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ABSTRACT

At two consecutive temperatures, 323°C and 408°C as well the two thermal scans in between these two
temperatures the kinetics of thermolysis of powder-free laboratory safety gloves (LG) was studied by
thermogravimetric analysis (TGA). Three models were used to evaluate the kinetics parameters related to the
decomposition of LG at both isotherms. The results of the study indicated that the kinetics parmeters depend on the
model to choose. The experimental data at the isothermal temperature 323°C fitted in zeroth, first and second order
depending on the definition of extend of reaction. The pyrolysis at the isotherm temperature 408°C fitted into first
order and second order depending on the definition of extent of reaction. Also, the reiteration method was used to
find the best value of n and k for thermolysis at both temperatures; the best order for the thermolysis found to be
1.78, and 1.93 at 323 and 408 °C, respectively. The activation energy of thermalizes (Ea) was estimated by thermal
scans, and isotherms at 308, 313, 323, 333, 336, and 345 °C. The value of Ea for the process at lower temperature
was near to Ea corresponding to evaporation of volatiles, and at higher temperatures Ea was below constituents’
chemical bond energies but it was higher than the reported Ea for decomposition of polymethylmethacrylate and it
was lower than Ea for decomposition of rubber in tires.

Keywords: Kinetics, thermogravimetric analysis, powder free examination gloves, safety gloves, latex gloves,
pyrolysis of gloves, neoprene, thermalizes.

1. INTRODUCTION

The kinetics of decomposition of waste plastics are of interest from different points of view including evolution of harmful
substances during fires or waste incineration, recovery of chemical raw materials from waste plastics and design of a
practical recycling procedures. Neoprene or polychloroprene (-CH2-CCI=CH-CH,-), that is the subject of this study, is
a member of family of synthetic rubbers that are produced by free-radical polymerization of 2-chlorobutadiene
(CH,=CCI-CH=CHy>) ["]. Neoprene exhibits good chemical stability, and maintains flexibility over a wide temperature
range. Itis used in a wide variety of applications, such as gloves, laptop sleeves, orthopedic braces (wrist, knee, etc.),
electrical insulation, liquid and sheet applied elastomeric membranes or flashings, and automotive fan belts [4].The
waste plastics contrary to the other household waste are not consumed by micro-organism in landfill, water, and
surface. Their incineration in landfills neither contribute to energy gain nor to environmental benefits [*]. Therefore,
energy recovery by step-by-step thermolysis [*] which converts waste to the valuable petrochemicals must be
considered [°,%] as an alternate treatment.

To simulate the condition of waste plastics thermolysis, researchers focused the thermal degradation of plastic blends
such as polystyrene (PS) mixtures with other materials and their mutual interactions [7,8,]. The decomposition of pure,
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freshly prepared polymeric materials, has been of interests to scientists since the applied knowledge of polymeric
materials gained relevance ['9,',12]. The decomposition kinetics of poly ethylene (PE) ['3,5] and the mechanism of
decomposition have been studied by many researchers ['4,']. Some widely used polymeric materials such as
poly(methyl methacrylate) (PMMA), upon heating, decomposed to original monomers ['] likewise PS to styrene
[7,1819]. However, poly(vinyl chloride) (PVC), and neoprene resins thermolysis [2] took a different route than the above
mentioned polymers. These polymers decomposed to hydrogen chloride and other fragments upon heating. Thus the
World Health Organization (WHO) is opposed to land filling or incineration of these wastes. Processing techniques
such as energy recovery including plastics-derived fuel have been proven successful [21:22232425]; however, polycyclic
aromatic hydrocarbons ( PAHs) evolved from rubber resins [%] and hydrogen chloride from wastes based on PVC
[#,28] and neoprene [#] resins in the combustion process are obstacles in the application.

It is noteworthy that most of the well documented investigations were done on pure polymers with known molar mass
distribution or clean materials provided directly by manufacturers [*,3'] on a micro-scale analysis. The researchers
were presented several detailed kinetic models describing the polymer degradation [%2,33,34 35 36], These kinetics
models can be useful in the study and analysis of the role of mixing in the thermal degradation of polymer blends.
Therefore, the knowledge of decomposition of waste plastics and their condition and the product of decomposition
remains of interests [¥7]. Study on kinetics properties of pyrolysis of medical wastes including absorbent cotton,
medical respirator, bamboo sticks and cotton gauges, packaging boxes, capsule plates and transfusion tubes are
paving the road for recycling medical wastes [].

Based on our previous experiments [¥,40] and the results reported by other researchers, one possible process for
recovering valuable chemical and petrochemical products from chlorine-resin based waste plastics is the stepwise
thermal degradation. In theory, this process allows step-by-step separation of the different product fractions generated
by degradation of the waste plastics blend [*']. In this paper we report the effect of temperature on kinetics of
thermolysis of powder-free latex gloves (LG), the ones made of chloroprene as rubber ingredient. The LG was
thermalized in six consecutive steps: a fast increase of temperature to initial decomposition temperature (323°C),
followed with a 90 min isothermal step at this temperature; sequenced with another linear thermal scan form 323°C to
408°C, succeeding by another isotherm at the same temperature for 30 min. The last thermal scan to 860°C tailed to
a short isotherm (2 min) led to full degradation of LG.

2. MATERIALS, INSTRUMENTATION, AND METHODS

A Perkin-Elmer (USA) thermogravimetric analyzer (TGA-7) was used to perform the step-by-step pyrolysis of LGs at
two isothermal and two scans in between the isotherms. The atmosphere was fluxed with argon (flow rate of 10 mL
min-"). The heating rate in all dynamic experiments was kept at the maximum capacity of the TGA instrument, 200°C
min-. The initial sample weight was 6.319 mg; however, in calculations, the weight was normalized to weight
percentage of the samples. The LG was thermolysis in six steps: first, the sample was rapidly heated up to 323°C
(The calculated average heating rate in this step was 79.8°C/ min.) and then the temperature was kept constant for 90
min at 323°C (Fig. 1). In succession, the temperature was rapidly increased (The calculated average heating rate in
this step was 21.1°C/ min.) to the second isothermal step (408°C) and maintained there for 30 min; successively, the
temperature was rapidly increased to 846°C and maintained there for 2 min which led to the complete degradation of
the organic substances. The fast temperature ramps to the isothermal conditions did not show more than 1°C
overheating.

The experimental data, such as time (min), sample temperature (°C), weight percentage, and derivative of weight
loss over time (dw/dt), were downloaded from a Pyris program to Microsoft Office for calculation, graphing, and word
processing.
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3. RESULTS AND DISCUSSION

3.1 Thermograms Analysis

Table 1 summarizes the main points of thermolysis of the LG. Thermal scan from room temperature to 323°C
caused about 2.67% of LG weight loss (Fig. 1, Table 1). During 87.32 min at 323°C about 21.95% of the LG was
volatilized. A pure sample of neoprene, (-CH2-CCI=CH-CH2-),, contains 40.08% Cl and 41.21% HCI. In the case of
step-by-step decomposition, if all primary volatiles would be HCI, then a weight loss of 58.79% was expected. The
actual weight loss at the end of 91 min was 75.35% which is 15.4% less than the expected weight loss. Therefore, at
this stage not all HCI were detached from LG.

During the fast heating from 323°C to 408°C (21.1°C/min) about 4.02% of weight loss occurred, and 21.88% of
weight loss followed when the sample was held at 408°C for 30 min. 8.86% of material volatized during the scan
from 408°C to 846°C and holding there for 2 min where the organic components of the sample was consumed
completely. The leftover ashes (about 8.77%) has white color, soluble in hot water, the solution has strongly basic
(pH > 10) property.

Table 1. Pyrolysis steps of LG, including initial time (t), final time (t), duration of the process (At), initial and final
weight loss (wi%, w%) and the amounts of weight loss (Aw), initial and final temperatures (tiand t;), and the range of
temperature (AT) °C.

ti ts At ti tr
Steps | (min) | (min) (min) wi% wi% | Aw% | (°C) | (°C) | AT(°C) | AT/At
1 0.00 3.72 3.72 99.98 | 97.31 | 2.67 27 324 297 79.8
2 3.73 91.05 87.32 | 97.30 | 75.35 | 21.95 | 324 | 323 -1 0.0
3 91.07 | 95.08 4.02 75.35 | 39.57 | 35.77 | 323 | 407 85 21.1
4 95.10 | 120.68 | 25.58 | 39.51 | 17.63 | 21.88 | 407 | 409 2 0.1
5&6 | 120.70 | 126.00 5.30 17.63 | 8.77 8.86 409 | 853 444 83.8
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Fig 1. The thermogram of LG sample: (a) weight loss versus time and derivative of weight loss (dw/dt) by time, and

(b) weight loss versus temperature and dw/dt versus temperatures.

3.2. Kinetics of Pyrolysis.

The rate of a chemical reaction, including pyrolysis, is a function of temperature, pressure, and the concentration of
the various species in the reaction. Also, catalyst and inhibitors effects the rate of a reaction, but they may not appear

in the overall reaction. For a simple gas-phase reaction:

aA > Products (1

(2)

dw
Rate =r = —— = kw™"
adt
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where w is the activity of reactant A at time t, “a” is the stoichiometric coefficient of the balanced chemical reaction
equation, n is the order of reaction at the slowest step, and k is the rate constant of the reaction. In a multiple phase
reaction where solids, liquids, and-gases are presented as reactants and products such as thermolysis of LG the rate
of reaction usually is expressed in terms of the fractional conversion of reactants, a. There are several manner to
evaluate the value of a. In this work the kinetic parameters of LG was evaluated with three methods as following:

1. The fractional conversion of reactants a defined in terms of the actual, final, and initial mass of sample, w,
wr, and wi, in each step of pyrolysis, respectively:

gz MW (3A).

Wi—Wws
The rate of conversion, da/dt, in relation to reactants, (1-a), can be expressed as:

. d(l1-a) _

Rate =1 = ————=ak(1-a)" (4)
Rearranging Eq (4) results:

da
o = akdt (5)

Integration of Eq (5) for the values of n =0, 1, and 2 results:

n£1,(1—a)t™ = —(1 —n)akt+c¢ (6)
n=0,(1-a)= —akt + (1 —a), (7)
n=1Ln(l —a) = —akt + Ln(1 — ), (8)
n=2,(1-a)"! = akt + (1 — a)y? 9)

Figs 2 (a, b, and c) show the treatment of the experimental data of weight loss over time obtained for LG at 323°C
and 408°C according to the above relationships. The experimental data do not fit into zeroth, first, and second order
reactions, at both temperatures.

2. The fractional conversion of reactants o’ defined in terms of the actual, final (mass at the end of thermolysis
process), and initial (mass of sample at very begging of themolysis), w, ws, and w;, respectively.

o = = (3B).

Wi—wg

The kinetics equations remain similar as Eq(4) to Eq(9). Figs 3 (a, b, and ¢) show the treatment of the experimental
data of weight loss over time obtained for LG at 323°C and 408°C according to the above relationships. The
experimental data at 323°C fitted better to a second order reaction based on the value of Rsq (Table 2). Postolating
a second order reaction for the first step radical decomposition of neopren is quate rational based on the following
chemical reaction equations:

(-CH2-CCI=CH-CH2-)s — (-CH»-C.=CH-CH-), + Cl. Faster step.
(-CH2-C.=CH-CHz-)n — (-.CH-CH=CH-CH2-), <> (-CH=CH-.CH-CH,-), Faster steps
(-CH=CH-.CH-CHz-), + Cl. — (-CH=CH-CH=CH-), + HCI. Slowest step.

The rate = k[CL.][ (-CH=CH-.CH-CH-),], a second order reaction.
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Table 2. The reaction order n, rate constant k, and correlation coefficient Rsq of isotheral
decomposition of LG at 323°C according to three definition of pyrolysis conversion. The bold
face shows the suitable kinetic order and k.

323°C 408°C
Model n 1000k Rsqg 1000k Rsq
a 0 11.3 | 0.9966 33.9 | 0.9505
1 37.3 0.7795 174 0.8160
2 704 | 0.0129 7770 | 0.0368
a' 0 2.71 | 0.9966 8.12 | 0.9505
1 3.23 | 0.9995 46.7 | 0.9933
2 3.86 | 0.9997 290 | 0.9808
a" 0 2.47 | 0.9966 7.41 | 0.9505
1 2.89 | 0.9993 29.6 | 0.9851
2 3.40 | 0.9999 122 | 0.9953

The experimental data at the isotherm temperature 408°C also fitted into a first order reaction. In this
case the slowest step was the scissoring of polymeric chain under high temperature by itself to volatile
chemicals.

3. The fractional conversion of reactants a” defined in terms of the actual, and initial mass of sample, w, and
wi, respectively:

o =2 (3C).

The rate of conversion, d(1-a”)/dt, in relation to the fraction of reactants, a”, can be expressed as:

Rate =r = —% =ak(a")" (4B)
Rearranging Eq (4B) resullts:

e = —akdt (5B)
Integration of Eq (5) for the values of n =0, 1, and 2 results:
n#1,a"0™ = —(1—n)akt + (6B)
n=0, " = —akt +a’y (7B)
n=1, Lna” = —akt + Lna”y (8B)
n=2, (a1t = akt + (a"g)7?! (9B)

Figs 4 (a, b, and c) show the treatment of the experimental data of fraction of reactants over time for LG at 323°C
and 408°C according to the Eq (7B) to Eq(9B) relationships. The experimental data at 323°C apparently fits well into
zeroth, first and second order, as was the case of a’. But the most suitable fit is for a second order reaction based on
the highest value of Rsq (Table 2). The experimental data at the isotherm temperature 408°C poorly fits in the



193
194

195
196
197

198
199

200
201
202
203
204
205

206

207
208

209

second order reaction. Postolating a second order reaction for the first step radical decomposition of neopren is
quate rational based on the mechanism proposed in part 1 for dehydrochlorination of neoprene.

The obtained value of k relatively is small, due to the retardant material that manufactured had added to the
neoprene in time of pressing. However, they are in the range of k = 0.0047 1/min reported for polytetrafluoroethylene
(PTFE) at lowest decomposition temperature, 480°C [*2].

3.3 Reaction Order by Reiteration Method.

The value of nin Eq(6) and Eq(6B) can be determined by reiteration method. In this method, a plot of corresponding
reactant fraction (1-a)t"" or (1-a’)"" or a"("" versus t (min) for each value of n was constructed from experimental
data. Then, the correlation coefficient (Rsq or R2) value of each trial was plotted versus corresponding (1-n) value (eg
Fig 5a). The n corresponding to the largest Rsq value represents the best straight line, and the best reaction order.
The slope of the plot of w™n versus t (min) (eg Fig 3b) represents ak, after it is divided by (n-1). These results are
summarized in Table 3 assuming a = 1.

Table 3. Kinetics parmeters of LG at the isotherms temperatures 323 and 408 °C corresponding Figs 4 -7. The
PTFE dada are included for comparison [42)].

t(°C) | Model | 1-n 1000Slope n 1000 k Rsq
a 0.82 -10.94 0.18 13.34 0.9786
323 a' -0.68 2.48 1.68 3.64 0.9972
a" -0.78 2.56 1.78 3.28 1.0000
a 0.585 -34.5 0.42 58.99 0.9927
408 a' -0.23 16.3 1.23 70.73 0.9950
a" -0.93 10.3 1.93 11.03 0.9954
480 PTFE 1 4.70 1.000
500 PTFE 1 16.0 0.999
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The obtained n and k values depended on the definition of fraction of reactants, a, o’ and a”. The most suitable fit of
experimental data was corresponded to a” that had highest correlation coefficient at both temperatures (Table 3 7t
column). The k values of thermolysis at 323°C obtained based on @’ and a” models are in the range of k value
obtained for pyrolysis of PTFE at lower temperature, 480 °C. Similarly, the values of k obtained from model related to
a” for LG thermolysis at 408°C is in the range of k value reported for thermolysis of PTFE at 500°C. Other k values of
the Table 3 are larger than the reported values of PTFE. Also, the above values are in the same range of 6.8 <
1000k (min-") < 23 for pyrolysis of lignin with 134 < Ea (kJ/mol) < 172 [*]. The reported Arrhenius k values, 8.32 X 10-
5and 2.34 x 106 for slow pyrolysis of enzymatic hydrolysis of lignin [*] are considerably lower than the values
estimated by above methods for pyrolysis of neoprene.

As the temperature of pyrolysis was increased the value of k also increased which was within expectations based on
Arrhenius relationship, Eq (11), for a given reaction at two temperatures.

It is instructive to mention that most of researchers assumed a first order reaction rate for thermolysis [e.g.42]. The
methods for evaluation of reaction order using thermogravimetric data [e.g.#%] did not worked for LG degradation.

Thermolysis weight loss reactions occurs either in in solid or liquid state where a typical reaction order of zero for just
vaporization of degraded products, one when the macromolecule by itself undergo scissoring to produce volatiles,
and second order when a radical produced reacts with the substrate to produce another volatile. Fractional order are
observed for many complex consecutive radical reactions. For example, the kinetic law for the hydrogen-bromine
reaction is complicated; the reaction order with respect to concentration of bromine was established to be 2. The
obtained order by reiteration methods for pyrolysis of LG at 323 and 408 °C (Table 3) 0.18 <n < 1.93 also are
fractional which are the indication of complex reactions. Moreover, the value of n depended on the chosen model (a,
a’, a”) and the temperature of the isotherm. The reaction order n = 1.78 and 1.93 for the thermolysis of LG at
temperatures 323 and 408 °C, respectively, were near to 2. But the fractional numbers were fitted better to the
experimental data indicating that the thermolysis process is a set of complicated reaction rather than a simple
decomposition reaction. The pyrolysis of neoprene at higher temperatures also showed fractional rate order. For
example, rate equation of r = k[LG]%49 and r = k[LG]%# were obtained for decomposition of LG at 346 and 405 °C,
respectively also were related to complex pyrolysis reactions [*9].

3.4 Reaction Order from Rate of Pyrolysis

The logarithmic form of Eq(2) relates the rate of thermolysis, r, to the fraction of reactants, (1-a), (1-a’), and o™
Lnr = Lnak + nLn(1 — a). (10A)

Lnr = Lnak + nLn(a"). (10B)

For a simple one step reaction the slope of the variation of Ln r versus Ln(1-a), Ln(1-a’), Lna” yields the order of
reaction and the intercept is a combination of stoichiometric coefficient of the reactants and rate constant (ak). Fig 8a
depicted such a plot for both isotherm temperatures. The graph of experimental data appear that the initial reaction
order gradually decreases to lead to a plateau with zeroth order. The expansion of Fig 8a, indicated that there must
be occurrence of many simultaneous zeroth order reactions with their proper k values (intercept). To confirm this, the
rate of reaction was calculated again using experimental values of (1-a) at the corresponding time, A(1-a)/At, instead
of dw/dt obtained from TGA driving program (Pyris). A plot of the values of rate = -A(1-a)/At, versus Ln(1-a) is
illustrated in Fig 8b. In this plot, 5 zeroth order parallel reaction with their proper values of k at 323°C and 26
concurrent zeroth order reactions with proper k values at 408°C (Table 4) were identified. The existence of many



267  parallel chemical reactions resulting from thermal decomposition of LG also could be confirmed by referring to a
268  previous work, where total ion chromatogram (TIC) obtained by gas chromatography mass spectrometry (GC-MS), of
269  any samples of LG pyrolysis, showed over 150 chemicals [39,40].
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Table 4. The values of Lnk for the zeroth ordered reactions identified in Fig 8b

Reaction Lnk at Reaction No. | Lnk at
No. 323°C | 408°C 408°C
1 0 -1.745 14 -2.403
2 -3.958 -1.783 15 -2.476
3 -3.945 -1.823 16 -2.556
4 -4.35 -1.863 17 -2.644
5 -5.043 -1.906 18 -2.739
6 -1.95 19 -2.844
7 -1.997 20 -2.962
8 -2.046 21 -3.098
9 -2.097 22 -3.251
10 -2.151 23 -3.434
11 -2.209 24 -3.657
12 -2.269 25 -3.943
13 -2.333 26 -4.351

Researcher, in order to simulate thermolysis also had assumed many simultaneous chemical reactions at high
temperatures ['44748]. For example, Kruse et al [32] presented a detailed mechanism of PS pyrolysis based on
population balance equations and the method of the moments in which up to 93 species and 4500 reactions were
used to describe product distribution and average molecular weight. Similarly, detailed kinetics models of PE,
polypropylene (PP) and PS pyrolysis were presented and discussed by other researchers [7-9]. The reported results
of thermal degradation of plastic blends and their mutual interactions do not completely agree since each research
group depending on their particular interests focused on different effects. The researchers who studied the
decomposing of polymer mixtures discovered that the pyrolysis of a particular polymer in a polymeric mixtures
behaves quite similarly to the pyrolysis of a pure polymer by step-by-step pyrolysis [14-15]. Thus, the additive rule
was applicable to the pyrolysis of a mixture of polymers. Therefore, the pyrolysis of LG, which made of a mixture of
many chemical, will be similar to pyrolysis of each individual ingredient resulting in many simultaneous concurrent
reactions.

3.5. Evaluation of Ea from Thermal Scans.

Arrhenius relationship (Eq 11) relates the rate constant, k, to the activation energy of reaction E,, the absolute
temperature of the reaction T, the ideal gas constant, R = 8.314 J mol-' K-' and another constant such as z to
describe the efficiency of the molecular collisions in a chemical reaction.

Ea

k = ze Rt (11)
Combining Eq (2) and Eq (11) results:



298
299
300
301

302
303

304

305
306
307

308

309
310
311
312
313
314
315

r = Ze—Ea/RT(l _ a)n

Lnr = Lnz(1l —a)" - Ea/RT

(12)

The logarithmic form of Eq (12), linearly relates Ln r to the inverse of temperature, 1/T (K):

(13)

Lnr
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Fig 9 . Variation of logarithm of rate of decomposition of LG versus inverse of temperature.

Table 5. Kinetics parameters of the thermolysis of LG, initial and final weight loss (w;, wf) and the amounts of weight
loss (Aw), initial and final temperatures (tand t;), and the range of temperature (AT), average heating rate, and the

activation energy.

ti tr At ti ts AT Ea
Steps | (min) | (min) | (min) | wi% W% Aw% | (°C) | (°C) | (°C) | AT/At| LnZ | (ki/mol)
1 0.62 0.87 0.25 | 100.36 | 99.91 0.45 90 | 161 71 285.1 | 8.01 25.0
2 0.92 1.12 0.20 | 99.78 | 99.51 0.27 172 | 213 41 205.5 | -16.2 -63.5
3 1.23 1.53 0.30 | 99.44 | 99.08 0.36 237 | 293 56 186.7 | 13.0 58.0
4 1.75 3.72 1.97 | 98.65 | 76.12 | 22,53 | 310 | 324 13 6.8 -61.0 -299.4
5 91.62 | 92.38 | 0.77 | 75.30 | 67.23 8.07 337 | 402 66 85.8 53.9 284.4
6 92.42 | 120.68 | 28.27 | 66.50 | 17.63 | 48.87 | 403 | 409 6 0.2 -592 -3350

Fig. 9 represents the application of Eq (13) to the experimental data covering a wide range of temperatures (50 -408
°C) including the isotherm at 323°C. Six steps are visible in the graph. Three steps with positive values of Ea and

three steps with negative vales of Ea (Table 5). The positive Ea values can be related to the minimum energy
required to disassociate a physical bond to release a volatile form a solid such as evaporation of moisture from

reactants and to decomposition of chemical bonds within LG. Neoprene contains bonds between carbon and
hydrogen, carbon and chlorine and carbon and carbon. The bond energy for radical decomposition (homolytic bond
cleavage) of CI-C bond = 331, C-C single bond = 346, C=C double bond = 620, and C-H bond = 413 all in kJ/mol
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under standard thermodynamic conditions (one atmosphere pressure and at 25°C). Therefore, the expected Ea
value must be near to the bond energy value under the same conditions. The obtained Ea (Table 5) are below the
amount of standard bond energies of C-Cl, C-H, and C-C. Since those reactions occurred at higher temperatures
lower Ea required. The negative Ea value are related to the exothermic process including crystallization of melted
chemical, and recombination of chemically active specimen resulted from decomposition reactions.

The calculated Ea = 25.0 kJ/mol at temperature range of 90-161 °C (Table 5) could be related to vaporization of
volatile and moisture within LG, plus physical changes including melting and some fundamental chemical changes in
the structure of reactants. This value is in the range of reported 16.2 < Ea (kJ/mol) <27.0 E (Table 5) for dehydration
of bituminous coal over a temperature range from 35 — 115 °C [*9]. The Ea = -63 shows the crystallization of melted
materials including combination reaction of melts in the temperature range of 170 — 215 °C. The Ea = 58 kJ/mol at
temperature range of 237-293°C (Table 5) is around the Ea related to unzipping of some well know polymers such
as polymethylmethacrylate (PMMA). For example, Ea for unzipping PMMA radicals was evaluated to be 60 kJ/mole
[%9] by radical process. Likewise, the values of 24.6 < Ea (kJ/mol) < 64.0 related to various thermolysis reaction of LG
similar to reactions involved in thermolysis of glucose based carbohydrates [*']. These reported Ea are considerably
lower than involved standard bond energies of original reactants. In the temperature range of 310- 324 °C (Table 5)
the exothermic recombination reactions in the liquid phase occurred with a very high Ea = -299 kJ/mol. These
combination and decomposition reactions continued during the isotherm at 323 °C. The Ea = 284 kJ/mol at
temperature range of 337-402°C related to depolymerization of LG. Thought, it is smaller than standard bond
energies, however, it is in the rage of Ea reported for the thermolysis of other organic resins.

3.6. Evaluation of Ea from isotherms.

The plot of (1-a)("" versus reaction time, according to Eq(6) for six isotherms were constructed based on the
experimental data at temperatures 308, 313, 323, 333, 336 and 346 °C, similar to the Fig 8b which was built for
temperatures 323 °C and 408°C. The values of k were calculated from the slope of each plot at a given isotherm
(Fig 10a). Then, a plot of Lnk versus invers of temperature according to Eq(13) was built (Fig 10b). Considering the
data obtained from six isotherms, the value of Ea = 117 kJ/mol with z = 3.22 X 102 obtain from slope and the
intercept of Fig 10b, respectively, which is not in agreement with the one obtained in the previous section. However,
a close inspection of Fig 10b indicated that the isotherms at lower temperatures (first four isotherms) may have a
different Ea than the isotherm at higher temperatures. Therefore, Ea = 317 kd/mol with z = 4.4 X 102 (Table 6) was
calculated from slope and the intercept of the data at higher temperatures (Fig 10b), respectively. This value is in the
range with the values of Ea reported for pyrolysis of rubbers in car tires [21], and it is closer to the values of the bond
energies. It is higher than Ea = 261 kJ/mol for decomposition of PTEE, and the 134 < Ea (kJ/mol) <172 of lignin at
temperature rang 500-800 °C.

The Ea = 2.7 kJ/mol (Table 6) obtained from isotherms at lower temperatures is not in agreements with the Ea
values calculated by previous method; and it is lower than Ea of vaporization of moisture from coal [49]. Therefore, it
is related to volatilization of volatile organic compounds from LG structure. The thermolysis Ea according to Sanchez-
Jimenez et al is independent of the kinetic model to be used [42], however, the value of z heavily depends on the
kinetic model. Therefore, it will be hard to do any comparison of the z value.
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Table 6. Arrhenius constant of thermolysis of LG.

Ea z

LG all
points 116.8654 | 3.22E+12
LG HigT 317.3307 | 4.36E+29
LGLow T | 2.724663 | 2.31E+02

CONCLUSIONS

The decomposition kinetics of LG at two isotherm 323°C and 408°C was studied by TGA. The obtained results
showed that the kinetics parameters depend on the model to choose. Independent of the form of reaction extent
function, the experimental data showed fractional reaction order for the both isotherm temperatures. The double
logarithmic variation of rate of reaction (Ln r) and unreacted fraction of reactants showed that the order of thermolysis
reaction was zero at the both isothermal temperatures while many parallel concurrent reactions were occurred
simultaneously with proper k values. Therefore, the detailed description of the overall degradation of a LG sample
which is made up of a large number of chemicals, mainly, neoprene, plasticizers, minerals and fragrant, is quite a
complex process which involves a large number of chemical reactions, and intermediate species. The decomposition
of neoprene was compared to the pyrolysis of similar materials including the decomposition of rubber in car-tire [%2]
and PTFE.
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