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 12 
 13 

The Cox multiplicative model is used widely in survival analysis, where the covariates 14 

act multiplicatively on unknown baseline hazards. However, the Cox model requires the 15 

proportionality assumption, which limits its applications. The additive hazards model has 16 

been used as an alternative to the Cox model, where the covariates act additively on 17 

unknown baseline hazards. In this study, the performance of the Cox multiplicative 18 

hazards model and the additive hazards model has been demonstrated, using in an injury 19 

prevention study. Both the multiplicative and additive hazards models showed similar 20 

results in selecting significant covariates in the final model in our study. The coefficient 21 

of the covariates in the additive hazards model is easy to interpret in an additive manner 22 

and should be considered when the proportionality assumption of the Cox model is 23 

doubtful. The multiplicative and additive hazards models describe different features of 24 

the association between the risk factors and the study outcomes. They may be used each 25 

other as supplementary approach for further understanding of the data. 26 
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1. INTRODUCTION 42 

In survival analysis, the Cox hazards model [1] is the most widely used in survival 43 

analysis. In this model, the effect of the covariates acts multiplicatively on some 44 

unknown baseline hazard. However, when the proportionality assumption is not satisfied, 45 

the Cox model can lead to potentially biased estimates and conclusions [2]. Alternatively, 46 

additive hazards model has been proposed. The additive hazards model assumes that the 47 

covariates act in an additive manner on an unknown baseline hazard. Aalen’s additive 48 

model as a non-parametric approach specifies how the hazard rate depends on covariates 49 

in a linear way and allows one to assess possible changes in the influence of the 50 

covariates over time [3]. The estimation procedure for Aalen’s model was determined by 51 

the cumulative regression functions. By several authors, applications of Aalen’s model 52 

have been described and further development has been recommended [4-9]. Aalen’s 53 

approach leads to weighted comparisons of the crude estimate of the hazards rate of each 54 

group as compared to a baseline group [10]. This weighting leads to inconsistent tests in 55 

the sense that the test statistic depends on which group someone picks as the baseline 56 

group.  57 

 58 

The Lin and Ying observed that this lack of progress is attributed to the fact that the 59 

partial likelihood approach cannot be used directly to eliminate the baseline hazard in 60 

estimating the intercept [11, 12]. They have developed procedures with high efficiencies 61 

for making inferences about the regression parameters under the additive hazards model 62 

with an unspecified baseline hazards function. In their study, a simple semi-parametric 63 

estimating function for the intercept was constructed, which imitated the martingale 64 

feature of the partial likelihood score function for baseline hazards. In the subsequent 65 
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paper, they suggested the semi-parametric analysis of general additive-multiplicative 66 

hazard models for the counting process and the additive hazards regression models for 67 

survival data but compared these with the frailty model [13]. Others applied the additive 68 

hazards model to competing risks setting [14, 15]. Yin and Cai [16] proposed an additive 69 

hazard model for multivariate failure time data. Lim and Zhang [17, 18] compared both 70 

the additive and multiplicative hazards models in recurrent event data. As an extension, a 71 

flexible additive-multiplicative hazard model based on Aalen’s and Cox’s models have 72 

been proposed [19-24]. For additive-multiplicative hazard model, some covariate effects 73 

are believed to result in multiplicative effects whereas other effects are best described as 74 

additive. However, in practice, it is not easy to decide which covariates to be included 75 

additively and which ones to be included multiplicatively. For the additive model, plots 76 

of the cumulative regression function provided an appealing explanation for how the 77 

hazards profiles were distributed.  78 

 79 

2. STUDY DESCRIPTION 80 

Injuries associated with pPatient handling injuries are common among health care 81 

workers and the risk of injury increases with the number of patient handling tasks 82 

performed. Studies showed that a transfer, lifting and repositioning (TLR) program may 83 

prevent injuries while performing one type of manoeuvre and not another depending on 84 

the emphasis of the intervention. To evaluate injuries associated with patient handling 85 

patient handling injuries following a multi-factor ergonomic intervention program among 86 

health care workers, a quasi-experimental study which had a TLR intervention group and 87 

a non-randomized control group was conducted. Descriptions of the overall study design 88 

and profile have been published elsewhere [25, 26]. Briefly, this study was conducted in 89 

two Health Regions (3 hospitals for the intervention and 3 for the control) in Saskatoon, 90 

Canada, from September 2002 to December 2006. The hospitals were matched on 91 

hospital type and size. The TLR intervention program component consisted of staff 92 

education on anatomy, injuries, body mechanics, personal health, lifting and patient 93 

handling procedures, standardized patient handling needs assessment and patient 94 

handling algorithms. All direct health care workers, who were employed as such in the 95 
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study time periods, were eligible for inclusion into the study. Injuries occurred in lower 96 

and upper back, shoulder, neck, extremity, and other body parts were included. The 97 

control hospitals had not received any form of injury prevention program during the 98 

study period other than standard occupational health and safety practice. Each 99 

intervention and control hospital was followed for two year after completion of the 100 

intervention program. Gender, age, occupation type, work department, and hospital size 101 

were also obtained from the database. The primary outcome was the times to the event of 102 

TLR related injury occurring in subjects during the study time. A total of 1,467 subjects 103 

were eligible for the study.  104 

With this exampledata set, we use three models (Cox multiplicative hazards model, 105 

Aalen’s additive hazards model, and Lin & Ying’s additive hazards model) (i) to 106 

determine which combination of potential explanatory variables affects the form of the 107 

hazard function and (ii)  to obtain an estimate of the hazard function itself for an 108 

individual. We will also examine the goodness-of-fit analysis of the models. 109 

 110 

3. MODELS AND METHODS 111 

Within the framework of the multiplicative or additive hazards regression models, a 112 

variety of models have been proposed and utilized in real applications. The Cox 113 

multiplicative and Lin & Ying’s additive hazards models received the greatest attention 114 

due to relatively easy interpretation of the covariate effects. These two models assume 115 

unspecified baseline hazards and constant covariate effects. In our study, we will assume 116 

that all censoring is non-informative and independent, i.e., knowledge of a censoring time 117 

for a subject provides no further information about the subject’s likelihood of survival at 118 

a future time. 119 

 120 

3.1. Basic Notations 121 

Suppose that there are n subjects in a study. Let Ti be the time when the event of interest 122 

occurs for the ith subject and Ci be the corresponding censoring time. Ti is measured from 123 

the subject’s study enrollment and the censoring Ci occurs after the subject has been 124 

entered into a study to the right of the last known failure time; thus, it is right censoring. 125 
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When Ti is subject to right censoring, the failure time Xi is a minimum of (Ti , Ci), i.e., Xi 126 

is equal to Ti if the event was observed and is equal to Ci if it is censored. Letiδ = 127 

I(Ti ≤ Ci), where I(.) is an indicator function and takes the value 1 when Ti ≤ Ci and is 0 128 

otherwise. Let Zi  be a covariate vector of p-dimensions for the ith subject. The hazard 129 

function for the ith subject, )(tiλ , is assumed to take either multiplicative or additive 130 

forms.  131 

 132 

3.2. Multiplicative Hazards Model  133 

The Cox model is one of the most commonly used multiplicative hazards models.  134 

The effect of the covariates in the Cox model was to act multiplicatively on some 135 

unknown baseline hazards. The model is very useful in practice because either the 136 

estimated coefficients themselves or simple functions of them can be used to provide 137 

estimates of hazard ratios. In addition, statistical software is readily available, and it is 138 

easy to fit models, check model assumptions, and assess model fit. 139 

 140 

For Cox proportional hazards model, the hazard function is  141 

  )(tλ  = )( 
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where t is the time since a subject’s study enrollment. Note that 0λ (t) are unspecified 143 

baseline hazard functions. The corresponding partial likelihood function [2] is  144 
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where Yj (t) =I ( X ≥ t) is a risk set indicator. β
r

 is a  p-vector of regression coefficients of 146 

iZ . In order to draw a semi-parametric inference on β
r

 for the model (1), the score 147 

functions U( β
r

) are obtained by differentiating the logarithm of L( β
r

) with respect to β
r

. 148 

The maximum partial likelihood estimator β̂
r

 is obtained by solving the corresponding 149 
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score equation, 
( )

β
β

r

r

∂
∂ Lln

 = 0. The variance-covariance matrix is estimated from the 150 

inverse of the information matrix, I-1( β̂
r

).  151 

   152 

3.3. Additive Hazards Model  153 

The simple additive hazards model given by Cox and Oakes [27] is  154 

           h(t|Z) = h0(t) + φ(Z)                          (3) 155 

 where φ(0)=0 and φ(Z) is constrained so that the right-hand side is non-negative. h0(t) is 156 

the baseline hazard and the covariates act in an additive manner on an unknown baseline 157 

hazards rate. Aalen’s additive model [3, 28] and Lin and Ying’s additive models (L-Y 158 

model) [11] have received great attention in the literature. In Aalen’s model, the 159 

unknown risk coefficients are allowed to be functions of time so that the effect of a 160 

covariate may vary over time. The least-squares approach is used to estimate the 161 

cumulative regression functions and the standard errors of these functions [29]. In the L-162 

Y model, the time-varying regression coefficients in Aalen’s model are replaced by 163 

constants and the estimating equation is obtained from the score function to estimate the 164 

model. In the next section, these additive hazards models will be reviewed.  165 

 166 

3.3.1. Aalen’s additive hazards model   167 

In the Aalen’s additive hazards model, the covariates are assumed to impact additively 168 

upon an unknown baseline hazard, but the effects are not constrained to be constant [28]. 169 

Thus, the hazard function under the Aalen’s model for the ith subject with a p-vector of 170 

the covariates iZ = (zi1, …, zip) is defined as: 171 

  )(tiλ  =  )(0 tλ + 1γ (t) 1iz (t) +  …  + pγ (t) ipz (t).                           172 

(14) 173 

where 0λ (t) is an unspecified baseline hazard function, and coefficient kγ (t) is allowed to 174 

vary freely over time, where k = 1, 2, …, p. Aalen shows that if a covariate is 175 

independent of all the other covariates in the model, then the regression model with this 176 

covariate eliminated is the same as the regression model with this covariate included [28]. 177 

Note that this fact is not true for the Cox proportional hazards model. The additive effect 178 
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kγ (t) may change in magnitude and even sign with time. As it is not straightforward to 179 

estimate  )(0 tλ non-parametrically, direct estimation of the coefficient kγ (t) is difficult. 180 

Aalen and others [8, 28] have developed least square estimation of integrated coefficients 181 

   ( ) ( ) duut kk        
t

0
∫=Γ γ .        (5) 182 

 183 

The usual method of representing the effect kγ (t) is to graph them against time. To define 184 

how the effects of covariates changes over the time, cumulative regression function plots 185 

estimated by the Aalen’s model can be examined. The values of kγ (t), the absolute 186 

increase in hazard at time t, are not actually observed, but their relative size may be 187 

inferred from the slope of the line. The Aalen’s plots are obtained by estimating the 188 

instantaneous contributions of covariates to the hazard at each distinct failure time and 189 

summing up the resulting estimates. The slop of such plots indicates whether a specific 190 

covariate has a constant or a time-dependent effect [6]. Slope of an estimated cumulative 191 

regression function is positive when covariate increase corresponds to hazard increases, 192 

and negative when covariate increases correspond to hazard decrease. Cumulative-sums 193 

slop approaches zero when a covariate has no effect on the hazard.  194 

 195 

3.3.2. Lin & Ying’s (L-Y) additive hazards model  196 

We know from Aalen’s additive hazards model the conditional hazards rate of a subject, 197 

given a set of covariates, and that the regression coefficients are the function of time. Lin 198 

and Ying proposed an alternative additive hazards regression model, which is the most 199 

closely connected and analogue to the Cox model [11-13]. The L-Y additive hazards 200 

model for the ith subject with covariate vector iZ = (zi1, …, zip) is )(tiλ , such that�� 201 

  )(tiλ  =  )(0 tλ +  1γ  1iz (t)  +  …  + pγ  ipz (t).        (6) 202 

The covariates are assumed to act additively on a baseline hazard  )(0 tλ and coefficient 203 

kγ is constant additive effects, where k = 1, 2, …, p. Lin and Ying  [11] propose a 204 

heuristic estimation method based on a estimating equation due to the Cox’s partial 205 

likelihood. Their method successfully treats the baseline hazard as nuisance and removed 206 
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them from estimating the regression coefficients. Using the counting process and 207 

martingale approach, they obtained closed-form estimators for the regression parameters 208 

and the cumulative baseline hazard function. 209 

 210 

In order to draw semi-parametric inference on the coefficient γr  for model, the key 211 

quantities are given by:  212 
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 216 

where, for any vector a,  2⊗a  = Taa ; τ  is a pre-specified time point usually set to 217 

max{ X1, X2, …, Xn } such that all observed failures are included in the analysis, and  218 
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is the at-risk weight covariate mean at time t. Lin and Ying [11] proposed to estimate γr  220 

by  221 

   γ̂r   =  A-1 U ,         (11) 222 

while the estimated variance of γr  was derived to be: 223 

   V̂ ( γ̂ )  =  A-1 B A-1 .         (12) 224 

 225 

Here, neither A nor B involves the regression parameter. They showed that γ̂r  is 226 

asymptotically normal with mean γr  and with a variance-covariance matrix consistently 227 

estimated by V̂ ( γ̂r ). More precisely, (A-1 B A-1) -1/2 ( γ̂r  - γr ) converges in distribution to 228 

N (0, 1).   The L-Y model has a limitation that the linear predictor γr iZ (t) needs to 229 
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constrained to ensure positivity [13]. One may avoid this constraint by replacing γr iZ (t) 230 

by )(tZe γr , in which case  )(0 tλ  pertains to the hazard function under γr iZ (t)  = - ∞ rather 231 

than under iZ (t) = 0.  232 

 233 

3.3.3. Model Goodness of Fit 234 

The use of diagnostic procedures for model checking is an essential part of the modeling 235 

process. While there are several residuals plots for testing the goodness of fit for the Cox 236 

model [2], the residuals plot for the additive models is limited. Arjas’ plot was used to 237 

assess the adequacy of the fit of the additive model [17, 31-33]. The concept behind 238 

Arja's plot is to plot expected number of failures against actual number of the injury event 239 

with different covariate values. Arjas' plot is not a true residual plot, but deviations from 240 

the 45o slope will give essentially the same information, which is a clearer indication of 241 

lack of model fit.  242 

 243 

SAS version 9.2 and R were used for the analysis in this study. The additive hazards 244 

models are not available in commonly used computer packages, while for the Cox model 245 

most statistical software are readily available and easy to use to fit models, check model 246 

assumptions and assess model fit. Both the Aalen and L-Y additive hazards models can 247 

perform by either a SAS macro available at 248 

http://www.mcw.edu/FileLibrary/Groups/Biostatistics/Software/addmacro.txt [34] or a 249 

combination of PROC PHREG and PROC REG [33]. 250 

 251 

 252 

4. APPLICATION TO INJURY PREVENTION STUDY 253 

A total of 1,467 subjects (789 from the intervention group and 678 from the control 254 

group) were eligible for the present study. Of these subjects, 263 subjects had the event 255 

of the TLR related injury with 114 (14.4%) from the intervention group and 149 (22%) 256 

from the control group. Our study observation duration was from January 1, 1999 to 257 

completed at December 1, 2006. The Kaplan-Meier analysis was performed to assess the 258 

overall difference among the intervention and control groups [35]. This result indicated that 259 

before 8 months the two survival curves were very close. After 8 months, the intervention 260 
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group had a higher probability of survival as compared to the control group (p=0.0013 for 261 

log-rank test and p=0.0063 for Wilcoxon test; Figure 1). 262 

 263 

4.1. Cox’s multiplicative model 264 

The result of Cox model showed that group, occupation, and body parts were significant 265 

(Table 1). No significant interaction was observed between covariates. The intervention 266 

group had a 27% lower risk of  injury as compared to the control group after controlling 267 

for occupation, and body parts (hazard ration (HR)=0.63; 95% CI=[: 0.497, 0.804]; 268 

p=0.0002). Nurses and nursing aides (NNA) had a 72% higher risk of injury compared to 269 

Non-NNA (HR=1.72; 95% CI=: [1.219, 2.416]; p=0.002). The back, neck and shoulder 270 

(BNS) were the most injured body parts. Compared to other body parts (Non-BNS), the 271 

back, neck and shoulder (BNS) had a 115% increased risk of injury (HR=2.15; 95% CI=: 272 

[1.618, 2.85]; p<0.0001). Martingale residuals are used to check the overall fit of the 273 

multiplicative hazards model for the intervention and control groups (Figures 2). 274 

Martingale residuals showed that the fit of the multiplicative hazards model is 275 

questionable. 276 

 277 

4.2. Aalen’s additive model 278 

In order to visualize a covariate effect over time, the estimated cumulative regression 279 

function has been examined, along with its upper and lower 95% point-wise confidence 280 

limits. The plot of the estimated cumulative regression functions for group showed that 281 

there was no covariate effect on the hazard up to 8 months. However, the slope was 282 

negative and clear effects of decreasing hazard for the period of 8-24 months but after 283 

that it was approximately constant hazard (Figure 3-a). Based on the estimated 284 

cumulative regression functions, it has been concluded that intervention group had the 285 

less risk of the injury event as compared to the control group. There may be time varying 286 

occupation effect because the cumulative regression function shows the non-zero slope 287 

over time (Figure 3-b). It has been observed that the effects of occupation have been 288 

increased in hazard up to 10 months, disappearing afterwards. For body parts, Figure 3-c 289 

also shows the positive slope over time and the 95% confidence limits of the covariate 290 

effects did not includes zero. 291 
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 292 

4.3. Lin and Ying’s additive model 293 

The result of L-Y additive hazards model showed that group, occupation and body parts 294 

were significant effect on the injury event (Table 2). The intervention group was 295 

significantly different for the injury event comparing to the control group (p-296 

value=0.0005). The estimate is negative (-0.0025), indicating that the intervention group 297 

had protection from injury as compared to the control group. This is interpretable as the 298 

intervention group had 0.0025 less injuries than the control group after adjusting for 299 

occupation and body parts. It means that 25 person injuries can be prevented per 10,000 300 

persons by the injury prevention program. Regarding occupation, nurses and nursing 301 

aides (NNA) had the significantly different on injuries than non-nurses occupations 302 

(Non-NNA). NNA had 0.0024 excess risk of injuries (excess risk (ER) =0.0024; p-303 

value=0.0005; 95% C.I=[0.001, 0.0038]), which indicates that NNA had 24 more injury 304 

compared to non-NNA per 10,000. Similarly, the body parts, combined back, neck & 305 

shoulder had 0.0038 excess risk of injury than other body parts (ER=0.0038; p-value 306 

<0.0001; 95% CI=[0.0025, 0.0051]). The Arjas plots were used for the selected 307 

covariates to check the adequacy of the model. Figures 4-a shows that the plot are close 308 

to 45o, indicating the group fits the model well. Notably, the Arjas plot of nurses and 309 

nursing aides is not long enough, but it reasonably satisfies the model (Figure 4-b). 310 

However, for the body parts, the plot is concave downwards and the deviations from the 311 

optimal fit was shown (Figure 4-c).  312 

 313 

5. DISCUSSION 314 

We showed the differences in estimates of the coefficients from the Cox multiplicative 315 

hazards model and the additive hazards models and their interpretation using an injury 316 

prevention program implemented for the healthcare workers. The Cox multiplicative and 317 

L-Y additive hazards models gave similar results with regard to covariates selected to be 318 

significant: group, occupations, and body parts. The estimates from the models also had 319 

the same signs, indicating the same directions of the covariate effects. Based on our 320 

analysis, both the Cox and L-Y models, as well as Aalen’s additive hazards model, 321 

showed that the injury intervention program had a significant impact on reducing the 322 
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TLR related injures induced by patient handling among healthcare workers. 323 

 324 

The parameter estimates and the standard errors from the Cox multiplicative and L-Y 325 

additive hazards models are noticeably different. While the coefficients of the Cox model 326 

act in a multiplicative way on unknown baseline hazards, those of the additive hazards 327 

models act in an additive way on unknown baseline hazards. Because the coefficients act 328 

in different ways in the multiplicative and additive hazards models, it is very difficult to 329 

compare them directly. Moreover, the Cox model gives a higher estimate than additive 330 

model when using a more compromised covariate profile probably due to the 331 

multiplicative effect of fixed covariate on baseline function [11]. The association between 332 

the covariates and the time to injuries in the additive hazards models was explained in 333 

terms of the risk difference or excess risk rather than the risk ratio. Thus the different 334 

models interpreted the coefficients in different ways. 335 

 336 

The Cox model is most widely used; however, the proportional hazard assumption may 337 

not always be satisfied in the data. In such cases, there are various solutions alternatives 338 

to consider, for example, inclusion of a time-dependent covariate or stratification. In 339 

Aalen’s model, and the main focus was the cumulative regression plots, where the slope 340 

of the plots at any given time provides information on the influence of the covariate at 341 

that moment. From a practical standpoint, the graphical representation of the cumulative 342 

regression functions is attractive, because it provides a direct perception of data and a 343 

picture of how effects and the model fit in with change over time. Even one visualizes all 344 

covariate effects over time, and a simple interpretation of the effects is not possible, 345 

which makes Aalen’s model less appealing in real applications than other models. 346 

However, it is still useful particularly when we are interested in temporal effects. The 347 

unknown risk coefficients used in Aalen’s model are replaced by a constant covariate 348 

effect in the L-Y model additive hazards model. A theoretical limitation of the L-Y 349 

model is that the linear predictors in the model constrain to be positive [13]. Research on 350 

the additive hazard model in relation to generalizing estimating function to the case of 351 

multivariate failure time data as well as methods for checking the adequacy of the model 352 

is still rare. While various statistical software packages are available for fitting the Cox 353 



13 
 

model, the procedure is limited to some software for the additive hazards model. Few 354 

macros are available for the analysis of goodness of fit [17, 34].  355 

 356 

Generally, the preference between the Cox hazards model and the additive hazards model 357 

is normally a practical matter. Although in theory, either model can provide adequate fit 358 

to a given time to event dataset, the more parsimonious one will unquestionably be 359 

preferable to clinical investigators. One of the major advantages of using the additive 360 

hazards model over the Cox multiplicative hazards model is that the resulting regression 361 

parameter estimator has a closed form. In cases where both the additive and 362 

multiplicative models fit the data fairly well, an additive specification may be preferred, 363 

due to the easy interpretation of the regression parameters. Regression coefficients from 364 

the additive model give more sensible and interpretable in public health research or 365 

patient management/care, where the risk difference can be more important than the risk 366 

ratio in understanding an association between a risk factor and disease occurrence [13, 367 

17].  368 

 369 

In summary, the Cox multiplicative and additive hazards models describe different 370 

features of the association between the risk factors and the study outcomes. These 371 

hazards models give different information and should not be viewed as alternative to each 372 

other. Rather it seems desirable to use together to gain a more comprehensive 373 

understanding of the data. Practitioners may benefit from these approaches, which help in 374 

predicting the effect of one or more variables and in verifying their influence on the study 375 

outcomes.  376 

 377 
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 525 

Table 1. Estimation of coefficient, hazard ratio, 95% confidence interval, and p-value 526 
from the Cox multiplicative hazards model.  527 
 528 

Covariate Estimate (S.E) H.R 95% C.I  p-value 
 
Group   
Occupation 
Body Parts 

 
-0.469 (0.128) 
0.540 (0.175) 
0.764 (0.144) 

 
0.63 
1.72 
2.15- 

 

 
 0.497,  0.804 
1.219,  2.416 
1.618,  2.850 

 

 
0.0002 
0.002 

<0.0001 
 

*S.E.: Standard Error; * HR: Hazard Ratio; * CI: Confidence Interval 529 
Note: In this analysis, the reference group: Control group, , non-nurses for occupation (Non-NNA), and 530 
other body parts except back, neck and shoulder for body parts (Non-BNS) 531 
 532 
 533 
 534 
 535 
 536 
 537 
Table 2. Estimation of coefficient, excess risk, 95% confidence interval, and p-value from 538 
the Lin and Ying’s additive hazards model.  539 
 540 

Covariate Estimate (S.E) E.R 95% C.I  p-value 
 
Group   
Occupation 
Body Parts 

 
-0.0025 (0.0007) 
0.0024 (0.0006) 
0.0038 (0.0006) 

 
-0.002 
0.002 
0.003 

 

 
-0.0039,  0.0010 
0.0010, 0.0038 
0.0025, 0.0051 

 

 
0.0005 
0.0005 

<0.0001 
 

S.E.: Standard Error; * ER: excess risk; * CI: Confidence Interval 541 
Note: In this analysis, the reference group: Control group, , non-nurses for occupation (Non-NNA), and 542 
other body parts except back, neck and shoulder for body parts (Non-BNS) 543 
 544 
 545 
 546 
 547 
 548 
 549 
 550 
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 558 
 559 
 560 
Figure 1: Estimated survival probability curve by group. 561 
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 566 
Figure 2: Martingale residuals plot for the multiplicative model. 567 
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 568 

Time (month) 569 

Figure 3-a: Estimated cumulative regression function by Aalen’s additive model 570 
with its upper and lower 95% point-wise confidence limits for group. 571 
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Time (month) 573 

 574 

Figure 3-b: Estimated cumulative regression function by Aalen’s additive model 575 
with its upper and lower 95% point-wise confidence limits for occupation. 576 
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 577 

Time (month) 578 

Figure 3-c: Estimated cumulative regression function by Aalen’s additive model 579 
with its upper and lower 95% point-wise confidence limits for body parts. 580 

 581 

Time (month) 582 

 583 
 584 

C
um

ul
at

iv
e 

re
gr

es
si

on
 fu

nc
tio

n 
C

um
ul

at
iv

e 
re

gr
es

si
on

 fu
nc

tio
n

 



21 
 

Figure 4-a: Arjas plot of the estimated cumulative hazard by group. 585 

 586 

Number of Injury 587 
Figure 4-b: Arjas plot of the estimated cumulative hazard by occupation. 588 
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*NNA: Nurses and nursing aides 591 

*Others include therapists, technicians, unit supporters, paramedics, etc. 592 
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Figure 4-c: Arjas plot of the estimated cumulative hazard for the additive model by 596 
body parts. 597 
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Number of Injury 600 

* BNS: Back, neck and shoulder 601 

* All other body parts include abdomen, chest, face, etc. 602 
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