L 7|l )’ z e X\ {0}.
2m
It follows, with m — oo, that f is Cauchy-Jensen on X \ {0}. O

Theorem 2.3. Let X be a normed space, Y be a Banach space, ¢ > 0, p < 0 and let
f: X —Y satisfy
Y
) - s

T+ x
()
for all x,y € X \ {0}. Then f is Cauchy-Jensen on X \ {0}.
Proof. Replacing x by (m + 2)x and y by —ma, where m € N, in ([2.6). Thus

1f(2) + f((m + D)z) = f((m + 2)x)|| < e((m +2)" +mP)|||]” (2.7)
for all z € X \ {0}. Write

< c(llz]” + llyll*) (2.6)

Tl(z) = E((m +2)x) — E((m+ 1)z), e X\ {0},¢ e Yy

em(x) := c((m+2)P + mP)||z|]".
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Inequality ([2.7)) takes the following form

[T f () = (@) < em(z), =€ X\{0}.
The following linear operator A,, : Rf\{o} — Rf\{o} witch is defined by

Api(@) = n((m+2)z) +n((m+)z), ne R 2e X\ {0}

has the form described in (H3) with £ = 2 and fi(z) = (m+2)z, fo(x) = (m+1)z, L1 () =
Ly(z) =1 ,for z € X \ {0}.
Moreover, for every &, € YA\ 2 € X\ {0}

[Tmé (@) = Trpu(@)|| = [1€ ((m + 2)x) = & ((m + Dx) — p((m + 2)z) + p((m + 1)z)]|

2

| = L@l = m(fi@)].

=1

< i€ = 1) ((m 4 2)2) || + [[(€ = ) ((m + 1))

So, (H2) is valid. Now, we can find mg € N such that

(m+2P+(m+1)P <1 foral m>mg.
Therefore, we obtain that

en(r) = ) Alen(r)

= o((m+2)" +m?) Yy Ay ([(m+2)z]” + | (m + Dz|”)

= cllm+2)" + mP)all” 3 ((m+2)" + (m + 1)")"

__clm+2)7 + mP)e]l?
= T mi2r (il x € X\ {0}, m > my.

The rest of the proof is similar to the proof of Theorem [2.1]
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