1	The simultaneous determination of some water-
2	soluble vitamins in gum of Acacia nilotica by high
3	performance liquid chromatography
4	Sarra Bouazizi ¹ *, Bassem Jamoussi ¹ , Dalila Bousta
5 6	 Institute of Higher and Continuing Education, Laboratory of Chemical Analysis, 43 Liberty Street 2019 Bardo, Tunis, Tunisia
7	2. National Institute of Aromatic Medicinal Plants, BP 7048 - Ez-Kalaa, 7048, Fez,
8	Morocco
9	Abstract
10	A rapid, simple and precise method by HPLC (high performance liquid
11	chromatography) has been developed for simultaneous determination of water-
12	soluble vitamins as thiamine(B_1), nicotinamide(B_3), panthotenic(B_5),
13	pyridoxine(B_6) and biotin(B_8) in gum of Acacia nilotica using enzymatic
14	hydrolysis. The method uses a $\frac{C_{18}}{column}$ (4.6×150 mm, 5µm). Mobile phase
15	such as methanol $0.1M$, sodium dihydrogen phosphate (pH = 2.5), (10:90 v/v)
16	is found most suitable for rapid separation and identification of this water -
17	soluble vitamins. Good linearity was observed between the concentration of
18	analytes and peak area (r = 0.9999). Each vitamin was quantitatively
19	determined at its maximum wavelength. Recovery percentages ranged from
20	97% to 99%.
21	Keywords: Water – soluble vitamins; Gum, Acacia nilotica; HPLC.
22	1. Introduction
23	Acacia gums have a complex and branched structure, which makes them have
24	good adhesive and cohesive properties. These properties are useful in
25	pharmaceutical preparations. They are used as dental and other adhesives and
26	as bulk laxatives. These hydrophilic polymers are useful as tablet binders,
27	emulsifiers, suspending agents, gelling agents, stabilizers, thickeners,
28	protective colloids and suspending agents keeping tablets [1]. They can also be *Tel: +216 20 015310; fax: +216 71 588327

E-mail address: bouazizisarra09@yahoo.fr

30	apparatus of colostomies and also in fixing dental prosthesis [3].
31	For internal use, they help in the preparation of medicines to soothe coughs,
32	diarrhea, dysentery and hemorrhages; for external use, they calm
33	inflammations, so the presence of vitamins in Acacia gums is very important
34	since vitamins are essential for human health. [4]
35	As far as we know, other researchers have not reported the presence or absence
36	of vitamins B ₁ , B ₃ , B ₅ , B ₆ , B ₈ in Acacia gum, particularly that of Acacia
37	nilotica.
38	These vitamins are very important for the production of energy (B ₁), normal
39	growth and development (B ₃), the regulation of neurotransmitters (messengers
40	of nerve impulses) (B_5) , physical balance and regulation of blood sugar (B_6)
41	and the processing of several products such as glucose and fatty acids (B ₈).[5]
12	Due to the nutritional importance of these vitamins, microbiological assay and
13	several analytical methodologies have been developed for the determination of
14	these substances in food, pharmaceutical supplements and biological fluids [6-
4 5	10]. There are many analytical methods for performing the assay of vitamins in
16	food, pharmaceutical and physiological specimens such as spectrophotometry
17	[6,11-13] spectrophotoflurorimetry [7], voltammetry [8], the gas
18	chromatography [15-17] and high performance liquid chromatography [18-28].
19	Normally, it is necessary to determine more than one vitamin; the analytical
50	method must be able to determine multiple components in complex samples,
51	which can lead to interference in chemical analysis.
52	The aim of this study is to develop a rapid and reliable technique for the
53	simultaneous determination of five water- soluble vitamins (B_1,B_3,B_5,B_6 , and
54	B ₈) in gum of Acacia nilotica by HPLC using the enzymatic hydrolysis.
55	

2. Experimental

58

59

72

2.1. Reagents and chemicals

- Methanol was of HPLC grade. Other chemicals as sodium dihydrogen phosphate (NaH₂PO₄), sodium acetate, sulfuric acid (H₂SO₄) and acetic acid
- 62 (C₂H₄O₂) (Sigma) were of reagent grade. Purified water was obtained from a
- 63 Millipore Milli-Q system.
- Standards of thiamine, nicotinamide, pantothenic, pyridoxine and biotin were
- 65 purchased from Sigma.
- Taka-diastase enzyme from Aspergillus oryzae powder, slightly beige was
- 67 obtained from Sigma. All chemicals and reagents used are of HPLC and were
- 68 used without further purification. Also, all solutions were filtered through a
- 69 0.45 μm membrane (Millipore), protected from light and stored at 4°C.
- The mobile phase of the HPLC system was comprised of pure methanol and
- sodium dihydrogenphosphate NaH₂PO₄ (10:90 v/v).

2.2. Chromatographic conditions

- 73 The HPLC system (Agilent) was equipped with a pump type technology
- Agilent 1200 series, a vacuum degassing unit model G1322A, a UV-VIS
- 75 spectrometer to 8 wavelengths, a fluorescence detector (G1321 Agilent 1200
- Series), an analytical C_{18} column (Agilent) (4.6 \times 150mm, 5 μ m), During the
- analysis the column was equilibrated at 30°C and a manual injector uses an
- 78 injection valve sample seven lane Rheodyne 7725i. The chromatographic peaks
- 79 were recorded and elaborated automatically by employing a computerized
- program 'Agilent ChemStation'.
- The analyzes were performed by gradient elution of wavelength at room
- temperature, at a flow rate of 1 mL/min. The total execution time required is
- less than 20 min.
- The program of wavelength changes during elution time for five vitamins
- determination in gum of *Acacia nilotica* shown in Table2.

2.3. Standard solutions

The vitamin stock solution: 100 mg / L were prepared by dissolving 10 mg of each standard in 100 mL of methanol in dark volumetric flasks. These solutions are stable hang at least one month when stored in the dark at 4°C. Working solutions were prepared from stock solutions by appropriate dilution with methanol and protected from light. The following Table1 illustrates the calibration of the analytical method:

Table 1. Concentration of the standards used for plotting the calibration curve of five vitamins (B_1 , B_3 , B_5 , B_6 , B_8)

Vitamins	Concentrations (mg/L)
Thiamine B ₁	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Nicotinamide B ₃	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Pantothenic B ₅	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Pyridoxine B ₆	1.0, 5.0, 10.0, 15.0, 20.0, 30.0
Biotin B_8	1.0, 2.0 ,5.0 ,10.0 ,15.0, 20.0, 30.0

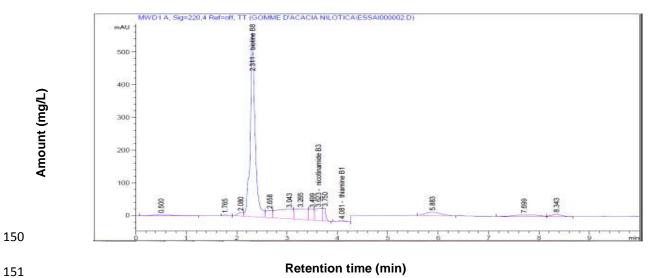
2.4 Sample preparation

1g of gum *Acacia nilotica* which is a fine powder was accurately weighed in a 250 mL erlenmeyer flask, 10mL of sulfuric acid (1N) was added. The mixture was thoroughly shaken, after the pH was adjusted to 4.5 with sodium acetate (2.5M), then 500mg of the enzyme Taka-diastase stirring was added .The solution was incubated at 37°C and protected from light all night. The following content was filtered on 0.45μm filter. Finally, 20 μL of the extract was injected into the HPLC system for analysis.

3. Results and discussion

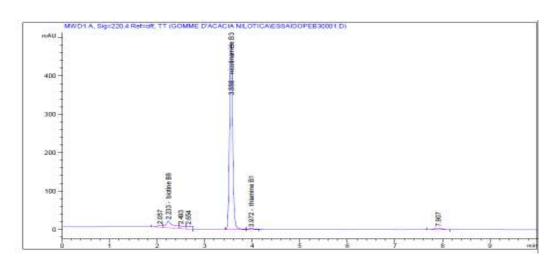
The determination of vitamins in gum of *Acacia nilotica* is a complex analytical problem for several reasons: gum of *Acacia nilotica* is a very complex matrix, vitamins that are micro constituents and vitamins are easily destroyed by strong acids or alkalis, which is why we find that the enzymatic hydrolysis is a good solution for these problems.

First, scan analysis of standard vitamins was performed to check the optimum conditions for the detection. Wavelengths were changed according to the elution time of each vitamin, as is shown in Table 2.


Table 2. Program of wavelength changes during elution time for five water-soluble determinations in gum *Acacia nilotica*.

Vitamins	Time (min)	Wavelengths (nm)
Biotin (B ₈)	0.0 - 2.5	204
Nicotinamide (B ₃)	2.6 - 3.8	261
Thiamine (B ₁)	3.9 - 4.5	234
Pyridoxine (B ₆)	4.6 - 5.0	275
Pantothénic acid (B ₅)	5.1-7.0	210

The mobile phase was composed of methanol and sodium dihydrogen phosphate NaH_2PO_4 (10:90) v/v) for the determination of vitamins B_1 , B_3 , B_5 , B_6 , and B_8 in gum *Acacia nilotica*. A study of pH and the proportion of methanol and NaH_2PO_4 were necessary to improve the resolution in the gum of *Acacia nilotica* formulae. When the proportion of methanol is 20%, vitamins are eluted in less than 5 min, but there is an overlap peak of certain vitamins.


The pH of the mobile phase is extremely important for the separation of 123 vitamins in order to overcome this problem, a decrease in the proportion of 124 125 methanol by 10 %, which has the effect of providing a higher resolution but against party, the time of analysis. 126 127 A choice of pH = 2.5 implies that most vitamins are of molecular form since 128 the pH is less than the peaks of all vitamins (B₁, B₃, B₅, B₆, B₈). Figure 1 shows the chromatogram of vitamins B_1 , B_3 , B_8 in gum of Acacia nilotica. 129 130 We note from the figure that gum of Acacia nilotica contains a wide range of vitamin B₈. The peak of vitamin B₈ was detected at a retention time of about 131 2.2 to 2.4 min (Fig.1, 2), with minor variations on a daily basis due to 132 temperature fluctuations in the laboratory [29]. No other peaks were observed 133 at 204 nm. 134 135 All calculations prove that vitamin B_8 is in the order of 12,000 ppm. A part 136 from vitamin B₈, there are vitamins B₁ and B₃ but with low levels. We can 137 conclude that the method gives a good resolution of vitamin B₈. 138 3.1. Characteristic of the HPLC method 139 The proposed method allows the resolution of various forms of vitamin B especially B₈ in gum of *Acacia nilotica* by HPLC with UV detection. 140 141 A reliable chromatographic assay requires an acceptable resolution, reasonable retention times and good peak symmetry. Accordingly, in preliminary studies 142 optimal chromatographic conditions were investigated in gradient elution 143 system with varying wavelengths. The advantage of gradient elution is that the 144 145 bandwidth can be nearly constant at both early and tardative analytes. 146 Therefore an elution system of five wavelengths has been developed with a 147 beneficial effect on the sensitivity of biotin. 148 Representative chromatograms with other chromatographic parameters are

shown in Figure 1, 2 and Table 3.

Amount (mg/L)

Figure 1: Typical chromatograms of vitamins.

154 Retention time (min)

Figure 2: Typical chromatograms of vitamins.

Vitamins	Chromatographic parameters			
	T	t _R (min)	R_S	k'
Biotin B ₈	2.306	3.117	1. <mark>0</mark>	2.412 (B3-B8)
Nicotinamide B ₃	3.512	5.27	1.5	2.087 (B1-B3)
Thiamine B ₁	4.242	6.575	1.9	3.872 (B1-B8)

 t_R : retention time reduced; k': Retention factor; Rs: Resolution factor; T: The asymmetric peak

In practice, care must be taken to keep values k' inferior to 10 for a period of reasonable analysis, values between 2 and 5 are the correct values.

3.1.1 Linearity

Six working solutions were prepared for each analyte whose range is between 1 and 30 mg/L for B_1 , B_3 , B_5 , B_6 and seven solutions between 1 and 30 mg/L for B_8 . The analysis was performed in triplicate to determine the linearity of the assay. The regression lines were calculated by the method of least squares of the areas of the peaks relative to the analyte.

The equations corresponding to the five regression analytes were

$$B_1$$
: $y = 25.82754x + 6.26753$

175
$$B_3$$
: $y = 33.21959x-1.42661$

176
$$B_5: y=7.15590x+5.776 e^{-1}$$

177
$$B_6: y=13.70389x+9.16444 e^{-1}$$

178
$$B_8$$
: y=11.89793x +2.37982

179 x: Amount et y: Area

They were consistently linear in the already mentioned range for all compounds.

The linearity was checked by analysis of variance of the regression (Table 4). A value of r above 0.9949 for all vitamins, (P<0.001) except for thiamine with r = 0.9781. The coefficient of determination (r^2) is more than 95.66% for thiamine and 99.66% higher than for others. Six determinations of the same sample were performed to assess the accuracy of the method.

Table 4. Linearity of standard curves of vitamins B₁, B₃, B₅, B₆, and B₈

Vitamins	r	\mathbf{r}^2	F ^a exp	DF ^b	P
Biotin (B ₈)	0.9949	99.88	21247.5	1.5	(P<0.001)
Nicotinamide(B ₃)	0.9998	99.96	165492.10	1.5	(P<0.001)
Thiamine (B1)	0.9781	95.66	100026.5	1.5	(P<0.001)
Pyridoxine (B ₆)	0.9998	99.96	27417.53	1.5	(P<0.001)
Pantothénic acid	0.9999	99.98	7686.97	1.5	(P<0.001)
(B ₅)					

 F^{a} (1.5; 0.001) = 6.61. F tab and Fexp are tabulated and exparimental

 ${\it Snedecor's F values, respectivly in ANOVA analysis, DF}^{b,} \ degrees \ of freedom$

3.1.2 Accuracy and precision

Six determinations of the same sample were performed to assess the accuracy of the method.

The following table illustrates the accuracy of the method for the determination of vitamins B₁, B₃, B₅, B₆, and B₈ in gum of *Acacia nilotica*.

Vitamins	Concentration	Surface	Correlation	Detection	Quantification
	range (mg/ <mark>L</mark>)	broad	coefficient	limits(mg/ <mark>L</mark>)	limits (mg/L)
		peak			
Biotin (B ₈)	1-30	59.83426-	0.9949	0.006	0.022
		348.10776			
Nicotinamide	1-30	31.45451-	0.9998	0.008	0.028
(B_3)		1000.048			
Thiamine	1-30	18.14213-	0.9781	0.012	0.042
(B_1)		714.6253			
Pyrodixine	1-30	14.31208-	0.9998	0.002	0.007
(B_6)		409.0012			
Pantotenic	1-30	8.05888-	0.9999	0.001	0.0035
acid (B ₅)		214.6708			

3.1.3 Recovery

The recovery rate was tested by the standard addition procedure. One level was used for each water-soluble vitamin in gum samples (Table 6). Mean recoveries obtained were always satisfactory-higher than 99% for biotin, higher than nicotinamide 98.8%, and higher than thiamine.

Table 6. Study of determining recovery rate by the addition of $500\mu L$ of vitamins B_1 , B_3 and B_8

	Biotin			Nicotina	amide		Thiamir	ie	
	Found	Recovery	%	Found	Recovery	%	Found	Recovery	%
N ₀ test	value	<mark>%</mark>	RSD	value	%	RSD	value	%	RSD
	(mg/L)			(mg/L)			(mg/L)		
1	1994.7	99.0	0.23	5.04	98.8	0.91	2.81e ⁻¹	97.2	1.26

4. Conclusion

In this work, we optimized HPLC conditions for determination of the water – soluble vitamins such as thiamine (B_1) , nicotinamide (B_3) , pantothenic acid (B_5) , pyridoxine (B_6) , biotin (B_8) in gum of *Acacia nilotica* following sample preparation by enzymatic hydrolys. The chromatographic separation was performed on a C_{18} reverse phase, and vitamins are detected at different wavelengths by UV-visible. This method is rapid, simple, and reliable and saves a significant amount of reagent.

5. Acknowledgements

The authors are indebted to general surveillance society for their financial support for this project.

6. References

- 1. Deore SL, Khadabadi SS. Standardisation and pharmaceutical evaluation of Chlorophytum borivilianum mucilage. Rasayan Journal of Chemistry. 2008; (1):887-892.
- 2. Jani GK, Goswami JM, Prajapati VD, Zinzuwadia MMm, Joshi BR, Dabhi AS. Studies on formulation and evaluation of new superdisintegrants for dispersible tablets. International Journal of Pharmaceutical Excipients.2005; (2):37–43.

233	3. Daniel JR, Whistler RL, Voragen J, Pilnik Win, Elvers B, Hawkins S,
234	Russey W. Encyclopedia of Industrial Chemistry, 5th ed., Vol. A25.
235	Weinheim. VCH. 1994; 1-62.
236	4. Soledad AH, Teresa VN, Maria IP, Abel MF.Determination of water-soluble
237	vitamins in infant milk by high-performance liquid chromatography. Journal of
238	Chromatography A.1997; 778: 247-253.
239	5. Hughes IE, Jellet LB. Quantification of the characteristics of antagonists
240	exhibiting both competitive antagonism and function, al
241	interaction.Br.J.Pharmacol. 2000; (4):185-188
242	6. Abdollahi H, Bagheri L. Simultane-ous spectrophotometric determination of
243	Vitamin K3 and 1, 4-naphthoquinone after cloud point extraction by using
244	genetic algorithm based wave-length selection-partial least squares regression.
245	Anal Chim. Acta.2004; 514: 211.
246	7. Alonso A, Almendral MJ, Porras MJ, Curto Y. Flow-injection solvent
247	extraction without phase separation. Fluorimetric determination of thiamine by
248	the thiochrome method.J. Pharm. Biomed. Anal. 2006; 42:171.
249	8. Li SG, Xue WT, Zhang H. Voltammetric Behavior and Determination of
250	Tocopherol in Vegetable Oils at a Polypyrrole Modified Electrode
251	Electroanalysis. 2006; 182-337.
252	9. Chatzimichalakis P, Samanidou VF, Papadoyannis IN. Development of a
253	validated liquid chromatography method for the simultaneous determination of
254	eight fat-soluble vitamins in biological fluids after solid-phase extraction.J.
255	Chromatogr B.2004; 805 -289.
256	10. Kayna, P. Quantitative determination of vitamin B6 in dietary foods for
257	special medical purposes by microbiological assay method. Afr J Microbiol
258	
	Res. 2013; 7 (27): 3489-93.
259	Res. 2013; 7 (27): 3489-93. 11. Hatano H, Yamamoto Y, Saito M, Mochid E, Watanable S. A high-speed
259 260	
	11. Hatano H, Yamamoto Y, Saito M, Mochid E, Watanable S. A high-speed

263	12. Sastry CSP, Singh NR, Reddy MN. Analysis. 1986; 14: 355.
264	13. Tesfaldet ZO, Van Staden JF, Stefan RI, Sequential injection
265	spectrophotometric determination of iron as Fe(II) in multi-vitamin
266	preparations using 1,10-phenanthroline as complexing agent . 2004; 64:189.
267	14. Kwon S, Lee PC, Lee EG, Chang YK, Chang, N. Production of lactic acid
268	by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate.
269	Enzyme Microb. Techol.2000; 26:209.
270	15. Shahrokhi F, Gehrke CW.Quantitative gas-liquid chromatography of sulfur
271	containing amino acids.J. Chromatogr.1986; 36:31.
272	16. Stampfli AA, Ballevre O, Fay LB. Determination of taurine metabolism by
273	measurement of 15N-enriched taurine in cat urine by gas chromatography-
274	mass spectrometry. J. Chromatogr.1993; 617:197.
275	17. Kataoka H, Ohnishi N, Makita M. Electron-capture gas chromatography of
276	taurine as its N-pentafluorobenzoyl di-n-butylamide derivative.J.
277	Chromatogr.1985; 339 -370.
278	18. Polesello AR. Chromatographic determination of vitamins in foods. J.
279	Chromatogr.1992; 624:103.
280	19. Rizzolo A. Polesello S. Determination of vitamins in foods. Chromatogra
281	J.1992; 624:103.
282	20. Moreno P, Salvado V. Determination of eight water and fat-soluble
283	vitamins in multi-vitamin pharmaceutical formulations by high-performance
284	liquid chromatography. J. Chromatogr. A. 2000; 870:207.
285	21. Stocchi V, Palma F, Piccoli G, Biagiarelli B, Cucchiarini L, Magnani M.
286	(1994). HPLC Analysis of Taurine in Human Plasma Sample Using the Dabs-
287	Ci Reagent with Sensitivity at Picomole Level, J. Liq. Chromatogr. B.1994;
288	17:347.

289	22. Chatzimichalakis PF, Samanidou VF, Papadoyannis IN. Development of a
290	validated liquid chromatography method for the simultaneous determination of
291	eight fat-soluble vitamins in biological fluids after solid-phase extraction.
292	Anal.J. Chromatogr. Technol.Biomed. Life Sci. 2004; 805:289.
293	23. Chatzimichalakis PF, Samanidou VF, Verpoorte R, Papadoyannis IN.
294	Development of a validated HPLC method for the determination of B-complex
295	vitamins in pharmaceuticals and biological fluids after solid phase extraction.J.
296	Sep. Sci.2004; 27:1181.
297	24. Cho CM, Ko JH, Cheong WJ.Simultaneous determination of water-soluble
298	vitamins excreted in human urine after eating an overdose of vitamin pills by a
299	HPLC method coupled with a solid phase extraction. Talanta. 2009; 51:799.
300	25. Klejdus B, Petrlova J, Potesil D, Adam V, Mikelova R, Vacek J, Kizek R,
301	Kuban V. An analysis of avidin, biotin and their interaction at attomole levels
302	by voltammetric and chromatographic techniques. Anal. Chim. Acta. 2004;
303	520:57.
304	26. Fekkes D, Kooyman AV, Jankie R, Huijmans J. Precise analysis of
305	primary amino acids in urine by an automated high-performance liquid
306	chromatography method: comparison with ion-exchange chromatography. J.
307	Chromatogr. B.2000; 744:183.
308	27. Teerlink T, Van Leeuwen PAM, Houdijk A. Plasma amino acids
309	determined by liquid chromatography within 17 minutes.Clin. Chem.1994;
310	40:245.
311	28. Qu Y, Arckens L, Vandenbussche E, Geeraerts S, Vandesande F.
312	Determination of total and extracellular concentrations of the amino acid
313	neurotransmitters in cat visual cortex by microbore liquid chromatography and
314	electrochemical detection.J. Chromatogr. A.1998; 98:19.
315	29. Moreno P, Salvado V. Determination of eight water- and fat-soluble
316	vitamins in multi-vitamin pharmaceutical formulations by high-performance
317	liquid chromatography. J. Chromatogr. A.2000; 870: 207.