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.ABSTRACT  

Aims: This study deals with the enhancement of the longitudinal shear interaction at the 
concrete-profiled steel sheeting interface of composite slab by using shear connectors. The 
push out and flexural tests are carried out with the same shear connection details.  
Place and Duration of Study: The test is carried out in RC laboratory at Faculty of 
Engineering in Benha, Benha University, Egypt, between May 2014 and March 2015. 
Methodology: Fourteen push out specimens with different configurations were built in, of 
which five specimens with steel deck thickness of 0.7 mm and nine specimens with steel 
deck thickness of 1.2 mm. For each profiled steel sheeting thickness one specimen is 
assigned as a control specimen and the other specimens were enhanced with different types 
of shear connectors such as self-drilling screws with different length and spacing, cold 
formed members with different shapes (U & C) and different spacing . Eleven large scale 
specimens with different configurations were prepared. Four specimens were prepared with 
profiled steel sheeting of 0.7 mm thickness and seven specimens with profiled steel sheeting 
thickness of 1.2 mm. One control specimen for each profiled steel sheeting thickness was 
also prepared. The other specimens were enhanced with different types of shear 
connectors: self-drilling screws with different length and spacing and cold formed members 
with different shapes (U&C) with different spacing.  
Results: The test results show that the failure mode of composite slab can be improved to 
ductile type and the load carrying capacity can be increased by the presence of the shear 
connectors. The load performance of the slab is also affected by changing the profiled steel 
sheeting thickness. 

 
Keywords: Composite slab, Push out test, Shear connectors. 

1. INTRODUCTION 
  
Cold-formed steel decks have been widely used in composite slab systems in steel 
Structures. The knowledge about the interaction between the composite elements and its 
mechanical behavior has progressed rapidly during the past two decades. The composite 
slab system has proven to be very desirable to structural designers because of many 
advantages in comparison with conventional systems of reinforced concrete slabs such as 
high rate of construction, shallow construction, saving in weight, safe method of construction, 
saving in transport, sustainability as steel construction products can be either re-used or 
recycled upon demolition of a building and easy installation of services. Deck profile, 
thickness and strength of steel sheeting, span length and construction details affected the 
behavior and strength of composite slab. The composite slab under flexural has three modes 
of failure: first mode is flexural failure which happened when interaction at the interface 
between concrete and steel is completely achieved. Flexural failure type is usually occurs in 
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Table 2.   Push out specimen test results. 
 

Specimen 
ID 

Thickness 
of steel 
deck (mm) 

Shear dowels 
type 

Spacing 
(mm) 

Pu. 
(ton) 

slipx10² 
(mm) 

Longitudinal 
shear strength 
(tpo) (kg/cm²) 

1.2 
CONTROL 

1.2 Control - 3.5 178 2.54 

1.2 U 200 1.2 U-cold formed 200 11 100 6.74 

1.2 U 100 1.2 U-cold formed 100 11 298 6.22 

1.2 C 200 1.2 C-cold formed 200 7.5 197 4.8 

1.2 C 100 1.2 C-cold formed 100 8.25 307 5.27 

1.2 LS 200 1.2 
Screws of 40 mm  
length 

200 6.5 149 4.78 

1.2 LS 100 1.2 
Screws of 40 mm  
length 

100 8.5 336 6.25 

1.2 SS 200 1.2 
Screws of 20 mm  
length 

200 7.5 126 5.51 

1.2 SS 100 1.2 
Screws of 20 mm 
length 

100 5.5 173 4.04 

0.7 
CONTROL 

0.7 Control - 1 120 0.74 

0.7 U 200 0.7 U-cold formed 200 5.5 271 3.37 

0.7 C 200 0.7 C-cold formed 200 4 171 2.94 

0.7 LS 200 0.7 
Screws of 40 mm  
length 

200 3 111 2.21 

0.7 SS 200 0.7 
Screws of 20 mm 
length 

200 3.75 545 2.76 

 
3.2 Large Scale Slab Test Results 
 
The maximum load and the corresponding deflection, strain and slip for large scale test 
specimens are listed in Table 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 

Table 3. Flexural specimens test results. 
 

Specimen 
ID 

Maximum 
load (ton) 

Average def. at 
mid-point at 
max. load, (mm) 

Strain at 
max. load 

Slip at 
max. 
load, mm 

Longitudinal 
shear strength 
(tb) (kg/cm²) 

1.2 CONTROL 4.57 2.06 6.10E-04 0.34 3.5 

1.2 U 200 5.56 6.76 1.38E-03 0.98 4.26 

1.2 U 100 6.68 4.76 7.80E-04 0.21 5.12 

1.2 C 100 4.7 8.84 6.73E-04 0.87 3.6 

1.2 LS 200 5.54 41.09 4.83E-03 3.37 4.24 

1.2 SS 200 5.63 3.21 8.88E-04 0.13 4.31 

1.2 SS 100 5.68 12.86 2.89E-03 1.01 4.35 

0.7 CONTROL 3 2.56 3.75E-04 0.24 2.3 

0.7 U 200 3.77 2.94 8.17E-04 0.11 2.89 

0.7 LS 200 3.75 14.04 1.84E-03 2.58 2.87 

0.7 SS 200 3.75 18.85 1.49E-03 2.68 2.87 

 
3.3 Effect of Steel Deck Thickness 
 
For control specimens with steel deck of 0.7 mm and 1.2 mm thickness the two compared 
specimens were not enhanced with any type of shear connectors. It is shown that ultimate 
load for the specimen with profiled steel sheeting with thickness of 1.2 mm is increased by 
52.33% than that of the specimen with profiled steel sheeting with thickness of 0.7 mm. The 
load-deflection curve in the two specimens behaved almost linearly prior to first end slip. 
After the end slip has initiated, the load dropped drastically with a major crack occurred in 
the concrete below the acted line loads. Failure in this manner is classified as brittle. Such 
failure which is known as shear bond failure is principally occurred due to the large slippage 
between the steel sheeting and the concrete. 
The two compared specimens were enhanced by using self-drilling screws with 40 mm 
length and 200 mm spacing as shear connectors. It is shown that ultimate load for the 
specimen with profiled steel sheeting with thickness of 1.2 mm is increased by 47.73% than 
that of the specimen with profiled steel sheeting with thickness of 0.7 mm. The failure mode 
of the tested specimens has been improved from brittle to ductile type where the failure was 
delayed. 
The two compared specimens were enhanced by using self-drilling screws with 20 mm 
length and 200 mm spacing as shear connectors. It is shown that ultimate load for the 
specimen with profiled steel sheeting with thickness of 1.2 mm is increased by 50.13% than 
that of the specimen with profiled steel sheeting with thickness of 0.7 mm. Also using 20 mm 
length self-drilling screws as shear connectors improved the failure mode of the tested 
specimens, specially the specimen with 0.7 mm steel sheeting (0.7 SS 200), where a ductile 
behavior were observed. 
The two compared specimens were enhanced by using horizontal channel (U) with 200 mm 
spacing as shear connectors. It is shown that ultimate load for the specimen with profiled 



 
 

steel sheeting with thickness of 1.2 mm is increased by 47.48% than that of the specimen 
with profiled steel sheeting with thickness of 0.7 mm. Also using horizontal channel (U) as 
shear connectors improved the failure mode of the tested specimens where a ductile 
behavior was observed. 
 
3.4 Effect of Shear Connector Type 
 
The effect of shear connector type for specimens with steel sheeting thickness of 0.7 mm 
and enhanced with shear connectors 200 mm spacing is shown in Fig. 9. It is shown that the 
ultimate load of the specimens with short screws (SS) or long screws (LS) increased by 25% 
than that of the control specimen which was not enhanced with any shear connector ,so the 
length of screw does not affect the ultimate load value of the tested specimen. The ultimate 
load of specimen with horizontal channel (U) increased by 25.7% than that of the control 
specimen. The experimental results show also that the specimen with self-drilling screws is 
more ductile than the control specimen and the specimen enhanced with horizontal channels 
(U). The effect of shear connector type is not clear in case of 200 mm spacing. The 
specimens with long screws are more ductile than the specimens with other types of shear 
connectors. 
The length of self-drilling screws has not a clear effect on the ultimate load of the tested 
specimens. Also the results revealed that the ductility of the tested specimens was not 
affected by the length of the screws, where using long length or short length led to increase 
the ductility of the tested specimens.  
 

 
 

Fig. 9.  Load-Deflection curves for specimens (0.7 U 200), 
(0.7 SS 200), (0.7 LS 200) and (0.7 CONTROL). 

 
The effect of shear connector type on the mechanical behavior of the tested specimens with 
the same steel sheeting thickness of 1.2 mm thickness and enhanced with shear connectors 
of 100 mm spacing is shown in Fig. 10. It is shown that the ultimate load of the specimen 
enhanced with short screws (SS) increased by 24.3% than the control specimen. However, 
the ultimate load of the specimen with vertical channels (C) and horizontal channels (U) 
increased by 2.8% and 46.2%, respectively, than the control specimen. The experimental 
results show also that the specimens with self-drilling screws and vertical channels (C) are 
more ductile than the control specimen and the specimen enhanced with horizontal channels 
(U). The effect of shear connector type on the ultimate load is very clear in case of steel 
sheeting of 1.2 mm thickness with shear connectors 100 mm spacing, in this case the 
horizontal channels was the best type. The specimens with short screws are more ductile 
than the specimens with other types of shear connectors. The experimental results revealed 
that the orientation of channels used as shear connectors is very important variable, where 
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its effect on the ultimate load of the tested specimens was very strong, using horizontal 
channel in place of vertical ones led to increase the ultimate load by 42.1%. 
 

 
 

Fig. 10.  Load-Deflection curves for specimens (1.2 U 100), 
 (1.2 SS 100), (1.2 C 100) and (1.2 CONTROL).  

 
The effect of shear connector type on the mechanical behavior of the tested specimens with 
the same steel sheeting of 1.2 mm thickness and enhanced with shear connectors 200 mm 
spacing is shown in Fig. 11. It is shown that the ultimate load of the specimen enhanced with 
short screws (SS) increased by 23.2% than the control specimen. However, the ultimate load 
of the specimen with long screws (LS) increased by 21.2% than the control specimen, and 
the ultimate load of the specimen with horizontal channels (U) increased by 21.7% than the 
control specimen. The experimental results show also that the specimen with long screws is 
more ductile than the control specimen and the specimen enhanced with horizontal channels 
(U) and short screws (SS). 
The length of self-drilling screws has not a clear effect on the ultimate load of the tested 
specimens. However, the results revealed that the ductility of the tested specimens was 
affected by the screws length where using long length in place of short length led to increase 
the ductility of the tested specimens.  
 

 
Fig. 11.  Load-Deflection curves for specimens (1.2 U 200), 

 (1.2 LS 200), (1.2 SS 200) and (1.2 CONTROL). 
 

3.5 Effect of Connector Spacing  
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The effect of spacing for specimens of 1.2 mm steel sheeting thickness and enhanced with 
short self-drilling screws is shown in Fig. 12. It is shown that the ultimate load for the 
specimens with short screws (SS) with 100 mm and 200 mm spacing increased by 23.2% 
and 24.3%, respectively, than the control specimen. The experimental results show also that 
the specimen enhanced with short screws of 100 mm spacing is more ductile than the 
control specimen and the specimen enhanced with short screws of 200 mm spacing.  
 

 
Fig. 12. Load-Deflection curves for specimens (1.2 SS 100), 

 (1.2 SS 200) and (1.2 CONTROL). 
 

The effect of spacing for specimens of 1.2 mm thickness and enhanced with horizontal 
channels (U) as shear connectors every 100mm and 200 mm spacing is shown in Fig. 13. It 
is shown that the ultimate load for the specimens enhanced with horizontal channels (U) of 
100 mm and 200 mm spacing increased by 47.2% and 21.7%, respectively, than the control 
specimen. 
Moreover using horizontal channels with both spacing led to increase the ductility of tested 
specimens in comparison with control specimen. 
 

 
 

Fig. 13. Load-Deflection curves for specimens (1.2 U 100),  
(1.2 U 200) and (1.2 CONTROL). 

 
3.6 Crack Pattern 
 
All the tested specimens failed due to the slippage between steel deck and concrete. As the 
load increased, an initial crack occurred at the bottom of the concrete. As the load further 
increased, a number of cracks at the bottom of the concrete progressively spread towards 
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3.8 Longitudinal Shear Stress Comparison 
 
The longitudinal shear strength deduced from push out test results was compared with the 
corresponding one deduced from bending test results. Table 5. shows the comparison 
between the results of push out test and flexural test. The mean for the ratio of push out test 
strength to bending test strength is 1.05 with standard deviation 0.36, which indicates that 
the bending test results are in good agreement with the push out values for the specimens. 
The comparison reveals good agreement between the ratio of push out test strength to 
bending test strength for tested specimens enhanced with self-drilling screws with steel sheet 
thickness of 0.7 mm and 1.2 mm, and enhanced with self-drilling screws of different length 
(20 mm & 40 mm) and different spacing (100 mm & 200 mm).  
 
Table 5.  Ratio of longitudinal shear strength from push out test to the corresponding 

from bending test. 
 

Specimen ID tPo/tB 

0.7 CONTROL 0.32 

0.7 SS 200 0.96 

0.7 LS 200 0.77 

0.7 U 200 1.17 

1.2 CONTROL 0.74 

1.2 SS 100 0.93 

1.2 SS 200 1.28 

1.2 U 100 1.22 

1.2 U 200 1.58 

1.2 C 100 1.47 

1.2 LS 200 1.13 

MEAN= 1.05 

Standard deviation= 0.36 

 
4. CONCLUSION 
 
From the present investigation, the conclusions can be deduced as follows: 
 

1. The failure mode of composite slab can be improved from brittle to ductile, the load 
carrying capacity and the horizontal shear strength can be increased by installing 
shear connectors at the steel-concrete interface. 

2. The steel deck thickness directly affected the ultimate load of the tested specimens. 
3. The specimens with long screws are more ductile than the specimens with other 

types of shear connectors. 



 
 

4. The effect of spacing between shear connectors was obvious in case of horizontal 
channels (U) where using spacing of 100 mm led to increase the ultimate load by 
20.1% in comparison with specimens of 200 mm spacing. 

5. The ultimate load has not been affected by changing the spacing between shear 
connectors in case of short self-drilling screws. However, the spacing between 
short self-drilling screws affected the ductility of the tested specimens which 
behaved more ductile as the spacing deceased.   

6. The orientation of channels used as shear connectors is very important variable, 
where its effect on the ultimate load of the tested specimens was very strong. 

7. The length of self-drilling screw has not a clear effect on the ultimate load of the 
tested specimens of 0.7 mm and 1.2 mm steel sheet thickness. However, the 
results revealed that the ductility of the tested specimens of 1.2 mm steel sheet 
thickness was affected by the screws length. 

8. The steel deck for all specimens have reached the yield except the control 
specimens of 0.7 mm and 1.2 mm thickness and also the specimen enhanced with 
vertical channel (C) of 100 mm spacing. 

9. The bending test results are in good agreement with the push out values especially 
for the specimens enhanced with cold formed channels sections (C&U) as shear 
connectors. 
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