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Abstract

We have already reported that anticholinergic activity (AA) appeared 
endogenously in Alzheimer’s disease (AD) serum, and may accelerate AD pathology. In 
this article we introduce the reasons for this. We comment on the roles of acetylcholine 
(Ach) downregulation and AA in AD, show two patterns of AD rapid progression 
associated with AA, and three putative patterns of amyloid pathology in AD. We 
speculate that ACh downregulation and AA may induce inflammatory hyperactivity in 
both the central nervous system and peripheral tissue, as well as among inflammatory 
cytokines that may have AA. This ACh downregulation in AD may extend the 
pathological processes in the central nervous system to peripheral tissues and vice 
versa, whereas AA in AD may be a final common pathway in the amyloid-producing 
process from various invasions. In addition, we discuss our proposed hypothesis of 
endogenous AA in AD and consider its implications. Therapeutically, we recommend 
that prescribing cholinesterase inhibitors and N-methyl-D-aspartate receptor 
antagonists are appropriate for the “prevention” and “treatment” of rapid progression 
of AD respectively. In this context, it is important to prevent iatrogenic overdosing or 
polypharmacy for patients with AD. Furthermore, it is important to ensure that patients 
with AD are not suffering from concurrent physical illness or mental stress because this 
may facilitate the rapid progression of AD. Finally, we consider the limitations of the 
proposed hypothesis of the endogenous appearance of AA in AD

ABBREVIATIONS
MCI: Mild Cognitive Impairment; AD: Alzheimer’s disease; 

SAA: serum anticholinergic activity; ACh: Acetylcholine; NMDA: 
N-methyl-D-aspartate; AA: anticholinergic activity; FAST: 
Functional Assessment Staging; MMSE: mini-mental state 
examination; BEHAVE-AD: Behavioral Pathology in Alzheimer’s 
Disease Rating Scale; ChEIs: Cholinesterase inhibitors; ChAT: 
Choline acetyltransferase 

INTRODUCTION
Alzheimer’s disease (AD) progresses irreversibly in a non-

linear manner, and is characterized by abrupt changes in disease 
progression [1,2]. In general, progression is slow in mild AD 
and accelerates as it reaches a moderate stage. Although this 
difference in the speed of progression is not fully understood, we 

speculate that it is related to changes in anticholinergic activity 
(AA). AA refers to all substances that can bind to muscarinic 
acetylcholine (ACh) receptors [3]. Although aberrations in the 
cholinergic system can involve both agonists and antagonists 
of muscarinic receptors, most are antagonistic. Thus, AA 
elevations typically imply that there has been a deterioration of 
the cholinergic system, which is particularly relevant in patients 
with AD, in whom the cerebral cholinergic system is believed to 
be involved in the pathogenesis [4]. AA is considered to cause 
cognitive dysfunction in patients with AD, particularly in the 
memory domain [5,6]. ACh downregulation, a characteristic 
feature of AD [4], causes a similar pattern of dysfunction [7]. 
Therefore, both AA and ACh downregulation cooperate to cause 
the cognitive dysfunctions that are characteristic of AD. We 
have speculated that these interact with each other, with ACh 



Central

Hori et al. (2014)
Email:  

Ann Psychiatry Ment Health 2(1): 1006 (2014) 2/6

downregulation causing the endogenous appearance of AA, and 
vice-versa, thereby accelerating AD pathology [8-10]. 

In this article, we introduce our previous articles describing 
why AA may develop endogenously in AD, and comment on 
the roles of ACh downregulation and AA in AD. In addition, we 
describe two acceleration patterns and three amyloidogenic 
patterns associated with AD. 

Proposed hypothesis of endogenous anticholinergic 
activity in Alzheimer’s disease 

We previously evaluated and reported the relationship 
between AA and clinical symptoms in AD. AA was measured 
using serum anticholinergic activity (SAA), a peripheral marker 
of AA [3], whereas clinical symptoms were assessed using 
Functional Assessment Staging (FAST) [11], the mini-mental 
state examination (MMSE) [12], and the Behavioral Pathology in 
Alzheimer’s disease Rating Scale (BEHAVE-AD) [13-15]. Among 
76 patients with AD, 26 were positive for SAA, the mean SAA was 
4.14 ± 2.70 nM, whereas the remaining 50 patients were SAA 
negative. The SAA positive group showed higher psychotropic 
medication use, more advanced AD, lower cognitive function, 
and more severe behavioral symptoms, including delusions, 
hallucinations, and diurnal rhythm disturbances. Logistic 
regression analysis revealed significant correlations between 
SAA, and delusion and diurnal rhythm disturbances [15]. The 
MMSE total score and the registration and recall domain score 
were significantly lower in the SAA positive group compared 
with the SAA negative group [14], consistent with previous 
reports. Many prescription medications have AA or may cause 
SAA [16] and increase cognitive dysfunction, particularly in 
the memory domain [5,6], as well as psychotic symptoms 
similar to delirium [17,18,19]. Central cholinergic deficiency 
was characterized clinically by neuropsychiatric symptoms 
rather than by cognitive impairment [20,21]. We observed 
two new findings in these articles. First, was the endogenous 
appearance of AA in AD [15], which we considered was caused 
by psychotropic medications and caused behavioral symptoms? 
Moreover, we postulated that because psychotropic medicines 
are often clinically prescribed for the psychiatric symptoms of 
agitation and psychosis in AD [22,23], there may be the cyclic 
relationships among these factors. We termed this the “vicious 
cycle of AA in AD (VCAA)” and because medicines are prescribed 
for the clinical psychiatric symptoms of agitation and psychosis 
in AD [22,23], there may be endogenous AA [15]. Second, ACh 
downregulation not only induced cognitive deterioration but also 
accelerated AD pathology through increased AA [8-10, 14]. Since 
our previous work suggested that memory domains were more 
vulnerable to AA in AD [5,6], we supposed that memory function 
was more highly dependent on cholinergic function than other 
MMSE domains. In general, medication-induced AA resolves 
following their cessation, and one would expect the associated 
cognitive impairment to reverse [24]. However, the recovery of 
cognitive impairment took longer was only partial in some cases, 
despite complete discontinuation [25]. Perry et al reported that 
amyloid plaque densities were 2.5-fold higher, and that pathology 
increased, in cases treated with long-term antimuscarinics (over 
2 years) compared with untreated or short-term use (under 2 
years) [26]. Lu and Tune also commented that chronic exposure 

of medications with AA accelerated the clinical course of AD 
[27]. Moreover, muscarinic 1 receptor agonists induced amyloid 
precursor proteins to nonamyloid protein (α-processing) [28,29]. 
Therefore, muscarinic 1 receptor antagonism (i.e., AA) induces 
the conversion of amyloid precursor proteins to amyloid, and 
worsens the cognitive function and exacerbates AD pathology by 
increasing amyloid plaques. The pathology of this amyloidogenic 
process with AA remains unclear. It is possible that long-term 
exposure to anticholinergic medications irreversibly changes 
the AD pathology and that AA endogenously appears in AD and 
contributes to accelerated AD pathologies [14,15]. 

Next, we reviewed the putative mechanisms of endogenous 
AA appearance in AD [8-10]. In general, AA primarily results 
from prescription drugs, particularly those with potent AA and 
a complex administration regimen [16], with endogenous AA 
occurring due to illness [30] and stress [31]. Flacker and Lipsitz 
reported that SAA disappeared without medication changes 
following the amelioration of acute physical illnesses and 
commented that SAA may reflect a nonspecific stress response to 
illness in the elderly [30]. Plaschke et al reported that SAA became 
positive from both extrinsic and intrinsic factors, and included 
stress (and raised cortisol) as a causal factor for SAA [31]. They 
comment that even if AA is induced by prescribed medications, 
intrinsic factors equally contribute. Therefore, the anticholinergic 
load cannot be inferred by an individual’s medications. These two 
studies concluded that prescribed medications were not the only 
reason for AA, and that endogenous mechanisms existed. 

Based on the work of Flacker and Lipsitz, we reviewed the 
relationship between ACh and inflammation and those between 
inflammation and AA [8]. We speculated that deficient cholinergic 
activity causes AA by way of inflammatory processes because 
AD is known to have reduced cholinergic neuronal activity due 
to degeneration [4]. When cholinergic deficiency reaches a 
threshold level, anti-inflammatory activity (the cholinergic anti-
inflammatory pathway) [32,33] cannot inhibit the activation of 
inflammatory system cytokines that may contribute to AA. The 
possibility is that neuronal immunoreactions (inflammation) 
were induced by way of the reduction of ACh neuronal activity 
in the brain of patients with AD [8-10]. Hence we proposed the 
“endogenous anticholinergic hypothesis in Alzheimer’s disease” 
(Figure 1; courtesy Hori et al. [9]. Here, ACh downregulation 
causes anti-inflammatory pathway downregulation, which in 
turn causes inflammatory upregulation and hyperactivity of 
inflammation-generated AA via N-methyl-D-aspartate (NMDA) 
receptors hyperactivity [32]. Regulation of the NMDA receptors 
was by way of nicotinic ACh receptors [32,33]. Because the 
characteristic feature of AD is ACh downregulation [4], when the 
level of ACh reaches a critical level, i.e., a moderate stage, AA is 
endogenously generated, which causes the rapid progression of 
cognitive decline. We refer to this vicious cycle as the “endogenous 
cascade of anticholinergic activity in Alzheimer’s disease” [9,10] 
and refer to this acceleration of AD as “Alzheimer’s disease 
progresses by the mechanism of its own” [9,10].

We also report a case of a 76-year-old man with moderate 
AD whose SAA was positive when his memory disturbance, 
disorientation, apathy, and aphasia deteriorated. However, his 
SAA resolved after 3 months’ treatment with the antidementia 



Central

Hori et al. (2014)
Email:  

Ann Psychiatry Ment Health 2(1): 1006 (2014) 3/6

NMDA receptor antagonist, memantine. At the same time, his 
apathy and aphasia resolved [34].

The roles of acetylcholine and anticholinergic activity 
in Alzheimer’s disease

We have speculated on the roles of ACh downregulation 
and AA in AD. We considered that ACh downregulation was 
related to both cognitive disturbance and the acceleration of 
the inflammatory system in AD; furthermore, AA resulted in 
the behavioral and psychological symptoms and appeared 
endogenously to accelerate AD in cooperation with ACh 
downregulation. ACh is known to inhibit inflammation in both 
the central nervous system and peripheral tissue [32,33], and its 
downregulation causes a hyper inflammatory state. Peripheral 
medication and tissue inflammation raise the anticholinergic 
burden in the peripheral tissue (i.e., SAA), and the intact ACh 
system compensates with central and peripheral hyper activation 
of the inflammatory system; central disturbances such as mental 
stress increase the ACh burden in the central nervous system 
alone, and the intact ACh system compensates similarly [10]. 
Therefore, ACh down regulation may extend the pathological 
processes in the central nervous system to the peripheral 
tissue, and vice versa. Alternatively, the ACh system may act as 
a buffer against extreme responses to these stressors. From this 
perspective, AD may be best considered as a systemic illness with 
both central nervous system and peripheral tissue involvement 
[9]. In fact, diabetes mellitus often intervenes with AD [35]. 

AA may be caused by prescription medication and 
inflammation, including illness, mental stress, and Ach down 
regulation. Therefore, AA may be a final common pathway in 
the amyloid-producing process, and may represent an interface 
between inflammation and the amyloiid-producing process. 

Consequently, various factors may accelerate AD by AA caused by 
inflammatory hyperactivity based on ACh down regulation [10]. 
We have already reported a patient with AD and mild cognitive 
impairment (MCI) who’s AA was positive, perhaps as a result of 
his AD pathology interacting with mental stress and medication 
[36].

Two patterns of acceleration in Alzheimer’s disease

We previously proposed the “endogenous anticholinergic 
hypothesis in Alzheimer disease” [8-10] to explain that AA 
appears endogenously in AD and accelerates AD pathology. 
According to this hypothesis, we can explain that the progression 
of dementia is relative slow at the MCI (mild) stage, but that it is 
relatively rapid at the moderate stage of AD. Moreover, delirium 
occurs readily in AD and physical illness, iatrogenic overdose, 
polypharmacy, and mental stress accelerate the progression of 
AD can be explained by this model. 

In this review, we speculate that two patterns of AD acceleration 
exist (Figure 2). In the first pattern, when the level of ACh reaches 
a critical level, endogenous AA triggers a rapid cognitive decline 
at a moderate stage in AD (T1 point). The second pattern begins 
without ACh downregulation reaching a critical level (T2 point). 
Thus, in the second pattern, hyperactivity of the inflammatory 
system and AA follow minimal ACh downregulation due to 
exogenous factors (i.e., medications, illness, and mental stress), 
i.e., delirium. In general, when exogenous inserts are dissolved, 
cognitive function returns to the previous level. However, when 
the duration of AA exposure increases, cognitive function fails to 
return to baseline levels. We speculate that Lewy body pathology 
could contribute to hyperactivity of the inflammatory system and 
that Lewy body pathology is also related with AA [37]. In Figure 2, 
we suggest that we could quantitatively define a “moderate stage” 
when SAA was positive. When AA appears, ACh downregulation 
is accelerated and NMDA receptor hyperactivity occurs. At this 
time, we should therefore prescribe NMDA receptor antagonists. 
It is also crucial to avoid iatrogenic overdose and polypharmacy 

Figure 1 We speculate that the decrease in acetylcholine levels 
causes both cognitive dysfunction and the behavioral/psychological 
symptoms of dementia (BPSD). This facilitates the inflammatory 
processes in the central nervous system and peripheral tissues which 
increase anticholinergic activity (AA) via cytokine activation. AA in 
turn promotes the buildup of amyloid, which further downregulates 
the cholinergic system. We call this vicious cycle an “endogenous AA 
cascade.”
AA: anticholinergic activity. ACh: acetylcholine. AD: Alzheimer’s 
disease. BPSD: behavioral and psychological symptoms of dementia. 
NMDA: N-methyl-D-aspartate. SAA: serum anticholinergic activity. 
This figure is from the article by Hori et al. [9].

Figure 2 In the first pattern, when the level of ACh reaches a critical 
level, endogenous AA triggers a rapid cognitive decline at a moderate 
stage in AD (T1 point). The second pattern begins without ACh 
downregulation reaching a critical level (T2 point). Thus, in the 
second pattern, hyperactivity of the inflammatory system and AA 
follow minimal ACh downregulation due to exogenous factors (i.e., 
medications, illness, and mental stress), i.e., delirium. We speculate 
that Lewy body pathology may also be a factor related to AA. AA: 
anticholinergic activity, ACh: acetylcholine, AD: Alzheimer’s disease.
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in patients with AD, and to ensure that they are free from physical 
illness and mental stress to limit the rapid deterioration [10]. At 
the moderate stage, AA appears endogenously and accelerates 
AD pathology and disease progression, and it is particularly 
important to avoid these intrinsic and extrinsic contributors to 
AA.

Three amyloidogenic patters in Alzheimer’s disease

Three amyloidogenic patterns appear in AD (Figure 3). The 
first pattern is physiological (N pattern), which is related with 
the normal aging process. We speculated that the N pattern of 
amyloidosis may be necessary for normal presenile or senile 
brain maturation. The second pattern is pathological (P1 pattern) 
and is unrelated to the ACh downregulation observed in MCI 
or mild AD. The third pattern is also pathological (P2 pattern) 
and is related to the ACh downregulation observed in moderate 
AD. While the N pattern may begin during normal aging, the P1 
pattern probably begins when the clinical symptoms of mild AD 
occurs and is likely to be misdiagnosed as normal aging due to 
its shallow decline. However, the P2 pattern is clearly prominent 
and readily diagnosed as AD at the moderate stage when AD 
presents with clinical symptoms such as memory disturbance, 
disorientation, aphasia, delusions, hallucinations, and diurnal 
rhythm disturbance. At the moderate stage, the decline rate is 
also more rapid than those with MCI or mild disease. 

We considered that the “moderate stage” could be 
quantitatively defined as SAA positivity, (i.e., the P2 pattern 
begins). Alternatively, when AA was superimposed on the 
substantially deteriorated cognitive deterioration at the end of 
the mild stage, it transitioned to the moderate stage, i.e., when 
deterioration of the ACh system reached a critical level and the 
inflammatory system was disinhibited. 

Based on this, ACh upregulation and NMDA receptor 
downregulation may relate to both the symptoms in AD and 
the amyloid-producing process of the P2 pattern. Therefore, 
cholinesterase inhibitors (ChEIs) and NMDA receptor antagonists 
would also represent disease modifying agents for the P2 

pattern. In fact, ChEIs and memantine were proven to protect 
neuronal death caused by amyloid toxicity [38-41]. Two AD 
pharmacotherapeutic options exist: prevention and treatment. 
ChEIs maintain normal ACh levels and prevent hyperactivation of 
choline acetyltransferase (ChAT), an enzyme that produces ACh 
and causes rapid neuron degeneration. This therefore prevents 
the rapid progression of AD. NMDA receptor antagonists are then 
efficacious for decreasing the speed of AD progression during the 
moderate stage [8]. 

Moreover, this speculation may explain a limitation of 
the “amyloid vaccine” for AD. As previously mentioned, three 
amyloidogenic patterns may exist. If the N pattern amyloid is 
necessary for normal brain maturation, then P1 (and/or P2) 
amyloid patterns should be abolished. Therefore, we should 
investigate the mechanism underlying P1 pattern amyloid and 
amyloidogenesis. At present, there is no preventive therapy 
against the P1 pattern. 

The limitations of the endogenous appearance 
of anticholinergic activity in Alzheimer’s disease 
hypothesis

There are two main limitations of our primary hypothesis. 
One is that amyloid develops 10–20 years prior to symptomatic 
disease [42], and is unrelated to the present clinical symptoms. 
In this respect, indissoluble amyloid itself is not toxic and we 
considered that there was a problem in the production of amyloid. 
We speculate that when the process producing indissoluble 
amyloid reaches a threshold, a potent oligomer developes and AD 
progresses [43]. In addition, the appearance of physical amyloid 
may be defined as the disease prodrome. 

All examinations that have sought to discover an effective 
anti-inflammatory agent for AD have yielded negative results. 
We consider that such agents may be useful in the prevention or 
slowing down of rapid progression of AD at the moderate stage. 
Alternatively, downregulation of ACh and AA are adapted only 
with P2 pattern amyloidgenesis. 

CONCLUSION
In this review, we primarily summarized our previous reports, 

and added further speculation about the endogenous appearance 
of AA in AD. We remain convinced of the role of endogenous AA 
in AD. At present, we are seeking to confirm this assertion using 
SAA in a longitudinal study.
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