Hyperstability of a Cauchy-Jensen type functional equation

Abstract. In this paper, we establish some hyperstability results concerning the Cauchy - Jensen functional equation

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x)$$

in Banach spaces.

Keywords and Phrases. Hyperstability, Cauchy-Jensen equation, fixed point theorem.

2010 Mathematics Subject Classification. Primary 39B82, 39B62; Secondary 47H14, 47H10.

1. Introduction

In 1940, Ulam [29] raised the following question: Under what conditions does there exist an additive mapping near an approximately additive mapping? Let X and Y be Banach spaces with norms $\|.\|$ and $\|.\|$, respectively. In 1941, Hyers [12] showed that if $\epsilon > 0$ and $f: X \to Y$ such that

$$||f(x+y) - f(x) - f(y)|| \le \epsilon,$$

for all $x, y \in X$, then there exists a unique additive mapping $T: X \to Y$ such that

$$||f(x) - T(x)|| \le \epsilon,$$

for all $x \in X$. In 1978, Rassias [27] introduced the following inequality, that we call Cauchy-Rassias inequality. Assume that there exist constants $\theta \geq 0$ and $p \in [0,1)$ such that

$$||f(x+y) - f(x) - f(y)|| \le \theta(||x||^p + ||y||^p),$$

for all $x,y\in X$. Rassias [27] showed that there exists a unique $\mathbb R$ -linear mapping $T:X\to Y$ such that

$$||f(x) - T(x)|| \le \frac{2\theta}{2 - 2^p} ||x||^p,$$

for all $x \in X$. The above inequality has produced a lot of influence on the development of what we now call the Hyers-Ulam-Rassias stability of functional equations. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was studied by a number of mathematicians (see [8], [14]-[17] and [26]).

Recently, interesting results concerning Cauchy-Jensen functional equation

$$f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) = f(x) \tag{1.1}$$

have been obtained in [1],[10],[13],[19],[20] and [21].

We say a functional equation \mathfrak{D} is hyperstable if any function f satisfying the equation \mathfrak{D} approximately is a true solution of \mathfrak{D} . It seems that the first hyperstability result was published in [3] and concerned the ring homomorphisms. However, The term hyperstability has been used for the first time in [18]. Quite often the hyperstability is confused with superstability, which admits also bounded functions. The term hyperstability has been used for the first time in [18], however it seems that the first hyperstability result was published in [3] and concerned the ring homomorphisms. Numerous papers on this subject have been published and we refer to [2], [4], [5], [6], [11], [22].

Throughout this paper, we present the hyperstability results for the Cauchy-Jensen functional equation (1.1) in Banach spaces.

The method of the proofs used in the main results is based on a fixed point result that can be derived from [7] (Theorem 1). To present it we need the following three hypothesis:

- **(H1)** X is a nonempty set, Y is a Banach space, $f_1, ..., f_k : X \longrightarrow X$ and $L_1, ..., L_k :$ $X \longrightarrow \mathbb{R}_+$ are given. (**H2**) $\mathcal{T}: Y^X \longrightarrow Y^X$ is an operator satisfying the inequality

$$\|\mathcal{T}\xi(x) - \mathcal{T}\mu(x)\| \le \sum_{i=1}^k L_i(x) \|\xi(f_i(x)) - \mu(f_i(x))\|, \qquad \xi, \mu \in Y^X, \quad x \in X.$$

(**H3**) $\Lambda: \mathbb{R}_+^X \longrightarrow \mathbb{R}_+^X$ is a linear operator defined by

$$\Lambda \delta(x) := \sum_{i=1}^{k} L_i(x) \delta(f_i(x)), \qquad \delta \in \mathbb{R}_+^X, \quad x \in X.$$

The following theorem is the basic tool in this paper. We use it to assert the existence of a unique fixed point of operator $\mathcal{T}: Y^X \longrightarrow Y^X$

Theorem 1.1. Let hypotheses (H1)-(H3) be valid and functions $\varepsilon: X \longrightarrow \mathbb{R}_+$ and $\varphi: X \longrightarrow Y$ fulfil the following two conditions

$$\|\mathcal{T}\varphi(x) - \varphi(x)\| \le \varepsilon(x), \qquad x \in X,$$

$$\varepsilon^*(x) := \sum_{n=0}^{\infty} \Lambda^n \varepsilon(x) < \infty, \qquad x \in X.$$

Then there exits a unique fixed point ψ of \mathcal{T} with

$$\|\varphi(x) - \psi(x)\| \le \varepsilon^*(x), \qquad x \in X.$$

Moreover

$$\psi(x) := \lim_{n \to \infty} \mathcal{T}^n \varphi(x), \qquad x \in X.$$

2. Hyperstability results

The following theorems are the main results in this paper and concern the hyperstability of equation (1.1).

Theorem 2.1. Let X be a normed space, Y be a Banach space, $c \ge 0$, $p, q \in \mathbb{R}$, p+q < 0 and let $f: X \longrightarrow Y$ satisfy

$$\left\| f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) - f(x) \right\| \le c\|x\|^p \cdot \|y\|^q$$
 (2.1)

for all $x, y \in X \setminus \{0\}$. Then f is Cauchy-Jensen on $X \setminus \{0\}$.

Proof. since p + q < 0, one of p, q must be negative. Assume that q < 0 and replace y by mx, where $m \in \mathbb{N}$, in (2.1). We get that

$$\left\| f\left(\frac{1+m}{2}x\right) + f\left(\frac{1-m}{2}x\right) - f(x) \right\| \le cm^q \|x\|^{p+q}$$
 (2.2)

for all $x \in X \setminus \{0\}$. Write

$$\mathcal{T}_m \xi(x) := \xi\left(\frac{1+m}{2}x\right) + \xi\left(\frac{1-m}{2}x\right), \quad x \in X \setminus \{0\}, \xi \in Y^{X\setminus\{0\}},$$

$$\varepsilon_m(x) := cm^q ||x||^{p+q}, \quad x \in X \setminus \{0\},$$

then (2.2) takes the following form

$$\|\mathcal{T}_m f(x) - f(x)\| \le \varepsilon_m(x), \quad x \in X \setminus \{0\}.$$

Define

$$\Lambda_m \eta(x) := \eta\left(\frac{1+m}{2}x\right) + \eta\left(\frac{1-m}{2}x\right), \quad x \in X \setminus \{0\}, \eta \in \mathbb{R}_+^{X\setminus \{0\}}.$$

Then it is easily seen that Λ_m has the form described in (**H3**) with k=2 and $f_1(x) = \frac{1+m}{2}x$, $f_2(x) = \frac{1-m}{2}x$, $L_1(x) = L_2(x) = 1$ for $x \in X \setminus \{0\}$. Moreover, for every $\xi, \mu \in Y^{X \setminus \{0\}}$ and $x \in X \setminus \{0\}$, we get that

$$\|\mathcal{T}_{m}\xi(x) - \mathcal{T}_{m}\mu(x)\| = \left\| \xi\left(\frac{1+m}{2}x\right) + \xi\left(\frac{1-m}{2}x\right) - \mu\left(\frac{1+m}{2}x\right) - \mu\left(\frac{1-m}{2}x\right) \right\|$$

$$\leq \left\| (\xi - \mu)\left(\frac{1+m}{2}x\right) \right\| + \left\| (\xi - \mu)\left(\frac{1-m}{2}x\right) \right\| = \sum_{i=1}^{2} L_{i}(x) \|(\xi - \mu)(f_{i}(x))\|.$$

So, (**H2**) is valid. Next, we can find $m_0 \in \mathbb{N}$ such that

$$\left| \frac{1+m}{2} \right|^{p+q} + \left| \frac{1-m}{2} \right|^{p+q} < 1 \text{ for all } m \ge m_0.$$

Therefore, we obtain that

$$\varepsilon_{m}^{*}(x) := \sum_{n=0}^{\infty} \Lambda_{m}^{n} \varepsilon_{m}(x)
= cm^{q} ||x||^{p+q} \sum_{n=0}^{\infty} \left(\left| \frac{1+m}{2} \right|^{p+q} + \left| \frac{1-m}{2} \right|^{p+q} \right)^{n}
= \frac{cm^{q} ||x||^{p+q}}{1 - \left| \frac{1+m}{2} \right|^{p+q} - \left| \frac{1-m}{2} \right|^{p+q}}, \quad x \in X \setminus \{0\}, m \ge m_{0}.$$

Hence, according to Theorem 1.1, for each $m \geq m_0$ there exists a unique solution $A_m: X \setminus \{0\} \to Y$ of the equation

$$A_m(x) = A_m\left(\frac{1+m}{2}x\right) + A_m\left(\frac{1-m}{2}x\right), \quad x \in X \setminus \{0\}$$

such that

$$||f(x) - A_m(x)|| \le \frac{cm^q ||x||^{p+q}}{1 - \left|\frac{1+m}{2}\right|^{p+q} - \left|\frac{1-m}{2}\right|^{p+q}}, \quad x \in X \setminus \{0\}, m \ge m_0.$$

Moreover,

$$A_m(x) := \lim_{n \to \infty} \mathcal{T}_m^n f(x), \quad x \in X \setminus \{0\}.$$

To prove that A_m satisfies the Cauchy-Jensen equation on $X \setminus \{0\}$, we show that

$$\left\| \mathcal{T}_m^n f\left(\frac{x+y}{2}\right) + \mathcal{T}_m^n f\left(\frac{x-y}{2}\right) - \mathcal{T}_m^n f(x) \right\| \le c \left(\left| \frac{1+m}{2} \right|^{p+q} + \left| \frac{1-m}{2} \right|^{p+q} \right)^n \|x\|^p \|y\|^q$$

$$\tag{2.3}$$

for every $x, y \in X \setminus \{0\}$ and every $n \in \mathbb{N}_0$.

If n = 0, then (2.3) is simply (2.1). So, take $r \in \mathbb{N}_0$ and suppose that (2.3) holds for n = r. Then

$$\left\| \mathcal{T}_m^{r+1} f\left(\frac{x+y}{2}\right) + \mathcal{T}_m^{r+1} f\left(\frac{x-y}{2}\right) - \mathcal{T}_m^{r+1} f(x) \right\| = \left\| \mathcal{T}_m^r f\left(\frac{1+m}{2} \frac{x+y}{2}\right) + \mathcal{T}_m^r f\left(\frac{1-m}{2} \frac{x+y}{2}\right) + \mathcal{T}_m^r f\left(\frac{1-m}{2} \frac{x-y}{2}\right) - \mathcal{T}_m^r f\left(\frac{1+m}{2} \frac{x-y}{2}\right) - \mathcal{T}_m^r f\left(\frac{1-m}{2} x\right) \right\|$$

$$\leq \left\| \mathcal{T}_{m}^{n} f\left(\frac{1+m}{2} \frac{x+y}{2}\right) + \mathcal{T}_{m}^{n} f\left(\frac{1+m}{2} \frac{x-y}{2}\right) - \mathcal{T}_{m}^{n} f\left(\frac{1+m}{2} x\right) \right\| \\
+ \left\| \mathcal{T}_{m}^{n} f\left(\frac{1-m}{2} \frac{x+y}{2}\right) + \mathcal{T}_{m}^{n} f\left(\frac{1-m}{2} \frac{x-y}{2}\right) - \mathcal{T}_{m}^{n} f\left(\frac{1-m}{2} x\right) \right\| \\
\leq c \left(\left| \frac{1+m}{2} \right|^{p+q} + \left| \frac{1-m}{2} \right|^{p+q} \right)^{r} \left(\left\| \frac{1+m}{2} x \right\|^{p} \cdot \left\| \frac{1+m}{2} y \right\|^{q} + \left\| \frac{1-m}{2} x \right\|^{p} \cdot \left\| \frac{1-m}{2} y \right\|^{q} \right) \\
= c \left(\left| \frac{1+m}{2} \right|^{p+q} + \left| \frac{1-m}{2} \right|^{p+q} \right)^{r+1} \|x\|^{p} \cdot \|y\|^{q}, \quad x, y \in X \setminus \{0\}.$$

Thus, by induction we have shown that (2.3) holds for all $n \in \mathbb{N}_0$. Letting $n \longrightarrow \infty$ in (2.3), we obtain that

$$A_m(x) = A_m\left(\frac{x+y}{2}x\right) + A_m\left(\frac{x-y}{2}x\right), \quad x, y \in X \setminus \{0\}.$$

So, we obtain a sequence $\{A_m\}_{m\geq m_0}$ of Cauchy-Jensen functions on $X\setminus\{0\}$ such that

$$||f(x) - A_m(x)|| \le \frac{cm^q ||x||^{p+q}}{1 - \left|\frac{1+m}{2}\right|^{p+q} - \left|\frac{1-m}{2}\right|^{p+q}}, \quad x \in X \setminus \{0\}.$$

It follows, with $m \longrightarrow \infty$, that f is Cauchy-Jensen on $X \setminus \{0\}$.

In a similar way we can prove the following two theorems.

Theorem 2.2. Let X be a normed space, Y be a Banach space, $c \ge 0$, $p, q \in \mathbb{R}$, p+q>0 and let $f: X \longrightarrow Y$ satisfies (2.1). Then f is Cauchy-Jensen on $X \setminus \{0\}$.

Proof. We note that (2.1), with x replaced by y by $\frac{1}{m}x$ where $m \in \mathbb{N}$, gives

$$\left\| f\left(\frac{m+1}{2m}x\right) + f\left(\frac{m-1}{2m}x\right) - f(x) \right\| \le \frac{c}{m^q} \|x\|^{p+q}$$
 (2.4)

for all $x \in X \setminus \{0\}$. Define operators $\mathcal{T}_m : Y^{X \setminus \{0\}} \to Y^{X \setminus \{0\}}$ and $\Lambda_m : \mathbb{R}_+^{X \setminus \{0\}} \to \mathbb{R}_+^{X \setminus \{0\}}$ by

$$\mathcal{T}_m \xi(x) := \xi\left(\frac{m+1}{2m}x\right) + \xi\left(\frac{m-1}{2m}x\right), \qquad x \in X \setminus \{0\}, \quad \xi \in Y^{X \setminus \{0\}},$$

$$\Lambda_m \delta(x) := \delta\left(\frac{m+1}{2m}x\right) + \delta\left(\frac{m-1}{2m}x\right), \qquad x \in X \setminus \{0\}, \quad \delta \in \mathbb{R}_+^{X \setminus \{0\}}.$$

Then it is easily seen that Λ_m has the form described in (H3) with k=2 and

$$f_1(x) = \frac{m+1}{2m}x$$
, $f_2(x) = \frac{m-1}{2m}x$, $L_1(x) = L_2(x) = 1$

for $x \in X \setminus \{0\}$. Further, (2.4) can be written in the form

$$\|\mathcal{T}_m f(x) - f(x)\| \le \varepsilon_m(x), \quad x \in X \setminus \{0\},$$

with

$$\varepsilon_m(x) := \frac{c}{m^q} ||x||^{p+q}.$$

Moreover, for every $\xi, \mu \in Y^{X \setminus \{0\}}$ and $x \in X \setminus \{0\}$, we have

$$\|\mathcal{T}_m \xi(x) - \mathcal{T}_m \mu(x)\| = \left\| \xi\left(\frac{m+1}{2m}x\right) + \xi\left(\frac{m-1}{2m}x\right) - \mu\left(\frac{m+1}{2m}x\right) - \mu\left(\frac{m-1}{2m}x\right) \right\|$$

$$\leq \left\| (\xi - \mu) \left(\frac{m+1}{2m} x \right) \right\| + \left\| (\xi - \mu) \left(\frac{m-1}{2m} x \right) \right\| = \sum_{i=1}^{2} L_i(x) \| (\xi - \mu) (f_i(x)) \|$$

and hypothesis (**H2**) holds, too. We can find $m_0 \in \mathbb{N}$ such that

$$\left| \frac{m+1}{2m} \right|^{p+q} + \left| \frac{m-1}{2m} \right|^{p+q} < 1 \quad \text{for all} \quad m \ge m_0.$$

Note yet that we have

$$\varepsilon_{m}^{*}(x) := \sum_{n=0}^{\infty} \Lambda_{m}^{n} \varepsilon_{m}(x)
= \frac{c}{m^{q}} ||x||^{p+q} \sum_{n=0}^{\infty} \left(\left| \frac{m+1}{2m} \right|^{p+q} + \left| \frac{m-1}{2m} \right|^{p+q} \right)^{n}
= \frac{c ||x||^{p+q}}{m^{q} (1 - \left| \frac{1+m}{2} \right|^{p+q} - \left| \frac{1-m}{2} \right|^{p+q})}, \quad x \in X \setminus \{0\}, m \ge m_{0}.$$

Consequently, in view of Theorem 1.1, for each $m \ge m_0$ there exists a unique solution $A_m: X \setminus \{0\} \to Y$ of the equation

$$A_m(x) = A_m\left(\frac{m+1}{2m}x\right) + A_m\left(\frac{m-1}{2m}x\right), \quad x \in X \setminus \{0\}$$

such that

$$||f(x) - A_m(x)|| \le \frac{c||x||^{p+q}}{m^q (1 - \left|\frac{m+1}{2m}\right|^{p+q} - \left|\frac{m-1}{2m}\right|^{p+q})}, \quad x \in X \setminus \{0\}, m \ge m_0.$$

Moreover,

$$A_m(x) := \lim_{n \to \infty} \mathcal{T}_m^n f(x), \quad x \in X \setminus \{0\}.$$

we show that

$$\left\| \mathcal{T}_m^n f\left(\frac{x+y}{2}\right) + \mathcal{T}_m^n f\left(\frac{x-y}{2}\right) - \mathcal{T}_m^n f(x) \right\| \le c \left(\left| \frac{m+1}{2m} \right|^{p+q} - \left| \frac{m-1}{2m} \right|^{p+q} \right)^n \|x\|^p \|y\|^q$$

$$(2.5)$$

for every $x, y \in X \setminus \{0\}$ and every $n \in \mathbb{N}_0$.

If n=0, then (2.5) is simply (2.1). So, take $r\in\mathbb{N}_0$ and suppose that (2.5) holds for n=r. Then

$$\begin{split} \left\| \mathcal{T}_{m}^{r+1} f\left(\frac{x+y}{2}\right) + \mathcal{T}_{m}^{r+1} f\left(\frac{x-y}{2}\right) - \mathcal{T}_{m}^{r+1} f(x) \right\| &= \left\| \mathcal{T}_{m}^{r} f\left(\frac{m+1}{2m} \frac{x+y}{2}\right) + \mathcal{T}_{m}^{r} f\left(\frac{m-1}{2m} \frac{x+y}{2}\right) \right\| \\ &+ \mathcal{T}_{m}^{r} f\left(\frac{m+1}{2m} \frac{x-y}{2}\right) + \mathcal{T}_{m}^{r} f\left(\frac{m-1}{2m} \frac{x-y}{2}\right) - \mathcal{T}_{m}^{r} f\left(\frac{m+1}{2m} x\right) - \mathcal{T}_{m}^{r} f\left(\frac{m-1}{2m} x\right) \| \\ &\leq \left\| \mathcal{T}_{m}^{n} f\left(\frac{m+1}{2m} \frac{x+y}{2}\right) + \mathcal{T}_{m}^{n} f\left(\frac{m+1}{2m} \frac{x-y}{2}\right) - \mathcal{T}_{m}^{n} f\left(\frac{m+1}{2m} x\right) \right\| \\ &+ \left\| \mathcal{T}_{m}^{n} f\left(\frac{m-1}{2m} \frac{x+y}{2}\right) + \mathcal{T}_{m}^{n} f\left(\frac{m-1}{2m} \frac{x-y}{2}\right) - \mathcal{T}_{m}^{n} f\left(\frac{m-1}{2m} x\right) \right\| \\ &\leq c \left(\left| \frac{m+1}{2m} \right|^{p+q} + \left| \frac{m-1}{2m} \right|^{p+q} \right)^{r} \left(\left\| \frac{m+1}{2m} x \right\|^{p} \cdot \left\| \frac{m+1}{2m} y \right\|^{q} + \left\| \frac{m-1}{2m} x \right\|^{p} \cdot \left\| \frac{m-1}{2m} y \right\|^{q} \right) \\ &= c \left(\left| \frac{m+1}{2m} \right|^{p+q} + \left| \frac{m-1}{2m} \right|^{p+q} \right)^{r+1} \|x\|^{p} \cdot \|y\|^{q}, \quad x, y \in X \setminus \{0\}. \end{split}$$

Thus, by induction we have shown that (2.5) holds for all $n \in \mathbb{N}_0$. Letting $n \longrightarrow \infty$ in (2.5), we obtain that

$$A_m(x) = A_m\left(\frac{x+y}{2}x\right) + A_m\left(\frac{x-y}{2}x\right), \quad x, y \in X \setminus \{0\}.$$

So, we obtain a sequence $\{A_m\}_{m\geq m_0}$ of Cauchy-Jensen functions on $X\setminus\{0\}$ such that

$$||f(x) - A_m(x)|| \le \frac{c||x||^{p+q}}{m^q(1 - \left|\frac{m+1}{2m}\right|^{p+q} - \left|\frac{m-1}{2m}\right|^{p+q})}, \quad x \in X \setminus \{0\}.$$

It follows, with $m \longrightarrow \infty$, that f is Cauchy-Jensen on $X \setminus \{0\}$.

Theorem 2.3. Let X be a normed space, Y be a Banach space, $c \ge 0$, p < 0 and let $f: X \longrightarrow Y$ satisfy

$$\left\| f\left(\frac{x+y}{2}\right) + f\left(\frac{x-y}{2}\right) - f(x) \right\| \le c(\|x\|^p + \|y\|^p)$$
 (2.6)

for all $x, y \in X \setminus \{0\}$. Then f is Cauchy-Jensen on $X \setminus \{0\}$.

Proof. Replacing x by (m+2)x and y by -mx, where $m \in \mathbb{N}$, in (2.6). Thus

$$||f(x) + f((m+1)x) - f((m+2)x)|| \le c((m+2)^p + m^p)||x||^p$$
(2.7)

for all $x \in X \setminus \{0\}$. Write

$$\mathcal{T}_{m}\xi(x) := \xi((m+2)x) - \xi((m+1)x), \quad x \in X \setminus \{0\}, \xi \in Y^{X \setminus \{0\}},$$
$$\varepsilon_{m}(x) := c((m+2)^{p} + m^{p}) \|x\|^{p}.$$

Inequality (2.7) takes the following form

$$\|\mathcal{T}_m f(x) - f(x)\| \le \varepsilon_m(x), \quad x \in X \setminus \{0\}.$$

The following linear operator $\Lambda_m: \mathbb{R}_+^{X\setminus\{0\}} \longrightarrow \mathbb{R}_+^{X\setminus\{0\}}$ witch is defined by

$$\Lambda_m \eta(x) := \eta((m+2)x) + \eta((m+1)x), \quad \eta \in \mathbb{R}_+^{X \setminus \{0\}}, x \in X \setminus \{0\}$$

has the form described in (**H3**) with k = 2 and $f_1(x) = (m+2)x$, $f_2(x) = (m+1)x$, $L_1(x) = L_2(x) = 1$, for $x \in X \setminus \{0\}$.

Moreover, for every $\xi, \mu \in Y^{X \setminus \{0\}}, x \in X \setminus \{0\}$

$$\|\mathcal{T}_m \xi(x) - \mathcal{T}_m \mu(x)\| = \|\xi((m+2)x) - \xi((m+1)x) - \mu((m+2)x) + \mu((m+1)x)\|$$

$$\leq \|(\xi - \mu) ((m+2)x)\| + \|(\xi - \mu) ((m+1)x)\| = \sum_{i=1}^{2} L_i(x) \|(\xi - \mu) (f_i(x))\|.$$

So, (**H2**) is valid. Now, we can find $m_0 \in \mathbb{N}$ such that

$$(m+2)^p + (m+1)^p < 1$$
 for all $m \ge m_0$.

Therefore, we obtain that

$$\varepsilon_m^*(x) := \sum_{n=0}^{\infty} \Lambda_m^n \varepsilon_m(x)$$

$$= c((m+2)^p + m^p) \sum_{n=0}^{\infty} \Lambda_m^n (\|(m+2)x\|^p + \|(m+1)x\|^p)$$

$$= c((m+2)^p + m^p) \|x\|^p \sum_{n=0}^{\infty} ((m+2)^p + (m+1)^p)^n$$

$$= \frac{c((m+2)^p + m^p) \|x\|^p}{1 - (m+2)^p - (m+1)^p}, \quad x \in X \setminus \{0\}, m \ge m_0.$$

The rest of the proof is similar to the proof of Theorem 2.1.

References

- [1] C. Baak, CauchyRassias stability of CauchyJensen additive mappings in Banach spaces, *Acta Math. Sin. (Engl. Ser.)*, 22 (6) (2006) 17891796.
- [2] A. Bahyrycz and M. Piszczek, Hyperstability of the Jensen functional equation, *Acta Math. Hungar*. doi: 10.1007/s10474-013-0347-3
- [3] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, *Duke Math. J.*, 16(1949), 385-397
- [4] J. Brzdek, A hyperstability result for the Cauchy equation, Bulletin of the Australian Mathematical Society doi:10.1017/S0004972713000683

- [5] J. Brzdek, Hyperstability of the Cauchy equation on restricted domains. *Acta Math. Hungar*. doi:10.1007/s10474-013-0302-3
- [6] J. Brzdek, Remarks on hyperstability of the Cauchy functional equation, Aequat. Math. 86(2013), 255-267
- [7] J. Brzdek, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74, 6728-6732 (2011)
- [8] L. Cădariu and V. Radu, Fixed points and the stability of Jensens functional equation, *Journal of Inequalities in Pure and Applied Mathematics*, vol. 4, no.1, (2003), article 4.
- [9] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl., 184 (1994), 431-436.
- [10] M. E. Gordji, H. Khodaei, M. Kamyar, Stability of CauchyJensen type functional equation in generalized fuzzy normed spaces, Computers and Mathematics with Applications, 62 (2011) 29502960.
- [11] E. Gselmann, Hyperstability of a functional equation, Acta Mathematica Hungarica, 124 (2009), 179-188
- [12] D. H. Hyers, On the stability of the linear functional equation, *Proc. Nat. Acad. Sci. U. S. A.*, **27** (1941), 222-224.
- [13] K.-W. Jun, H.-M. Kim, J.M. Rassias, Extended HyersUlam stability for CauchyJensen mappings, J. Diference Equ. Appl, 13 (12) (2007) 11391153.
- [14] S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 175-190.
- [15] S.-M. Jung, M. S. Moslehian and P. K. Sahoo, Stability of a generalized Jensen equation on restricted domains, J. Math. Ineq., 4(2010), 191-206.
- [16] Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math., 22(1989), 499-507.
- [17] Y.-H. Lee and K.-W. Jun, A generalization of the HyersUlamRassias stability of Jensens equation, J. Math. Anal. Appl., 238(1999), 305-315.
- [18] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. Acad. Paedag. Nyíregyháziensis, 17(2001), 107112.
- [19] A. Najati, A. Ranjbari, Stability of homomorphisms for a 3D CauchyJensen type functional equation on C*-ternary algebras, J. Math. Anal. Appl, 341 (2008) 6279.
- [20] C. Park, Fixed points and HyersUlamRassias stability of CauchyJensen functional equations in Banach algebras, Fixed. Point. Theory. Appl. (2007) 15 pages. Article ID 50175.
- [21] C. Park, J.M. Rassias, Stability of the Jensentype functional equation in C^* -algebras: a fixed point approach, Abs. Appl. Anal, (2009) 17 pages. Article ID 360432.
- [22] M. Piszczek and J. Szczawińska, Hyperstability of the Drygas Functional Equation, *Journal of Function Spaces and Applications* Volume 2013(2013), Article ID 912718
- [23] J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46, 126130 (1982).
- [24] J. M. Rassias, Solution of a problem of Ulam, J. Approx. Theory, 57, 268273 (1989).
- [25] J. M. Rassias, Complete solution of the multi-dimentional problem of Ulam, Discuss. Math., 14 (1994), 101-107
- [26] J. M. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl., 281(2003), 516524
- [27] Th. M. Rassias, On the stability of linear mapping in Banach spaces, *Proc. Amer. Math. Soc.*, 72 (1978), 297-300.
- [28] Th. M. Rassias, On a modified HyersUlam sequence, J. Math. Anal. Appl., 158, 106113 (1991).
- [29] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1960.
- [30] S. M. Ulam, A Collection of Mathematical Problems, *Interscience Publ. New York*, 1961. Problems in Modern Mathematics, *Wiley, New York* 1964.