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Original Research Article

Application of Multiplicative and Additive Hazards Models to
Injury Prevention among Healthcare Workers

ABSTRACT

The Cox multiplicative model is used widely in suat analysis, where the covariates
act multiplicatively on unknown baseline hazardswedver, the Cox model requires the
proportionality assumption, which limits its apg@tions. The additive hazards model has
been used as an alternative to the Cox model, witherecovariates act additively on
unknown baseline hazards. In this stuthye performance of the Cox multiplicative
hazards model and the additive hazards model hers demonstratedisingin an injury
prevention study. Both the multiplicative and addithazards models shed similar
results in selecting significant covariates in fimal model in our study. The coefficient
of the covariates in the additive hazards modekisy to interpret in an additive manner
and should be considered when the proportionalgumption of the Cox model is
doubtful. The multiplicative and additive hazardsdals describe different features of
the association between the risk factors and tidysbutcomes. They may be used each

other as supplementary approach for further unaledstg of the data.

Keywords: survival analysis, Cox modehalen’s muttiplicative-model, additive-Lin &
Ying's model, injurypreventiostudy healtheare-werk@ccupational health
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1. INTRODUCTION
In survival analysis, the Cox hazards model [1fhe most widely used in survival
analysis. In this model, the effect of the covasatacts multiplicatively on some
unknown baseline hazard. However, when the progmatity assumption is not satisfied,
the Cox model can lead to potentially biased esémand conclusions [2]. Alternatively,
additive hazards model has been proposed. Thehaltézards model assumes that the
covariates act in an additive manner on an unknbaseline hazard. Aalen’s additive
model as a non-parametric approach specifies hevhdlzard rate depends on covariates
in a linear way and allows one to assess possibéages in the influence of the
covariates over time [3]. The estimation procedoreAalen’s model was determined by
the cumulative regression functions. By severahaugt, applications of Aalen’s model
have been described and further development has m®mmended [4-9]. Aalen’s
approach leads to weighted comparisons of the cegtimate of the hazards rate of each
group as compared to a baseline group [10]. Thightiag leads to inconsistent tests in
the sense that the test statistic depends on vgrminp someone picks as the baseline

group.

The Lin and Ying observed that this lack of progrés attributed to the fact that the
partial likelihood approach cannot be used diretdlyeliminate the baseline hazard in
estimating the intercept [11, 12]. They have depetbprocedures with high efficiencies
for making inferences about the regression paraseteder the additive hazards model
with an unspecified baseline hazards function.hiirtstudy, a simple semi-parametric
estimating function for the intercept was consedctwhich imitated the martingale

feature of the partial likelihood score functiorr feaseline hazards. In the subsequent
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paper, they suggested the semi-parametric anabfsigeneral additive-multiplicative
hazard models for the counting process and thetiegldiazards regression models for
survival data but compared these with the frailtydel [13]. Others applied the additive
hazards model to competing risks setting [14, Y&}.and Cai [16] proposed an additive
hazard model for multivariate failure time datamLand Zhang [17, 18] compared both
the additive and multiplicative hazards modelsdourrent event data. As an extension, a
flexible additive-multiplicative hazard model based Aalen’s and Cox’s models have
been proposed [19-24]. For additive-multiplicath&zard model, some covariate effects
are believed to result in multiplicative effectsembas other effects are best described as
additive. However, in practice, it is not easy tride which covariates to be included
additively and which ones to be included multipiireely. For the additive model, plots
of the cumulative regression function provided g@pemling explanation for how the

hazards profiles were distributed.

2. STUDY DESCRIPTION

Injuries associated with Ratient handlingijuries-are common among health care

workers and the risk of injury increases with themier of patient handling tasks
performed. Studies showed that a transfer, lifang repositioning (TLR) program may
prevent injuries while performing one type of mamae and not another depending on
the emphasis of the intervention. To evaluaiaries associated with patient handling

patient-handling-injurieollowing a multi-factor ergonomic intervention gnam among
health care workers, a quasi-experimental studghvhad a TLR intervention group and

a non-randomized control group was conducted. Dmsmns of the overall study design
and profile have been published elsewhere [25, B6éfly, this study was conducted in
two Health Regions (3 hospitals for the intervemtamd 3 for the control) in Saskatoon,
Canada, from September 2002 to December 2006. Dispithls were matched on
hospital type and size. The TLR intervention pragraomponent consisted of staff
education on anatomy, injuries, body mechanicssqral health, lifting and patient
handling procedures, standardized patient handhegds assessment and patient

handling algorithms. All direct health care workendio were employed as such in the
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study time periods, were eligible for inclusionarthe study. Injuries occurred in lower
and upper back, shoulder, neck, extremity, androtioely parts were included. The
control hospitals had not received any form of ipjprevention program during the

study period other than standard occupational heahd safety practice. Each
intervention and control hospital was followed fiovo year after completion of the

intervention program. Gender, age, occupation twmek department, and hospital size
were also obtained from the database. The primaigome was the times to the event of
TLR related injury occurring in subjects during stedy time. A total of 1,467 subjects

were eligible for the study.

With this examplelata set we use three models (Cox multiplicative hazardsdeh
Aalen’s additive hazards model, and Lin & Ying'sdédtve hazards model{i—to
determine which combination of potential explanateariables affects the form of the
hazard function andii—to obtain an estimate of the hazard function itdelf an

individual. We will also examine the goodness-ofafialysis of the models.

3. MODELS AND METHODS

Within the framework of the multiplicative or adéi# hazards regression models, a
variety of models have been proposed and utilizedreial applications. The Cox
multiplicative and Lin & Ying’s additive hazards whels received the greatest attention
due to relatively easy interpretation of the coa@rieffects. These two models assume
unspecified baseline hazards and constant covaafeets. In our study, we will assume
that all censoring is non-informative and indepedee., knowledge of a censoring time
for a subject provides no further information abthé subject’s likelihood of survival at

a future time.

3.1. Basic Notations

Suppose that there amesubjects in a study. L& be the time when the event of interest
occurs for theth subject andC; be the corresponding censoring timigis measured from
the subject’s study enrollment and the censofpgccurs after the subject has been

entered into a study to the right of the last kndaiture time; thus, it is right censoring.
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WhenT;is subject to right censoring, the failure tiddes a minimum of [, G, i.e., X
is equal toT; if the event was observed and is equalCtaf it is censored. Lab,=

I(T;<C;), where I(.) is an indicator function and takes tlalue 1 whed; <C; and is 0O

otherwise. LetZ; be a covariate vector gkdimensions for théth subject. The hazard
function for theith subjectA.(¢), is assumed to take either multiplicative or ddeit

forms.

3.2. Multiplicative Hazards Model

The Cox model is one of the most commonly usedipligiative hazards models.

The effect of the covariates in the Cox model wasatt multiplicatively on some
unknown baseline hazards. The model is very usefubractice because either the
estimated coefficients themselves or simple fumstiof them can be used to provide
estimates of hazard ratios. In addition, statiststdtware is readily available, and it is

easy to fit models, check model assumptions, aselsasnodel fit.

For Cox proportional hazards model, the hazardtfangs

A1) = A () eP?Y (1)

wheret is the time since a subject’s study enrollmentteNihat A, (t) are unspecified
baseline hazard functions. The corresponding pdikedihood function [2] is

. N O

g 7Ax.
n elg /( /)

L(B) = I_|< S y(f) eB'Z/(X/)> . _©

/=1 )

whereY; (t) =l ( X >t) is a risk set indicatorf is a p-vector of regression coefficients of
Z . In order to draw a semi-parametric inference frior the model (1), the score

functionsU( ) are obtained by differentiating the logarithmL¢{3) with respect to3.

The maximum partial likelihood estimatgt is obtained by solving the corresponding
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_dInL{B . . . .
score equann,aT'é(g) = 0. The variance-covariance matrix is estimatexdnf the

inverse of the information matrix( 3).

3.3. Additive Hazards Model
The simple additive hazards model given by Cox@aHes [27] is

— h(tz) = ho(t) + ¢(2) (3)
wheregp(0)=0andg(Z) is constrained so that the right-hand side is negative.hy(t) is

the baseline hazard and the covariates act in ditivelmanner on an unknown baseline
hazards rate. Aalen’s additive mod8| 28] and Lin and Ying’'s additive models (L-Y
model) [11] have received great attention in therdture. In Aalen’s model, the
unknown risk coefficients are allowed to be funeicof time so that the effect of a
covariate may vary over time. The least-squaresroggh is used to estimate the
cumulative regression functions and the standanatepf these functions [29]. In the L-
Y model, the time-varying regression coefficients Aalen’s model are replaced by
constants and the estimating equation is obtaired the score function to estimate the

model. In the next section, these additive hazarddels will be reviewed.

3.3.1. Aalen’s additive hazards model
In the Aalen’s additive hazards model, the covasare assumed to impact additively
upon an unknown baseline hazard, but the effeet®iair constrained to be constant [28].
Thus, the hazard function under the Aalen’s modetlieith subject with g-vector of
the covariateZ; = (z, ..., Zp) is defined as:

A =A,0) + 1O z,®)+ ... +y,(10 z,0. _
(34)
where A, (t) is an unspecified baseline hazard function, amdficent y, (t) is allowed to
vary freely over time, wher&k = 1, 2, ..., p. Aalen shows that if a covariate is
independent of all the other covariates in the mdten the regression model with this

covariate eliminated is the same as the regressatel with this covariate included [28].
Note that this fact is not true for the Cox proporél hazards model. The additive effect

6
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¥, (t) may change in magnitude and even sign with tikeeit is not straightforward to
estimateA,(t )non-parametrically, direct estimation of the camént y, (t) is difficult.

Aalen and others [8, 28] have developed least sgestimation of integrated coefficients

rk(t) = _t[ Vk(u) du. (5)

The usual method of representing the effgdtt) is to graph them against time. To define

how the effects of covariates changes over the, ttmeulative regression function plots

estimated by the Aalen’s model can be examined. Vdlees ofy, (t), the absolute

increase in hazard at time are not actually observed, but their relativee smay be
inferred from the slope of the line. The Aalen’®tpl are obtained by estimating the
instantaneous contributions of covariates to theatthat each distinct failure time and
summing up the resulting estimates. The slop oh qlots indicates whether a specific
covariate has a constant or a time-dependent gBgc8lope of an estimated cumulative
regression function is positive when covariate @ase corresponds to hazard increases,
and negative when covariate increases correspohdzard decrease. Cumulative-sums

slop approaches zero when a covariate has no effeitte hazard.

3.3.2. Lin & Ying’s (L-Y) additive hazards model

We know from Aalen’s additive hazards model thedittmnal hazards rate of a subject,
given a set of covariates, and that the regresefficients are the function of time. Lin

and Ying proposed an alternative additive hazaeggession model, which is the most
closely connected and analogue to the Cox modellfl1The L-Y additive hazards

model for thath subject with covariate vectd, = (z, ..., zp) is A (), such that! [l
A = At) + v 2,0 + o +y, Z,(0). (6)

The covariates are assumed to act additively oasalime hazardl,(t and coefficient

Y. is constant additive effects, wheke= 1, 2, ...,p. Lin and Ying [11] propose a

heuristic estimation method based on a estimatongation due to the Cox’s partial
likelihood. Their method successfully treats thedbdi@me hazard as nuisance and removed



207 them from estimating the regression coefficientsing the counting process and
208 martingale approach, they obtained closed-formmedtrs for the regression parameters
209 and the cumulative baseline hazard function.

210

211 In order to draw semi-parametric inference on tbefficient y for model, the key

212 quantities are given by:

213 = Z j[zi(t)—Z(t)] dN. (t) (7)
214 A= Z j[z (t)-Z )] "2V (t) dt (8)
215 = Z j[zi (t)-Z(t)] ™ dN. (1) (9)

216

217 where, for any vecton, a™® = aa' ; r is a pre-specified time point usually set to

218 max{ Xy, Xz, ..., Xn } such that all observed failures are includethim analysis, and

SYMZ) |
219 Z@{t)y = 2 — % (10)

{ONE

,M:

{0l
-

220 | is the at-risk weight covariate mean at titnkin and Ying [11]proposed to estimatg
221 by
222 y =AtU, (11)

223 while the estimated variance @f was derived to be:

A

224 V(p) = AtBA?, (12)
225

226 Here, neitherA nor B involves the regression parameter. They showed f?na's
227 asymptotically normal with meap and with a variance-covariance matrix consistently
228 estimated by (). More precisely, A B A) Y2 (j - ) converges in distribution to
229 N (0, 1). The L-Y model has a limitation that theear predictory Z (t) needs to
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constrained to ensure positivity [13]. One may dubis constraint by replacing Z, (t)

by e”!, in which casel,(t )pertains to the hazard function undeZ, (t) = - rather

than underZ, (t) = O.

3.3.3. Model Goodness of Fit

The use of diagnostic procedures for model checlgran essential part of the modeling
process. While there are several residuals plottefiing the goodness of fit for the Cox
model [2], the residuals plot for the additive misdis limited. Arjas’ plot was used to
assess the adequacy of the fit of the additive infide 31-33]. The concept behind
Arja’'s plot is to plot expected number of failuegginst actual number of the injury event
with different covariate values. Arjas' plot is reotrue residual plot, but deviations from
the 45 slope will give essentially the same informatiarich is a clearer indication of

lack of model fit.

SAS version 9.2 and R were used for the analysitig study. The additive hazards
models are not available in commonly used compaekages, while for the Cox model

most statistical software are readily available aady to use to fit models, check model
assumptions and assess model fit. Both the AaldnLayi additive hazards models can

perform by either a SAS macro available at
http://www.mcw.edu/FileLibrary/Groups/Biostatisti€eftware/addmacro.txt [34] or a

combination of PROC PHREG and PROC REG [33].

4. APPLICATION TO INJURY PREVENTION STUDY

A total of 1,467 subjects (789 from the interventigroup and 678 from the control
group) were eligible for the present study. Of ¢heabjects, 263 subjects had the event
of the TLR related injury with 114 (14.4%) from tirgervention group and 149 (22%)
from the control group. Our studybservationduration was from January 1, 1999 to
completedatDecember 1, 2006The Kaplan-Meier analysis was performed to asdess t

overall difference among the intervention and aangroups [35]. This result indicated that

before 8 months the two survival curves were vdogez After 8 months, the intervention

9
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group had a higher probability of survival as comgato the control group (p=0.0013 for
log-rank test and p=0.0063 for Wilcoxon test; Faydl.

4.1. Coxs multiplicative model

The result of Cox model showed that group, occopatand body parts were significant
(Table 1). No significant interaction was obsenbetween covariates. The intervention
group had a 27% lower risk of injury as compaiedhe control group after controlling
for occupation, and body parthazard ratia (HR)=0.63; 95% Gi[: 0.497, 0.804
p=0.0002). Nurses and nursing aides (NNA) had a fRfrer risk of injury compared to
Non-NNA (HR=1.72; 95% G}:-[1.219, 2.418 p=0.002). The back, neck and shoulder
(BNS) were the most injured body parts. Comparedther body parts (Non-BNS), the
back, neck and shoulder (BNS) had a 115% increasiedf injury (HR=2.15; 95% G-
[1.618, 2.85 p<0.0001). Martingale residuals are used to chtbekoverall fit of the
multiplicative hazards model for the interventiondacontrol groups (Figures 2).
Martingale residuals showed that the fit of the tiplitative hazards model is

guestionable.

4.2. Aalen’s additive model

In order to visualize a covariate effect over tirtteg estimated cumulative regression
function has been examined, along with its upper lawer 95% point-wise confidence
limits. The plot of the estimated cumulative regres functions for group showed that
there was no covariate effect on the hazard up too8ths. However, the slope was
negative and clear effects of decreasing hazardh®meriod of 8-24 months but after
that it was approximately constant hazard (Figura).3Based on the estimated
cumulative regression functions, it has been caterluthat intervention group had the
less risk of the injury event as compared to th&rob group. There may be timerying
occupation effect because the cumulative regredsioction shows the non-zero slope
over time (Figure3-b). It has been observed that the effects of paton have been
increased in hazard up 1® months, disappearing afterwards. For body pBrigire 3-c
also shows the positive slope over time and the 8b6#6idence limits of the covariate

effects did not includes zero.

10
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4.3. Lin and Ying’s additive model

The result of L-Y additive hazards model showed tiraup, occupation and body parts
were significant effect on the injury event (Tal®¢ The intervention group was
significantly different for the injury event comjr@g to the control group (p-
value=0.0005). The estimate is negative (-0.00@&)cating that the intervention group
had protection from injury as compared to the cargroup. This is interpretable as the
intervention group had 0.0025 less injuries tham ¢bntrol group after adjusting for
occupation and body parts. It means that 25 pergaries can be prevented per 10,000
persons by the injury prevention program. Regardiogupation, nurses and nursing
aides (NNA) had the significantly different on ings than non-nurses occupations
(Non-NNA). NNA had 0.0024 excess risk of injuriesx¢ess risk (ER) =0.0024; p-
value=0.0005; 95% C.[8.001, 0.003B, which indicates that NNA had 24 more injury
compared to non-NNA per 10,000. Similarly, the bguhrts, combined back, neck &
shoulder had 0.0038 excess risk of injury than rothedy parts (ER=0.0038; p-value
<0.0001; 95% CIf.0025, 0.005)). The Arjas plots were used for the selected
covariates to check the adequacy of the model.réggd-a shows that the plot are close
to 45, indicating the group fits the model well. Notabtile Arjas plot of nurses and
nursing aides is not long enough, but it reasonabdlysfies the model (Figure 4-b).
However, for the body parts, the plot is concaverrdeards and the deviations from the

optimal fit was shown (Figure 4-c).

5. DISCUSSION

We showed the differences in estimates of the moefits from the Cox multiplicative
hazards model and the additive hazards modelstaidihterpretation using an injury
prevention program implemented for the healthcavekers. The Cox multiplicative and
L-Y additive hazards models gave similar resulthwegard to covariates selected to be
significant: group, occupations, and body partse €ktimates from the models also had
the same signs, indicating the same directionshefdovariate effects. Based on our
analysis, both the Cox and L-Y models, as well adeA's additive hazards model,

showed that the injury intervention program hadigmniicant impact on reducing the

11
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TLR related injures induced by patient handling ambealthcare workers.

The parameter estimates and the standard errars tiie Cox multiplicative and L-Y
additive hazards models are noticeably differertilé\the coefficients of the Cox model
act in a multiplicative way on unknown baseline dras, those of the additive hazards
models act in an additive way on unknown baselemalds. Because the coefficients act
in different ways in the multiplicative and addéivazards models, it is very difficult to
compare them directly. Moreover, the Cox model gigehigher estimate than additive
model when using a more compromised covariate Iprofirobably due to the
multiplicative effect of fixed covariate on base@ifunction [11]. The association between
the covariates and the time to injuries in the @gglihazards models was explained in
terms of the risk difference or excess risk rattiian the risk ratio. Thus the different

models interpreted the coefficients in differentysia

The Cox model is most widely used; however, thegproonal hazard assumption may
not always be satisfied in the data. In such cabese are variouseldtionsalternatives

to consider, for example, inclusion of a time-defent covariate or stratification. In
Aalen’s model, and the main focus was the cumuwategression plots, where the slope
of the plots at any given time provides informatimm the influence of the covariate at
that moment. From a practicstiangboint the graphical representation of the cumulative
regression functions is attractive, because it ipess a direct perception of data and a
picture of how effects and the model fit in withaciye over time. Even one visualizes all
covariate effects over time, and a simple integiret of the effects is not possible,
which makes Aalen’s model less appealing in regliegtions than other models.
However, it is still useful particularly when weeainterested in temporal effects. The
unknown risk coefficients used in Aalen’s model aplaced by a constant covariate
effect in the L-Y medeladditive hazards model. A theoretical limitation toe L-Y
model is that the linear predictors in the modeistmin to be positive [13]. Research on
the additive hazard model in relation to genemagzestimating function to the case of
multivariate failure time data as well as methaoischecking the adequacy of the model

is still rare. While various statistical softwaragiages are available for fitting the Cox

12
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model, the procedure is limited to some softwaretli@ additive hazards model. Few

macros are available for the analysis of goodnefis[a7, 34].

Generally, the preference between the Cox hazaadtehand the additive hazards model
is normally a practical matter. Although in theoejther model can provide adequate fit
to a given time to event dataset, the more parsimosnone will unquestionably be
preferable to clinical investigators. One of thejonaadvantages of using the additive
hazards model over the Cox multiplicative hazardsl@his that the resulting regression
parameter estimator has a closed form. In casesrewheth the additive and
multiplicative models fit the data fairly well, additive specification may be preferred,
due to the easy interpretation of the regressioarpaters. Regression coefficients from
the additive model give more sensible and integiet in public health research or
patient management/care, where the risk differ@acebe more important than the risk
ratio in understanding an association between lkafaistor and disease occurrence [13,
17].

In summary, the Cox multiplicative and additive &as models describe different
features of the association between the risk factord the study outcomes. These
hazards models give different information and stiowdt be viewed as alternative to each
other. Rather it seems desirable to use togethegame a more comprehensive
understanding of the data. Practitioners may befrefn these approaches, which help in
predicting the effect of one or more variables emderifying their influence on the study

outcomes.
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526 Table 1. Estimation of coefficient, hazard ratib%®confidence interval, and p-value
527 from the Cox multiplicative hazards model.

528
Covariate Estimate (S.E) H.R 95% C.I p-value
Group -0.469 (0.128) 0.63 0.497, 0.804 0.0002
Occupation 0.540 (0.175) 1.72 1.219, 2.416 0.002
Body Parts 0.764 (0.144) 2.15- 1.618, 2.850 <0.0001

529 +S.E.: Standard ErrorHR: Hazard Ratio; Cl: Confidence Interval
530 Note: In this analysis, the reference group: Cdgroup, , non-nurses for occupation (Non-NNA), and
531 other body parts except back, neck and shoulddsddy parts (Non-BNS)

532

533

534

535

536

537

538 Table 2. Estimation of coefficient, excess risk¥®8&onfidence interval, and p-value from
539 the Lin and Ying’'s additive hazards model.

540

Covariate Estimate (S.E) E.R 95% C.I p-value

Group -0.0025 (0.0007) -0.002 -0.0039, 0.0010 0.0005
Occupation 0.0024 (0.0006) 0.002 0.0010, 0.0038 0.0005
Body Parts 0.0038 (0.0006) 0.003 0.0025, 0.0051  <0.0001

541 S.E.: Standard ErrorER: €XCESS risk Cl: Confidence Interval
542  Note: In this analysis, the reference group: Cdgroup, , non-nurses for occupation (Non-NNA), and
543  other body parts except back, neck and shoulddsddy parts (Non-BNS)

544
545
546
547
548
549
550
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Survival Probability

Estimated Cumulative Hazard:

Figure 1: Estimated survival probability curve by goup.
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Figure 2: Martingale residuals plot for the multiplicative model.
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Figure 3-a: Estimated cumulative regression functin by Aalen’s additive model
with its upper and lower 95% point-wise confidencdimits for group.
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Figure 3-b: Estimated cumulative regression functio by Aalen’s additive model
with its upper and lower 95% point-wise confidencdimits for occupation.
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585 Figure 4-a: Arjas plot of the estimated cumulativehazard by group.
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588 Figure 4-b: Arjas plot of the estimated cumulativehazard by occupation.
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Figure 4-c: Arjas plot of the estimated cumulativehazard for the additive model by
body parts.
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