1	The simultaneous determination of some water-
2	soluble vitamins in gum of Acacia nilotica by high
3	performance liquid chromatography
4	Sarra Bouazizi ¹ *, Bassem Jamoussi ¹ , Dalila Bousta
5 6	1. Institute of Higher and Continuing Education, Laboratory of Chemical Analysis, 43 Liberty Street 2019 Bardo, Tunis, Tunisia
7	2. National Institute of aromatic medicinal plants, BP 7048 - Ez-Kalaa, 7048, Fez, Morocco
8	Abstract
9	A rapid, simple and precise method by HPLC (high performance liquid
10	chromatography) has been developed for simultaneous determination of water-
11	soluble vitamins as thiamine(B_1), nicotinamide(B_3), panthotenic(B_5),
12	pyridoxine(B_6) and biotin(B_8) in gum of Acacia nilotica using enzymatic
13	hydrolysis. The method uses a C_{18} column (4.6*150 mm, 5µm). Mobile phase
14	such as methanol $0.1M$, sodium dihydrogen phosphate (pH = 2.5), (10:90 v/v)
15	is found most suitable for rapid separation and identification of this water –
16	soluble vitamins. Good linearity was observed between the concentration of
17	analytes and peak area (r = 0.9999). Each vitamin was quantitatively
18	determined at its maximum wavelength. Recovery percentages ranged from
19	97% to 99%.
20	Keywords: Water – soluble vitamins; Gum, Acacia nilotica; HPLC.
21	1. Introduction
22	Acacia gums have a complex and branched structure, which makes them have
23	good adhesive and cohesive properties. These properties are useful in
24	pharmaceutical preparations. They are used as dental and other adhesives and
25	as bulk laxatives. These hydrophilic polymers are useful as tablet binders,
26	emulsifiers, suspending agents, gelling agents, stabilizers, thickeners,
27	protective colloids and suspending agents keeping tablets [1]. They can also be
	*Tel: +216 20 015310; fax: +216 71 588327

E-mail address: bouazizisarra09@yahoo.fr

- used as tablet disintegrants [2]. Their adhesive property could be used in theapparatus of colostomies and also in fixing dental prosthesis [3].
- For internal use, they help in the preparation of medicines to soothe coughs, diarrhea, dysentery and hemorrhages; for external use, they calm inflammations, so the presence of vitamins in *Acacia* gums is very important since vitamins are essential for human health. [4]
- As far as we know, other researchers have not reported the presence or absence
 of vitamins B₁, B₃, B₅, B₆, B₈ in *Acacia* gum, particularly that of *Acacia nilotica*.
- These vitamins are very important for the production of energy (B_1) , normal growth and development (B_3) , the regulation of neurotransmitters (messengers of nerve impulses) (B_5) , physical balance and regulation of blood sugar (B_6) and the processing of several products such as glucose and fatty acids (B_8) .[5]
- Due to the nutritional importance of these vitamins, microbiological assay and 41 several analytical methodologies have been developed for the determination of 42 these substances in food, pharmaceutical supplements and biological fluids [6-43 **10**]. There are many analytical methods for performing the assay of vitamins in 44 45 food, pharmaceutical and physiological specimens such as spectrophotometry [6,11-13] spectrophotoflurorimetry [7], voltammetry [8], the 46 gas chromatography [15-17] and high performance liquid chromatography [18-28]. 47
- 48 Normally, it is necessary to determine more than one vitamin; the analytical
 49 method must be able to determine multiple components in complex samples,
 50 which can lead to interference in chemical analysis.
- The aim of this study is to develop a rapid and reliable technique for the
 simultaneous determination of five water- soluble vitamins (B₁, B₃, B₅, B₆, and
 B8) in gum of *Acacia nilotica* by HPLC using the enzymatic hydrolysis.
- 54
- 55

57 **2. Experimental**

58 2.1. Reagents and chemicals

59 Methanol was of HPLC grade. Other chemicals were of reagent grade. Sodium 60 dihydrogen phosphate (NaH₂PO₄), sodium acetate, sulfuric acid (H₂SO₄) and 61 acetic acid (C₂H₄O₂) (Sigma).Purified water was obtained from a Millipore 62 Milli-Q system.

- Standards of thiamine, nicotinamide, pantothenic, pyridoxine and biotin were
 purchased from Sigma.
- Taka-diastase enzyme from *Aspergillus oryzae* powder, slightly beige was
 obtained from Sigma. All chemicals and reagents used are of HPLC and were
 used without further purification.
- 68 All solutions were filtered through a 0.45 μ m membrane (Millipore), protected 69 from light and stored at 4°C.
- The mobile phase of the HPLC system was comprised of pure methanol and sodium dihydrogenphosphate NaH_2PO_4 (10:90 v/v).

72 **2.2.** Chromatographic conditions

73 The HPLC system (Agilent) was equipped with a pump type technology 74 Agilent 1200 series, a vacuum degassing unit model G1322A, a UV-VIS spectrometer to 8 wavelengths, a fluorescence detector (G1321 Agilent 1200 75 Series), an analytical C_{18} column (Agilent) (4 * 150mm, 5µm), During the 76 77 analysis the column was equilibrated at 30°C and a manual injector uses an 78 injection valve sample seven lane Rheodyne 7725i. The chromatographic peaks 79 were recorded and elaborated automatically by employing a computerized 80 program 'Agilent ChemStation'.

- 81 The analyzes were performed by gradient elution of wavelength at room 82 temperature, at a flow rate of 1 mL / min. The total execution time required is 83 less than 20 min.
- The program of wavelength changes during elution time for five vitamins
 determination in gum of *Acacia nilotica* shown in Table2.

86 2.3. Standard solutions

The vitamin stock solution: 100 mg / L were prepared by dissolving 10 mg of each standard in 100 mL of methanol in dark volumetric flasks. These solutions are stable hang at least one month when stored in the dark at 4°C.Working solutions were prepared from stock solutions by appropriate dilution with methanol and protected from light. The following table illustrates the calibration of the analytical method:

Table1. Concentration of the standards used for plotting the calibration curve
of five vitamins (B₁, B3, B5, B6, B8)

Vitamins	Concentrations (mg/L)
Thiamine B ₁	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Nicotinamide B ₃	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Pantothenic B ₅	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Pyridoxine B ₆	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Biotin B ₈	1.0, 2.0 ,5.0 ,10.0 ,15.0, 20.0, 30.0

95

96

2.4 Sample preparation

97 1g of gum *Acacia nilotica* which is a fine powder was accurately weighed in a 98 250 mL erlenmeyer flask, 10mL of sulfuric acid (1N) was added. The mixture 99 was thoroughly shaken, after the pH was adjusted to 4.5 with sodium acetate 100 (2.5M), then 500mg of the enzyme Taka-diastase stirring was added .The 101 solution was incubated at 37° C and protected from light all night. The 102 following content was filtered on 0.45µm filter. Finally, 20 µL of the extract 103 was injected into the HPLC system for analysis.

105 **3. Results and discussion**

106 The determination of vitamins in gum of *Acacia nilotica* is a complex 107 analytical problem for several reasons: gum of *Acacia nilotica* is a very 108 complex matrix, vitamins that are micro constituents and vitamins are easily 109 destroyed by strong acids or alkalis, which is why we find that the enzymatic 110 hydrolysis is a good solution for these problems.

First, scan analysis of standard vitamins was performed to check the optimum
conditions for the detection. Wavelengths were changed according to the
elution time of each vitamin, as is shown in Table 2.

114Table 2. Program of wavelength changes during elution time for five water-115soluble determinations in gum Acacia nilotica.

Vitamins	Time (min)	Wavelengths (nm)
Biotin (B ₈)	0.0 - 2.5	204
Nicotinamide (B ₃)	2.6 - 3.8	261
Thiamine (B ₁)	3.9 - 4.5	234
Pyridoxine (B ₆)	4.6 - 5.0	275
Pantothénic acid (B ₅)	5.1-7.0	210

116	The mobile phase was composed of methanol and sodium dihydrogen
117	phosphate NaH ₂ PO ₄ (10:90) v/v) for the determination of vitamins B_1 , B_3 , B_5 ,
118	B_6 , and B_8 in gum <i>Acacia nilotica</i> . A study of pH and the proportion of
119	methanol and NaH_2PO_4 were necessary to improve the resolution in the gum of
120	Acacia nilotica formulae. When the proportion of methanol is 20%, vitamins
121	are eluted in less than 5 min, but there is an overlap peak of certain vitamins.

- 122 The pH of the mobile phase is extremely important for the separation of 123 vitamins in order to overcome this problem, a decrease in the proportion of 124 methanol by 10 %, which has the effect of providing a higher resolution but 125 against party, the time of analysis.
- 126 A choice of pH = 2.5 implies that most vitamins are of molecular form since 127 the pH is less than the pka of all vitamins (B_1 , B_3 , B_5 , B_6 , B_8). Figure 1 shows 128 the chromatogram of vitamins B_1 , B_3 , B_8 in gum of *Acacia nilotica*.
- We note from the figure that gum of *Acacia nilotica* contains a wide range of vitamin B_8 . The peak of vitamin B_8 was detected at a retention time of about 2.2 to 2.4 min (Fig.1, 2), with minor variations on a daily basis due to temperature fluctuations in the laboratory [29]. No other peaks were observed at 204 nm.
- All calculations prove that vitamin B_8 is in the order of 12,000 ppm. A part from vitamin B_8 , there are vitamins B_1 and B_3 but with low levels. We can conclude that the method gives a good resolution of vitamin B_8 .
- 137 *3.1. Characteristic of the HPLC method*
- 138The proposed method allows the resolution of various forms of vitamin B139especially B_8 in gum of *Acacia nilotica* by HPLC with UV detection.
- A reliable chromatographic assay requires an acceptable resolution, reasonable retention times and good peak symmetry. Accordingly, in preliminary studies optimal chromatographic conditions were investigated in gradient elution system with varying wavelengths. The advantage of gradient elution is that the bandwidth can be nearly constant at both early and tardative analytes. Therefore an elution system of five wavelengths has been developed with a beneficial effect on the sensitivity of biotin.
- 147 Representative chromatograms with other chromatographic parameters are148 shown in Figure 1, 2 and Table 3.

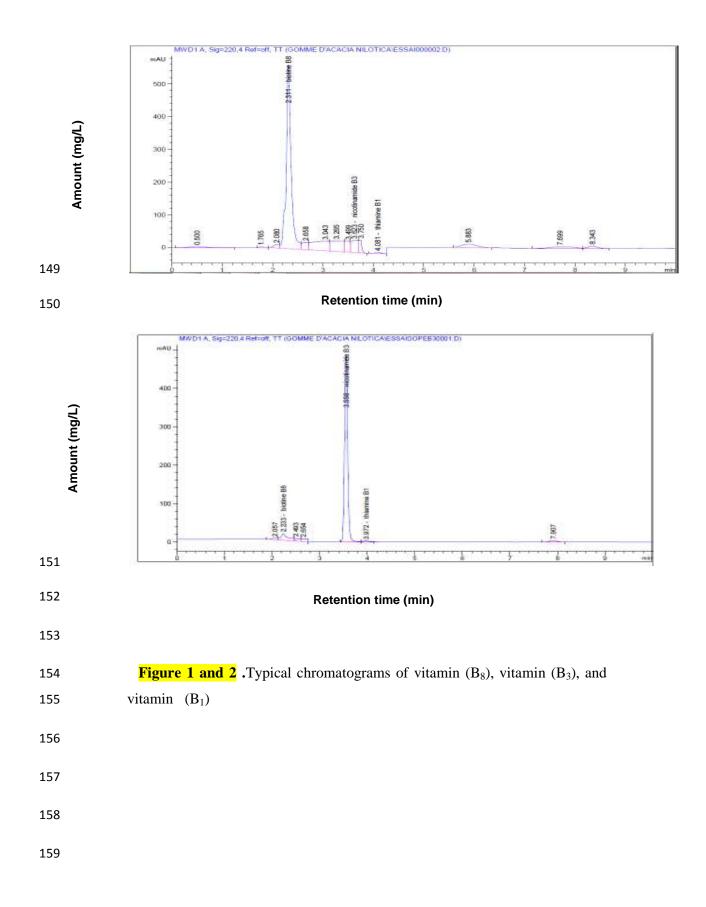


Table 3. High performance liquid chromatographic parameters of the Acacia

	Vitamins	Chromato	ographic par	rameter	S
		Т	t _R (min)	R _s	k'
	Biotin B ₈	2.306	3.117	1	2.412(B3-B8)
	Nicotinamide B ₃	3.512	5.27	1.5	2.087 (B1-B3)
	Thiamine B ₁	4.242	6.575	1.9	3.872 (B1-B8)
162	t_R : retention time reduced; k': Re	tention fact	tor; Rs: Res	olution	factor; T: The
163	asymmetric peak				

gum separation using the gradient elution system $t_0 = tm = 0.56$ min.

164 In practice, care must be taken to keep values k' inferior to 10 for a period of 165 reasonable analysis, values between 2 and 5 are the correct values.

166 *3.1.1 Linearity*

167 Six working solutions were prepared for each analyte whose range is between 1 168 and 30 mg /L for B1, B₃, B₅, B₆ and seven solutions between 1 and 30 mg/L for 169 B₈.The analysis was performed in triplicate to determine the linearity of the 170 assay. The regression lines were calculated by the method of least squares of 171 the areas of the peaks relative to the analyte.

- 172 The equations corresponding to the five regression analytes were
- 173 $B_1: y= 25.82754x + 6.26753$
- 174 B₃: y= 33.21959x-1.42661
- 175 $B_5: y=7.15590x+5.776 e^{-1}$
- 176 $B_6: y=13.70389x+9.16444 e^{-1}$
- 177 B₈: y=11.89793x +2.37982
- 178 x: Amount et y: Area

179 They were consistently linear in the already mentioned range for all180 compounds.

181The linearity was checked by analysis of variance of the regression (Table 4).182A value of r above 0.9949 for all vitamins, (P < 0.001) except for thiamine with183r = 0.9781. The coefficient of determination (r^2) is more than 95.66% for184thiamine and 99.66% higher than for others. Six determinations of the same185sample were performed to assess the accuracy of the method.

Vitamins	r	r^2	F ^a exp	DF^{b}	Р
Biotin (B ₈)	0.9949	99.88	21247.5	1.5	(P<0.001
Nicotinamide(B ₃)	0.9998	99.96	165492.10	1.5	(P<0.001)
Thiamine (B1)	0.9781	95.66	100026.5	1.5	(P<0.001)
Pyridoxine (B ₆)	0.9998	99.96	27417.53	1.5	(P<0.001)
Pantothénic acid	0.9999	99.98	7686.97	1.5	(P<0.001)
(B ₅)					
F^a (1.5; 0.001) = $Snedecor's F$ values, re					
3.1.2 Accuracy and pr	ecision				
		ple were p	erformed to asso	ess the acc	uracy
3.1.2 Accuracy and pr Six determinations of of the method.		ple were p	erformed to asse	ess the acc	uracy
Six determinations of	the same sam				·

186 Table 4: Linearity of standard curves of vitamins B_1 , B_3 , B_5 , B_6 , and B_8

198 Table 5. Peak area range and concentration, correlation data of the calibration curves

Vitamins	Concentration	Surface	Correlation	Detection	Quantification
	range (mg/ <mark>L</mark>)	broad	coefficient	limits(mg/ <mark>L</mark>)	limits (mg/ <mark>L</mark>)
		peak			
Biotin (B ₈)	1-30	59.83426-	0.9949	0.006	0.022
		348.10776			
Nicotinamide	1-30	31.45451-	0.9998	0.008	0.028
(B ₃)		1000.048			
Thiamine	1-30	18.14213-	0.9781	0.012	0.042
(B ₁)		714.6253			
Pyrodixine	1-30	14.31208-	0.9998	<mark>0.002</mark>	<mark>0.007</mark>
(B ₆)		409.0012			
Pantotenic	1-30	8.05888-	0.9999	<mark>0.001</mark>	<mark>0.0035</mark>
acid (B ₅)		214.6708			

and quantification limit of determined vitamins in gum of Acacia nilotica.

200

201 *3.1.3 Recovery*

The recovery rate was tested by the standard addition procedure. One level was used for each water-soluble vitamin in gum samples (Table 6).Mean recoveries obtained were always satisfactory-higher than 99% for biotin, higher than nicotinamide 98.8 %, and higher than thiamine.

- 206
- 207

208

209

Table 6. Study of determining recovery rate by the addition of 500μ L of

211 vitamins B_1 , B_3 and B_8

	Biotin			Nicotina	amide		Thiamir	ie	
	Found	Recovery	%	Found	Recovery	%	Found	Recovery	%
N ₀ test	value	%	RSD	value	%	RSD	value	%	RSD
	(mg/L)			(mg/L)			(mg/L)		
1	1994.7	99.0	0.23	5.04	98.8	0.91	2.81e ⁻¹	97.2	1.26

212

213 **4.** Conclusion

The proposed method has been applied to the determination of water-soluble vitamins such as thiamine (B_1) , nicotinamide (B_3) , pantothenic acid (B_5) , pyridoxine (B_6) , biotin (B_8) in gum of *Acacia nilotica* by enzymatic hydrolysis. The chromatographic separation was performed on a C₁₈ reverse phase, and vitamins are detected at different wavelengths by UV-visible. This method is rapid, simple, and reliable and saves a significant amount of reagent.

220 **5. Acknowledgements**

The authors are indebted to general surveillance society for their financialsupport for this project.

6. References

224	1. Deore SL, Khadabadi SS. Standardisation and pharmaceutical evaluation of
225	Chlorophytum borivilianum mucilage. Rasayan Journal of Chemistry. 2008;
226	(1):887-892.
227	2. Jani CK, Casurani IM, Preispati VD, Zinguradia MMar, Jashi DD, Dahki
227	2. Jani GK, Goswami JM, Prajapati VD, Zinzuwadia MMm, Joshi BR, Dabhi
228	AS. Studies on formulation and evaluation of new superdisintegrants for
229	dispersible tablets. International Journal of Pharmaceutical Excipients.2005;
230	(2):37–43.

231	3. Daniel JR, Whistler RL, Voragen J, Pilnik Win, Elvers B, Hawkins S,
232	Russey W. Encyclopedia of Industrial Chemistry, 5th ed., Vol. A25.
233	Weinheim. VCH. 1994; 1-62.
234	4. Soledad AH, Teresa VN, Maria IP, Abel MF.Determination of water-soluble
235	vitamins in infant milk by high-performance liquid chromatography. Journal of
236	Chromatography A.1997; 778: 247-253.
237	5. Hughes IE, Jellet LB. Quantification of the characteristics of antagonists
238	exhibiting both competitive antagonism and function, al
239	interaction.Br.J.Pharmacol. 2000 ;(4) :185-188
240	6. Abdollahi H, Bagheri L. Simultane-ous spectrophotometric determination of
241	Vitamin K3and 1, 4-naphthoquinone after cloud point extraction by using
242	genetic algorithm based wave-length selection-partial least squares regression.
243	Anal Chim. Acta.2004; 514: 211.
244	7. Alonso A, Almendral MJ, Porras MJ, Curto Y. Flow-injection solvent
245	extraction without phase separation. Fluorimetric determination of thiamine by
246	the thiochrome method.J. Pharm. Biomed. Anal. 2006; 42:171.
247	8. Li SG, Xue WT, Zhang H. Voltammetric Behavior and Determination of
248	Tocopherol in Vegetable Oils at a Polypyrrole Modified Electrode
249	
275	Electroanalysis. 2006; 182-337.
250	Electroanalysis. 2006; 182-337. 9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a
250	9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a
250 251	9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of
250 251 252	9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J. Chromatogr B.2004; 805 -289.
250 251 252 253	9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J.
250 251 252 253 254	 9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J. Chromatogr B.2004; 805 -289. 10. Kayna, P. Quantitative determination of vitamin B6 in dietary foods for
250 251 252 253 254 255	 9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J. Chromatogr B.2004; 805 -289. 10. Kayna, P. Quantitative determination of vitamin B6 in dietary foods for special medical purposes by microbiological assay method. Afr J Microbiol
250 251 252 253 254 255 256	 9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J. Chromatogr B.2004; 805 -289. 10. Kayna, P. Quantitative determination of vitamin B6 in dietary foods for special medical purposes by microbiological assay method. Afr J Microbiol Res. 2013; 7 (27): 3489-93.
250 251 252 253 254 255 256 257	 9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a validated liquid chromatography method for the simultaneous determination of eight fat-soluble vitamins in biological fluids after solid-phase extraction.J. Chromatogr B.2004; 805 -289. 10. Kayna, P. Quantitative determination of vitamin B6 in dietary foods for special medical purposes by microbiological assay method. Afr J Microbiol Res. 2013; 7 (27): 3489-93. 11. Hatano H, Yamamoto Y, Saito M, Mochid E, Watanable S. A high-speed

261	12. Sastry	CSP, Singh NR	, Reddy MN.Anal	ysis. 1986; 14: 355.
-----	------------	---------------	-----------------	----------------------

262	13. Tesfaldet ZO, Van Staden JF, Stefan RI, Sequential injection
263	spectrophotometric determination of iron as Fe(II) in multi-vitamin
264	preparations using 1,10-phenanthroline as complexing agent . 2004; 64:189.
265	14. Kwon S, Lee PC, Lee EG, Chang YK, Chang, N.Production of lactic acid
266	by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate.
267	Enzyme Microb. Techol.2000; 26:209.
268	15. Shahrokhi F, Gehrke CW.Quantitative gas-liquid chromatography of sulfur
269	containing amino acids.J. Chromatogr.1986; 36:31.
270	16. Stampfli AA, Ballevre O, Fay LB. Determination of taurine metabolism by
271	measurement of 15N-enriched taurine in cat urine by gas chromatography-
272	mass spectrometry. J. Chromatogr. 1993; 617:197.
273	17. Kataoka H, Ohnishi N, Makita M. Electron-capture gas chromatography of
274	taurine as its N-pentafluorobenzoyl di-n-butylamide derivative.J.
275	Chromatogr.1985;339 -370.
276	18. Polesello AR. Chromatographic determination of vitamins in foods. J.
277	Chromatogr.1992;624:103.
278	19. Rizzolo A. Polesello S. Determination of vitamins in foods. Chromatogr
279	J.1992 ;624:103.
280	20. Moreno P, Salvado V. Determination of eight water and fat-soluble
281	vitamins in multi-vitamin pharmaceutical formulations by high-performance
282	liquid chromatography.J. Chromatogr.A.2000;870:207.
283	21. Stocchi V, Palma F, Piccoli G, Biagiarelli B, Cucchiarini L, Magnani M.
284	(1994). HPLC Analysis of Taurine in Human Plasma Sample Using the Dabs-
285	Ci Reagent with Sensitivity at Picomole Level. J. Liq. Chromatogr. B.1994;
286	<u>17:347.</u>

287	22. Chatzimichalakis PF, Samanidou VF, Papadoyannis IN. Development of a
288	validated liquid chromatography method for the simultaneous determination of
289	eight fat-soluble vitamins in biological fluids after solid-phase extraction.
290	Anal.J. Chromatogr. Technol.Biomed. Life Sci. 2004;805:289.
291	23. Chatzimichalakis PF, Samanidou VF, Verpoorte R, Papadoyannis IN.
292	Development of a validated HPLC method for the determination of B-complex
293	vitamins in pharmaceuticals and biological fluids after solid phase extraction.J.
294	Sep. Sci. 2004; 27:1181.
295	24. Cho CM, Ko JH, Cheong WJ.Simultaneous determination of water-soluble
296	vitamins excreted in human urine after eating an overdose of vitamin pills by a
297	HPLC method coupled with a solid phase extraction.Talanta.2009; 51:799.
298	25. Klejdus B, Petrlova J, Potesil D, Adam V, Mikelova R, Vacek J, Kizek R,
299	Kuban V. An analysis of avidin, biotin and their interaction at attomole levels
300	by voltammetric and chromatographic techniques. Anal. Chim. Acta. 2004;
301	<mark>520:57.</mark>
302	26. Fekkes D, Kooyman AV, Jankie R, Huijmans J. Precise analysis of
303	primary amino acids in urine by an automated high-performance liquid
304	chromatography method: comparison with ion-exchange chromatography. J.
305	Chromatogr. B.2000; 744:183.
306	27. Teerlink T, Van Leeuwen PAM, Houdijk A. Plasma amino acids
307	determined by liquid chromatography within 17 minutes.Clin. Chem.1994;
308	<u>40:245.</u>
309	28. Qu Y, Arckens L, Vandenbussche E, Geeraerts S, Vandesande F.
310	Determination of total and extracellular concentrations of the amino acid
311	neurotransmitters in cat visual cortex by microbore liquid chromatography and
312	electrochemical detection.J. Chromatogr. A.1998; 98:19.
313	29. Moreno P, Salvado V. Determination of eight water- and fat-soluble
314	vitamins in multi-vitamin pharmaceutical formulations by high-performance
315	liquid chromatography. J. Chromatogr. A.2000; 870: 207.