The role of IV needleless Connectors and IV Complication management and

T	The fole of the needleless connectors and the complication management and
2	prevention
3	ABSTRACT
4	The most common complications associated with vascular access devices are catheter related
5	bloodstream infections (CR-BSI), which occur in acute care patients every minute, and occlusions. This
6	review will address major issues associated with patient care and research associated with vascular
7	access and intravenous (IV) needleless connectors including descriptions of different types of connectors,
8	care and maintenance issues such as septum disinfection and flushing, education of students and
9	practitioners, a new framework for research, and relevant questions for healthcare practitioners to ask
10	during patient assessment. Two overall strategies to prevent CR-BSI's and occlusions;1) prevent the
11	active and passive migration of microorganisms into the fluid pathway and 2) prevent microorganism
12	adhesion to the catheter surface <mark>will be discussed</mark> . The IV needlelessconnector,which is placed on the
13	catheter hub, is the gatekeeper to the intraluminal fluid pathway and its design directly impacts the
14	success of strategies to prevent complications. Best practice requires that practitioners have specific
15	knowledge of connector technology as well as patient factors for caring for vascular access devices.
16	There is a large gap in the scientific literature and in policies and procedures related to evidenced based
17	decision making associated with care and maintenance of needleless intravenous
18	connectors.Understanding IV needleless IV connectors is necessary to meld research and practice
19	together for best patient practices, so the occurrences of CR-BSI's and occlusions can be mitigated and
20	eliminated.
21	
22	Key words: CRBSI, sepsis, IV needlelessconnector, nursing care, vascular access, occlusion
23	The role of IV needleless connectors and IV complication management and
24	<mark>preventio</mark> n
25	INTODUCTION
26	Patients with a vascular access device (VAD) experience two major complications - catheter related
27	blood stream infections (CR-BSI) and occlusion either partial or total. This paper discusses how these

{	Formatted: Font: 10 pt
] - {	Formatted: Font: 10 pt
·{	Formatted: Font: 10 pt

28	common intravenous therapy complicationsare impacted by IV needleless connector design. Methods	
29	for article preparation included review of CinHal and medline using the key words CR-BSI, occlusion,	
30	connector, and IV technology. Exclusions included studies not IRB approved. Connector technology	
31	included in the paper had to have some published related research. CR-BSI is defined by the Centers for	Formatted: Font: 10 pt
32	disease control (CDC) as bacteremia/fungemia in a patient with an intravascular catheter with at least one	
33	positive blood culture obtained from a peripheral vein, clinical manifestations of infection (i.e., fever, chills,	
34	and/or hypotension), and no apparent source for the bloodstream infection except the catheter $\frac{1}{2}$ A patient	Formatted: Superscript
35	obtains a CR-BSI every minute. ² This can lead to a diagnosis of sepsis which is the most costly hospital	Formatted: Font: 10 pt, Superscript
		Formatted: Font: 10 pt
36	acquired infection withup to a 25% mortality rate ² and higher depending on the causative micro-	Formatted: Font: 10 pt
37	organism, The second complication is catheter occlusions which can result in loss of vascular access, loss	Formatted: Font: 10 pt
20		Formatted: Font: 10 pt
38	of time for treatments and increased length of stay. Either of these complications causes a poorer quality	
39	of life for the patient and can result in death.	Formatted: Font: 10 pt
40	The intravenous catheter, whether centrally or peripherally placed, is an extension of the venous system	
41	to the outside environment. As a result, a hole in the skin referred to as the insertion site (extraluminal)	
42	and the hole in the catheter (intraluminal fluid pathway) are entry points for bacteria, and fungus. Best	
43	practices for extraluminal care ^{3.4} are reported to only prevent 40% of bloodstream infections ⁵ . Therefore,	Formatted: Font: 10 pt
44	60% of CR-BSIs have causes that are intraluminal in nature. It is now well known and accepted that CR-	Formatted: Font: 10 pt
45	BSIs occur when organisms, in particular bacteria, migrate into either the extraluminal or intraluminale	Formatted: Font: 10 pt
46	fluid pathway and adhere to the pathway wall. Once attached, the bacteria form a colony and develop a	
47	protective cover referred to as biofilm. When biofilm is formed it is difficult to eradicate and the colony can	Formatted: Font: 10 pt
48	proliferate. Over time bacteria shed into the venous system and can cause an infection. Four major	Formatted: Font: 10 pt
49	pathogens (Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia	Formatted: Font: 10 pt
50	coli) are responsible for 60% of CR-BSIs at a total cost of \$225 (£ 143) million per year and 200,000	
51	intensive care unit days/year ⁶ The cost of CR-BSIs has been calculated to be approximately \$33,000	Formatted: Font: 10 pt
52	35,000 (£20,915-22,183) per episode making it a relevant cost issue ^{7,8,9} .	
53		
		Formatted: Font: 10 pt
54	Occlusions are common ¹⁰ and under reported with about half directly related to thrombus	Formatted: Font: 10 pt
55	formation ¹¹ , Intraluminal reflux related thrombi rates are reported as 5%-25% ¹² of occlusions Fibrin	Formatted: Font: 10 pt
		Formatted: Font: 10 pt

56	deposition on the intraluminal surfaces of the intravenous (IV) connector fluid pathway and catheter has		
57	been shown to also increase the risk of coagulase-negative staphylococci infection ¹¹ , Therefore, through		Formatted: Font: 10 pt
58	several mechanisms thrombosis has been shown to enhance the risk of infection ¹³ . Interestingly,		Formatted: Font: 10 pt
59	prevention of occlusions may rely heavily on patient assessment and this has not been recognized by		Formatted: Font: 10 pt
60	healthcare practitioners. The importance of understanding current connectors research and its association		
61	with their care, maintenance and educational needs is imperative to professional best care practices.		
62			
63	While the primary responsibility for care and maintenance of a VAD falls on nursing practice, it is		Formatted: Font: 10 pt
64	extremely important for all healthcare professionals to understand how these complications occur and		Formatted: Font: 10 pt
65	how they are prevented. It is only when everyone focuses on the two primary prevention strategies;	Ň	Formatted: Font: 10 pt
66	minimize micro-organisms entry into the system, and minimize adhesion that the successful outcome of a		
67	VAD remaining safely in place and complication free for the required duration (brief or prolonged) can be		
	accomplished.		
68	accomplished.		
69			
70	This article will focus on the intraluminal fluid pathway and the role needleless IV connector's play in the		Formatted: Font: 10 pt
71	development of CR-BSIs and occlusions. Best practice requires that practitioners have specific		
72	knowledge of connector technology as well as patient factors for caring for VADs in order to provide safe		
73	care. There is a large gap in the scientific literature and in policies and procedures related to evidenced		
74	based decision making associated with care and maintenance of needleless intravenous connectors. An		
75	understanding of needleless IV connectors is necessary to meld research and practice together for best		
76	patient practices, so the occurrences of CR-BSI's and occlusions can be mitigated and eliminated.		
77	NEEDLELESSIV CONNECTOR OVERVIEW		
78	The IV connector is referred to by many different names such as "hep-locks", "male adaptors", "Luer-		
79	locks", "split septums", "caps"and "INTs" to name a few. Needleless IV connectors entered the healthcare		
80	settingin the 1990's as a means of preventing needle sticks and decreasing the potential for human		
81	immunodeficiency virus transmission. During the last decade research findings have questioned the role		
82	of IV connectors by category and as contributors to CR-BSI ^{14,15} . In 2010, nine design features were		
83	outlined as variables that impacted CR-BSI including: septum surface, septum seal, fluid pathway design,		

84	presence of dead space, presence of internal mechanism in the fluid pathway, clamping sequence,
85	visibility, blood reflux and flushing solution ¹⁶ . All IV connectors available today have four elements in
86	common: an external housing, a septum which is the entry point of the connector, a fluid pathway, and a
87	mechanism for returning the septum to its original closed position with disconnection. Dead space, which
88	exists in most connectors, refers to areas within the fluid pathway that cannot be cleared when flushing.
89	Dead space is often required for the closing mechanism. The designsof IV connectors based on these
90	four elements vary greatly from connector to connector.
91	
92	There are three major types of needleless IV connectors based on reflux known as negative, positive, and
93	neutral fluid displacement ⁷ . Connector designs evolved over a decade with changes made to improve
94	usability and to minimize occlusion associated with use. The first typewasnegative mechanical valves
95	(NMV). Reflux occurs with <u>disconnection</u> . Total or partial occlusion ^{11,18} is associated with NMV reflux. In
96	addition NMVs have been associated with CR-BSI ¹⁹ . The second type is positive pressure mechanical
97	valves (PPMV) and with this type reflux occurs with <u>connection</u> . PPMVs have been associated with
98	increased bloodstream infections ²⁰²¹ .These are under FDA (USA) investigation for possibly causing
99	deaths ²² . The last and most recent type is neutral. Withneutralconnectors there is no reflux with either
100	connection ordisconnection. Several studies reveal that specific connectors are associated with an
101	increased risk of blood stream infections ^{19,20,23,24} including PPMVs ^{14,25} , while other studies show a lower
102	rate of CR-BSIs. ^{26,27,28,29,30} It is not one design feature that is important in connector design and their
103	associated outcomes, but the combination of all the design features outlined by Dr. Jarvis ¹⁶ that will impact
104	complication reductions and eliminations.
105	CARE & MAINTENANCE OF CONNECTORS
106	Strategies to prevent intraluminal complications must be two-pronged; 1) prevent the active and passive
107	migration of microorganisms into the intraluminal fluid pathway, and 2) prevent catheter wall adhesion.

- 108 This approach will block bacterial colonization and biofilm formation. Practice has only two actions for
- 109 intraluminal care, swabbing the connector septum for disinfection and flushing the fluid pathway to remove
- 110 residue after useto eliminate the primary building block that enables wall adhesion.
- 111 Septum Disinfection of Connectors

112	Septum disinfection is the first action necessary to prevent bacterial migration. In the US it has been the
113	care giver who has received the attention. The needleless IV connector must be swabbed before each
114	access.70% alcohol alone or Chlorhexidine (CHG) alcohol are the two most commondisinfection agents
115	selectedby institutions in the United States. This protocol results in three or four (if using heparin as a final
116	flush) separate swabbing actions with each IV push medication or blood draw. It is common for
117	connectors to be accessed repeatedly during a patient care shift and in many different healthcare areas
118	(e.gxray, nuclear med, OR). In the US, there has been an increase in swabbing times to 15- 30 seconds
119	in an attempt to improve disinfection. This action has placed the entire burden on the care provider and
120	may not be clinically realistic. Even with conventional disinfection with 70% alcohol one study of NMVs
121	revealed 67% transmit microorganisms ranging from 442 to 25,000 colony-forming units ³¹ and it is known
122	that greater than 15 colony-forming units can lead to sepsis ³² .Another studyrevealed a range of colony
123	forming units for different connectors, post 70% alcohol swab using downward pressure and 3 rotations,
124	to range from zero to over 13,500 for 4 different bacteria lending data to the knowledge base that
125	connector septum designis a significant variable in the development of infections ³³ Connector design
126	has not been considered even though research has confirmed that complete disinfection of some IV
127	connectors septum's surfaces is difficult and in fact may not be achievable at high rates in the clinical
128	setting ^{31,34} .
129	
130	To increase septum disinfection success, the septum should be made of hydrophobic material and be
131	smooth without irregularities to prevent bacteria from sticking. The septum seal should be tight when not
132	activated so that there are no areas that lie outside disinfectant contact. When relying on research to set
133	the swabbing practice, it is important to remember that generalization of research findings to connectors
134	not included in the study is problematic. Long, complicated swabbing practices are cumbersome and
135	difficult to consistently perform in the healthcare setting. Selecting a connector that can be swabbed
136	simplywith > 99% bacterial kill will improve compliance. The new alcohol caps provide a continuous
137	passive disinfection approach. However, the connector needs to be swabbed prior to applying a new

- 137
- 138 cap. This is not widely understood in the clinical setting. A properly designed connector should not
- 139 require add-ons to enhance practice outcomes. Ask IV connector manufacturersfor independent research

140 in this area and if they have none be weary of using the product. If the manufacturer tells you to follow 141 your hospital policy on swabbing do NOT accept this as valid as it is not research based and is actually 142 an admission that the manufacturers have no research on their product. This lack of research and 143 evidence does not support evidence based nursing practice and can be detrimental to patient 144 outcomes.Research on one neutral fluid displacement connector, validated through aninvitro study by Nelson laboratories (Salt Lake City, UT), that 3-5 twists of swabbing with 70% alcohol pad, like squeezing 145 an orange, removes 100% of bacteria³⁵. The connector septum provides an environment that supports 146 147 simple effective practice. **CLEARING THE INTRALUMINAL PATHWAY** 148 149 Flushing is the only mechanism available in the clinical setting to clear the intraluminal fluid pathway. 150 Blood is routinely withdrawn prior to injection to check for patency and confirm venous placement. With 151 withdrawal the entire fluid pathway is filled with blood. In order for flushing to be successful, the fluid 152 pathway must be straight. This is because fluid follows the path of least resistance therefore anything 153 outside this pathway (dead space) will not come in contact with the flushing solution. These areas outside the pathway continue to have blood and medication residue providing an environment for 154 155 bacterial growth. Fibrin deposition on the intraluminal surfaces of the fluid pathway increases the risk of coagulase-negative staphylococci infection¹² and occlusions. Thrombosis has been shown to enhance 156 the risk of infection¹³Edminston³⁶ inoculated connector intraluminal fluid pathways and reported that 157 increased intraluminal fluid pathway volume corresponds to higher organism growth rates. With a larger 158 internal volume there was increased area outside the fluid pathway. A small unobstructed, straight fluid 159 160 pathway provides an area where 100% of the pathway surface comes into contact with the flush solution. An invitro study showed that a connector designed with a very small priming volume (0.027 mL)and using 161 162 as little as 1 mL saline flush 99.96% and with 4 mL saline that 100% of microscopic hemoglobin was removed³⁷. 163

- 164 It is practice in some institutions in the US to use a push-pause flushing method. This practice became
- 165 very popular because it was hypothesized that fluid turbulence enhances the "scrubbing" action of the
- 166 flush. No research is available to support this practice. Donlan³⁸, a leader in biofilm science, reported in
- 167 2002 that turbulent flow actually enhances bacterial adhesion and that a steady flush minimizes adhesion.

168 No research exists that focuses flushing on patient diagnosis yet many patients are at high risk for

169 occlusion (Table 1). Performing the identical flushing procedures with all patients may result in uneven

170 outcomes and research is needed in this area.

171 Table 1: Patients at High Risk For Vascular Access Occlusion

Acute Spinal Cord Injury
Advanced Age
Bone Marrow Transplant
Brain Tumor
Catheters Placed via the Left Subclavian Vein
Catheter Tip Location in Subclavian Vein
Chronic Obstructive Pulmonary Disease
Dehydration
Diabetes
High Platelet Levels
History of Deep Vein Thrombosis
Lung Cancer
Major Trauma Gynecologic Malignancies
Malposition of the Catheter
Oral Contraceptive Use
Pregnancy
Renal Failure
Sickle Cell Anemia
Trauma Patients

172

- 173 Negative and positive connectors have reflux associated with usage. Reflux occurs either with
- 174 disconnection (NNV) or connection (PPV). Mitigating reflux depends on the practitioner's ability to identify
- the connector by type and then apply the correct clamping sequence¹⁷either clampingbefore
- 176 disconnection(NNV) or disconnecting and then clamping(PPV). There is no clamping sequence with
- 177 neutral connectors because there is no reflux with either connection or disconnection. However, when
- 178 using the Y-port on anyIV administration tubing a clamping sequence cannot be used and reflux cannot
- 179 be mitigated. Many institutions use more than one type of connector necessitating the care practitioner to
- 180 visually identify the connector type and then select the correct clamping sequence. The package label
- 181 usually does not identify the connector type or whichclamping sequence to use. Thismakes the
- 182 practitioner's job more difficult. Using the wrong sequence means that occlusion is more prevalent when
- 183 using a negative pressure system³⁹⁴⁰ with reflux occurring with disconnection. Occlusion incidence is less
- using one neutral connector⁴¹. Selecting one IV connector to be used exclusively throughout the
- 185 institution enhances education and ultimately improves procedure compliance¹⁴. Knowledge about
- 186 connector design and associated best flushing practices will help in overcoming CR-BSIs and occlusions.

187 EDUCATION

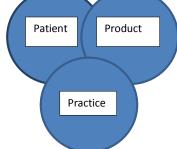
188	The prevention of CR-BSIs and occlusionsare possible but requires education of healthcare providers on
189	complication cause, care and maintenance actions related to the specific IV connector, and continual
190	current research evaluation with associated implementation of policy and practice changes. Research
191	reveals, for example, that 78% of acute care nurses are uninformed about different connector types and
192	their specific, yet opposing, care ⁴³ . Forty three percent of nurses could not name 2 complications
193	associated with IV connectors (e.g.: infection, occlusion, thrombosis) and 64% are involved with 4 to 5
194	hours of IV therapy care and maintenance per 12 hour nursing shift, making IV therapy an important
195	clinical issue and educational necessity ⁴³ . There has been no research done looking at similar issues
196	with other care providers who have contact with IVs. However, there are neither courses nor enough
197	lectures in most healthcare provider programs on IV therapy, though information related to science and
198	research has resulted in several books being published in the area of IV therapy.
199	
200	The ability of healthcare providers to collect cues related to needleless IV connector problems begins with
201	education on information that is basic, understandable, differentiating and complete to aid in clinical
202	reasoning. Patient assessment, knowledge of technology and specific care are required to best protect
203	the intraluminal fluid pathway of VADs ²⁶⁴⁴⁻⁴⁷ .Without knowledge and appropriate interventions
204	intraluminal protection becomes compromised and there can be an increase in CR-BSI, occlusions,
205	thrombi and potential associated deaths.
206	RESEARCH FRAMEWORK
207	For nursing and medical research associated with VADs the Healthcare AndTechnology Synergy (HATS)
208	framework (Figure 1) is appropriate. This framework ⁴⁸ represents a synergy between three major
209	variables (patient, product, practice) with each one affecting the others and being affected by the others.
210	This framework adds a more holistic and comprehensive approach to comparative effectiveness and
211	evidence based practice research and when translating findings to bedside care. Using connectors as an
212	example the patient variables to be considered, though not an exhaustive list, include age, diagnosis,
213	comorbidities, therapeutic regimens, projected length of stay, physical assessment, mental health status,

transcultural beliefs, finances, and length of treatment including current needs and recurring needs.

- 215 Product variables may include the following; intravenous connectors categorized on the basis of reflux as
- 216 well as bacterial and biofilm growth as previously discussed, connector septum design including septum
- 217 seal tightness, fluid pathway design, type of VAD, insertion site, and number of catheter lumens. Practice
- 218 variables may include connector septum disinfection practice, dressing management, clamping
- 219 sequence,flushing practiceincluding solution(s) and time frequency (eg: 10 mL normal saline every 6
- 220 hours), the education and skill levels of the nurse specific to vascular access, availability of specialized
- 221 vascular access teams, and nurse-patient staffing ratios. A multicenter, quasi experimental, 140 month/
- 222 50,080 catheter days, acute care study comparing central line-associated bloodstream infection rates
- 223 associated with PPMV and NPMV before and after changing only the connector to a neutral connector.
- There was a statistically significant higher CR-BSI rate when either NNMV (P = .001) or PPMV (P = .032)
- 225 were used.³⁰Product can be a variable and if not specifically studied should be noted as a
- 226 limitation. Research in some of these areas have already been implemented, presented and/or
- 227 published.^{26-29,44,49,50}.
- 228 PATIENT IV CONNECTOR ASSESSMENT
- 229 If proper care of a needless IV connector depends on the type of connector, then it may be helpful to
- 230 answer questions **the following** prior any care activities.
- 231 What type of connector does my patient have? Is it negative, positive orneutral?
- 232 Do I have the materials, skills and knowledge to correctly implement scrubbing the hub and
- 233 flushing?
- 234 Do I have the knowledge to implement appropriate disconnection?
- 235 When should I change the connector? This time frame should be specifically stated by the manufacturer
- 236 as "follow your usual hospital policy" is meaningless to care.
- 237 Does the patient have a three way stop cock? The use of open stop cocks increased bloodstream
- 238 infections when compared to using IV connectors to cover entry hubs⁵⁰.
- 239 SUMMARY
- Connector design and category impact occlusion and CR-BSI rates.
- Connector design impacts disinfection and flushing practice success.

242	•	Best practice requires that health care professionals have specific knowledge of
243		connectortechnology aswell as patient factors for caring for vascular access devices.
244	•	The more desirable design features a connector has included in its final product the more user
245		friendly the connectorwill be and the less complications you will encounter.
246	•	Without specific knowledge regardingconnector technology there is an increase in the potential
247		for sepsis, catheter occlusion and death.
248	•	When the connector surface is not properly disinfected, flushed, and/or disconnected
249		thenbacteria can enter the intraluminal fluid pathway, adhere to the internal surface, colonizeand
250		develop biofilm increasing the risk for patient infection and sepsis.
251	•	Healthcare providers should demand that manufactured connector devices be developed with fail-
252		safe engineering advances aimed at further mitigation of risk of infection in the complex hospital
253		environment and devices that include ease of use by the nurse.
254	•	The addition of alcohol caps is another step to implement and one that should not
255		benecessarywith a properly designed connector. Additional steps <mark>to care</mark> also increase human
256		error.
257	•	Instituting the "Healthcare And Technology Synergy (HATS)" framework that includes "Patient,
258		Practice, Product", into intravenous practice settings and within research is paramount to a better
259		understanding of intraluminalvascular access infections.
260	•	The frequent usage and care of connectors in all healthcare settings makes connectors
261		significantvariables for practice and comparative effectiveness and outcomesresearch.
262	•	There are large gaps in the scientific literature, policies and procedures in regards to unbiased
263		evidenced based decision making, care and maintenance related to needleless connectors.
264	CONC	LUSIONS
265	An incr	eased understanding of connector design's impact on the intraluminal fluid pathwaycombined with
266	<mark>eviden</mark>	ce based practice can prevent CR-BSI's and occlusions through preventing the active and passive
267	migrati	on of microorganisms into the fluid pathway and preventing microorganism adhesion to the
268	cathete	er surface. The connector, as the gatekeeper to the intraluminal fluid pathway, plays a significant
269	and vit	al role in the prevention of patient complications, including death. The best designed connector

270	should <mark>inc</mark>	lude <u>ALL</u> design features outlined by Dr. WR Jarvis ¹⁶ Best practice requires utilization of
271	research i	n the development and implementation of policy and procedures associated with needleless
272	intravenou	is connector care and maintenance. Product should be considered an important variable when
273	designing	research. Practice should not be the entire focus for change to improve outcomes. Also, the
274	potential of	of value enhanced purchasing can best be accomplished through inclusion of evidence. Through
275	a combina	tion of research and education there could be a very significant decrease in 'one every minute'
276	CR-BSI's	and vascular access catheter occlusions.
277	REFERE	NCES
278	1.	Appendix A, CDC Guideline MMWR. Aug. 9 2002;51(RR10):27-28.
279	2.	Macklin D. Catheter management.Seminars in Oncology Nursing.2010;26(2):113-
280		20.DOI:10.1016/j.soncn.2010.02.002
281	3.	Jones CA. Central venous catheter infection in adults in acute hospital settings. Brit J
282		<u>Nurs.</u> 2006;15(7):362,364-68.
283	4.	Pronovost PJ, Marsteller JA, Goeschel CA. Preventing bloodstream infections: A measurable
284		rational success story in quality improvement. Health Affairs.2011;30(4):628-34.doi:
285		10.1377/hlthaff.2011.0047.
286	5.	Rosado V, Romanelli RM de C, Camargos PAM. Risk factors and preventive measures for
287		catheter-related bloodstream infections. Jornal de pediatria (Brazil). 2011;87(6):469-
288		77.doi:10.2223/JPED.2134.
289	6.	Tacconelli E, Smith G, Hieke K, Lafuma A, Bastide P. Epidemiology, medical outcomes and
290		costs of catheter-related bloodstream infections in intensive care units of four European
291		countries: Literature- and registry-based estimates. J Hosp Infect. 2009;72(2):97-103.
292		doi: 10.1016/j.jhin.2008.12.012.
293	7.	Arnow PM, Quimosing EM, Beach M. Consequences of intravascular catheter
294		sepsis.ClinInfec Dis.1993;16(6):778-84.
295	8. Pittet	D, Tarara D, Wenzel RP. Nosocomial bloodstream infections in critically ill patients: Excess
296	length	of stay, extra costs and attributable mortality. JAMA.1994; 271(20):1598-1601.


297 9. Rello J, Ochogavia A, Sabanes E, Roque M, Mariscal D, Reynaga E, et al. Evaluation of outcome of 298 intravenous catheter-related infections in critically ill patients.Am J RespirCrit Care Med. 2000;162(3 299 Pt 1):1027-30. 300 10. JL, Pui CH, Reiss U, Wilimas JA, Metzger ML, Ribeiro RC, et. al. Management of occlusion and 301 thrombosis associated with long-term indwelling central venous catheters. 302 Lancet;2009;374(9684):159-69. doi: 10.1016/S0140-6736(09)60220-8 11. van Rooden CJ, Schippers EF, Guiot HF, Barge RM, Hovens MM, van der Meer FJ, et al. Prevention 303 304 of coagulase-negative staphylococcal central venous catheter-related infection using urokinase 305 rinses: a randomized double-blind controlled trial in patients with hematologic malignancies. J 306 ClinOncol.2008;26(3):428-33.doi:10.1200/JCO.2007.11.7754. 307 12. Rummel MA, Donnelly PJ, Fortenbaugh CC. Clinical evaluation of a positive pressure device to 308 prevent central venous catheter occlusion: Results of a pilot study. Clin J OncNurs.2001;5(6):261-265 309 13. Jacobs BR. Central venous catheter occlusion and thrombosis.Crit Care Clinic_2003;19(3):489-514. 310 14. Jarvis WM, Murphy C, Hall KK, Fogle PJ, Karchmer TB, Harrington G, et al. Healthcare-311 associated bloodstream infections associated with negative- or positive-pressure or 312 displacement mechanical valve needleless connectors.Clin Infect Dis. 2009;49(12):1821-27. 15. Maragakis LL, Bradley KL, Song X, Beers C, Miller MR, Cosgrove SE, et al. Increased 313 314 catheter-related bloodstream infection rates after the introduction of a new mechanical valve 315 intravenous access port. Infect Control HospEpidemiol. 2006;27(1):67-70. 316 16. Jarvis WR. Choosing the best design for intravenous needleless connectors to prevent 317 bloodstream infections.2010. Retrieved on 07/15/2010 from 318 http://www.infectioncontroltoday.com 319 17. Chernecky C, Macklin D, Casella L, Jarvis E. Caring for patients with cancer through nursing 320 knowledge of IV connectors.Clin J OncolNurs. 2009;13(6):630-33. 321 18. Garland JS, Alex CP, Sevallius JM, Murphy DM, Good MJ, Volberding AM, et al. Cohort study 322 of the pathogenesis and molecular epidemiology of catheter-related bloodstream infection in 323 neonates with peripherally inserted central venous catheters. Infect Control HospEpidemiol. 324 2008;29(3):243-49.http://dx.doi.org/10.1086/526439

325	19.	Field K, McFarlane C, Cheng AC, Hughes PJ, Jacobs E, Styles K, et al.Incidence of catheter-
326		related bloodstream infection among patients with a needleless, mechanical valve-based
327		intravenous connector in an Australian hematology-oncology unit.Infect Control
328		HospEpidemiol. 2007;28(5):610-13.
329	20.	Rupp ME, Sholtz LA, Jourdan DR, Marion ND, Tyner LK, Fey PD et al. Outbreak of
330		bloodstream infection temporally associated with the use of an intravascular needleless valve.
331		Clin Infect Dis. 2007;44(11):1408-14.
332	21.	Jarvis W, Sheretz R, Peri T, Bradley K, Giannetta E. Increased central venous catheter-
333		associated bloodstream infection rates temporally associated with changing from a split-
334		septum to a luer-access mechanical valve device: A nationwide outbreak? In: Program and
335		abstracts of the32nd Annual Educational Conference and International Meeting of the
336		Association of Professionals in Infection Control and Epidemiology, June 20-23, 2005:
337		Baltimore, MD.
338	22.	Food & Drug Administration. Letter to Infection Control Practitioners Regarding Positive
339		Displacement Needleless Connectors, July 2010. Retrieved September 31, 2010 from
340		http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm220459.htm
341	23.	Karchmer TB, Cook E, Palavecino E, OhlC,Sherertz R. Needleless valve ports may be
342		associated with a high rate of catheter-related bloodstream infection [abstract 307].
343		2005(04/09/2005 - 04/12/2005); In Proceedings of the 15 th Annual Scientific Meeting of the
344		Society for Healthcare Epidemiology of America, Los Angeles, CA.
345	24.	Rosenthal K. Do needleless connectors increase bloodstream infection risk?Nurs
346		Management.2006;37(4):78-80.
347	25.	Marschall J, Mermel LA, Classe D, Arias KM, Podgorny K, Anderson DJ, et al. Strategies to
348		prevent central line-assocaited bloodstream infections inacute care hospitals. Infect Control
349		HospEpidemiol. 2008;29(Suppl 1):S22-30. Doi: 10.1086/591059
350	26.	Chernecky C, Jarvis WR, Waller JL, Macklin D. Clinical comparisons of split septum, positive
351		and negative mechanical valve intravenous connectors to an intraluminal protection connector

352		on infection rates. Poster, The 2011 Council for the Advancement of Nursing Science Special
353		Topics Conference, Washington DC, October 12, 2011.
354	27.	Chernecky C, Waller J, Macklin D, Caillouet B. Comparative effectiveness of intravenous
355		catheter connectors.2011; Poster, National Teaching Institute, Chicago, IL.
356	28.	Chernecky C, Waller J. Comparative evaluation of five needleless intravenous connectors.J
357		Advanced Nurs. 2011;67(7):1601-13.
358	29.	CherneckyC. In-vitro connector research (letter).Clin Infect Dis. 2010:51(12):1463.
359	30.	Chernecky C., Macklin D., Jarvis WR, Joshua MS. Comparison of central line-associated
360		bloodstream infection rates when changing to a zero fluid displacement intravenous
361		needleless connector in acute care settings. AJIC. 2014;42(12):200-
362		202.doi:10.1016/j.ajic.2013.05.023
363	31.	Menyhay SZ, Maki DG. Disinfection of needleless catheter connectors and access ports with
364		alcohol may not prevent microbial entry: The promise of a novel antiseptic-barrier cap. Infect
365		Control HospEpidemiol. 2006;27(1):23-7.
366	32.	Maki DG, Weise CE, Sarafin HW. A semiquantitative culture method for identifying
367		intravenous-catheter-related infection.N Engl J Med.1977;296(23):1305-09.
368	33.	Chernecky C, Waller J. In Vitro Comparisons of two Antimicrobial intravenous
369		Connectors.ClinNurs Res: An Internat J.2011;20(1):101-09.
370	34.	ArduinoMJ, Bland LA, Danzig LE, McAllister SK, Aguero SM. Microbiologic evaluation of
371		needleless and needle-access devices.Am J Infect Control. 1997;25(5):377-80.
372	35.	RyMed Technologies, Inc.Disinfection swabbing study for the Invision-Plus® with neutral
373		advantage™ technology. Nelson Laboratories, Inc, Nos. 395445 and 398575.Retrieved
374		December 16, 2013 from http://rymedtech.com/assets/files/InVision-
375		Plus%20Swabbing%20Disinfection%20Study.pdf, 2009a
376	36.	Edmiston CE, Markina V. Reducing the risk of infection in vascular access patients: An in
377		vitro evaluation of an antimicrobial silver nanotechnology luer activated device.Am J Infect
378		Control. 2010;38(6):421-23.doi:10.1016/j.ajic.2009.09.010

379	37. RyMed Technologies, Inc. Blood Clearing Study for the InVision-Plus ${ m I}$ with Neutral
380	Advantage™Technology. Nelson LaboratoriesInc, No.458652. Personal communication P.
381	Blackburn, RyMed Technologies, Inc, December 16, 2013,2009b.
382	38. Donlan RM.Bioflms: Microbial life on surfaces. Emerg Infect Dis. 2002;8(9):881-90.
383	39. Jacobs BR, Schilling S, Doellman D, Hutchinson N, Rickey M, Nelson S. Central venous
384	catheter occlusion: A prospective, controlled trial examining the impact of a positive-pressure
385	valve device. JPEN: J Parenteral Enteral Nutrition. 2004;28(2):113-18.
386	40. Casell L, Jarvis E. Save a patient's line with positive pressure. Acute & Critical Care Special
387	Interest Group Newsletter; 2007. Oncology Nursing Society, Pittsburgh, PA., pp. 3-4.
388	41. Caillouet B. The evolution of the injection cap-combining staff safety and patient safety: An
389	M.D. Anderson research study.Presented at the 22 nd Annual Association for Vascular Access
390	Conference, September 11, Savannah, GA; 2008.
391	42. GuiffantG, Durussel JJ, Flaud P, Vigier JP, Merckx J. Flushing parts of totally implantable
392	venous access devices, and impact of the Huber point needle bevel orientation: Experimental
393	tests and numerical computation. Medical Devices: Evidence and Research. 2012; 5(1):31-3.
394	DOI: http://dx.doi.org/10.2147/MDER.S30029
395	43. Chernecky C, Casella L, Jarvis E, Macklin D, Rosenkoetter M. Nurses' knowledge of
396	intravenous connectors. J Res Nurs;2010;15 (5):405-16.
397	44. Harnage S. Achieving zero catheter related blood stream infections: 15 months success in a
398	community based medical center. JAVA.2007;12(4):218-24.
399	45. Chernecky C, Macklin D. Improving hospital acquired infections with a practice bundle.
400	Podium, World Congress on Vascular Access. Amsterdam, Netherlands June 27-29, 2012.
401	46. Cook D, Meyer T. Luer activate device priming volume as a predictor of biofilm formation in
402	an in vitro assay.Poster presentation at the Society for Healthcare Epidemiology of America,
403	Baltimore, MD, 2007.
404	47. Macklin D. The impact of IV connectors on clinical practice and patient outcomes.JAVA
405	2010;15(3):126-39.

406	48. Chernecky C, Zadinsky J, Macklin D, Maeve MK. The healthcare and technology synergy
407	(HATS) model for comparative effectiveness research as part of evidence based practice
408	in vascular access. JAVA;2013;18(3):169-74.doi: 10.1016/j.java.2013.05.001
409	49. Chernecky C, Waller J, Jarvis W. In-vitro Study Assessing the Antibacterial Activity of
410	Three Silver-Impregnated/Coated Mechanical Valve Needleless Connectors after Blood
411	Exposure.Am J Infect Control. 2012;41(3):278-80. doi:10.1016/j.ajic.2012.03.020
412	50. Macklin D, Chernecky C, Jarvis WR, Waller J. Clinical comparisons of split septum,
413	positive and negative mechanical valve intravenous connectors to an intraluminal
414	protection device on infection rates.2011; Poster, Association for Professionals in Infection
415	Control and Epidemiology, Inc. conference, Baltimore, MD.
416	51. Chernecky C, Waller J. Comparison of bacterial CFUs in five intravenous connectors.
417	ClinNurs Res: An Internat J.2010;19(4):416-28.
418	52. Yébenes JC, Vidaur L, Serra-Prat M, Sirvent JM, Batile J, Motje M, et al. Prevention of
419	catheter-related bloodstream infection in critically ill patients using a disinfectable, needle-
420	free connector: A randomized controlled trial. Am J Infect Control. 2004;32(5):291-
421	95.doi:10.1016/j.ajic.2003.12.004
422	
423	
424	
425	
426	
427	Figure 1: Healthcare And Technology Synergy (HATS) Framework
428	

