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Abstract

The Middle East’s largest industrial complex produces flat steel sheets with specific properties such
as low thickness, high strength and suitable formability in order to reduce the vehicle weight and fuel
consumption and prevention of environmental pollution. The aim of this study is to investigate the
effect of some important explanatory variables on suitable formability of manufacturing steel sheets
according to primary data set. Existence or lack of existence of crack on steel sheet is considered as
a binary response variable. It is determined by bending test with the angle of zero degree. Existence
of multicollinearity between mentioned explanatory variables has an effect on the probability of
crack existence. Because of special condition of the response variable, which is binary, the suitable
regression is logistic, and correction techniques based on least squares do not work. Developments
in weighted multicollinearity diagnostics are used to assess maximum likelihood logistic regression
parameter estimates. Then principal component, a biased estimation method, is used in a way that
it has additional scaling parameter which can accommodate a spectrum of explanatory variable
standardizations. After that, by this scale parameter «, other biased estimation methods such as
partial least squares, ridge and Stein are explained. They can considerably reduce the variance of
the parameter estimation.

Keywords: logistic regression; partial least squares; principal component; quasistandardization; ridge;
Stein; weighted multicollinearity

2010 Mathematics Subject Classification: 62H35; 62J86; 62J07; 62p30; 97K80; 46N30

*Corresponding author: E-mail: marzieh.shahmandi@gmail.com


file:www.sciencedomain.org
shahmandi
The Middle East,s largest industrial complex produces flat steel sheets

shahmandi
The aim of this study is to investigate the
effect of some important explanatory variables on suitable formability of manufacturing steel sheets
according to primary data set. Existence or lack of existence of crack on steel sheet is considered as
a binary response variable.


British Journal of Applied Science & Technology X(X), XX—XX, 20XX

1 Introduction

Extending previous research on multicollinearity and regression, this study analyzes a primary data
set according to special condition of response variable which is binary. Least squares method is
not proper Rather, it is proposed that logistic regression is appropriate model for this research. This
data set is related to the Middle East's largest producer of flat steel (Mobarakeh Steel Company).
Before fitting model, data are checked because of multicollinearity by mentioned indicators in [Marx
and Smith (1990a,b)]. Multicollinearity makes model unstable, and the estimated parameters will
be inaccurate. Thus the interpretation of the relation between the response and each explanatory
variable in terms of odds ratios may be erroneous. It is also proposed some unbiased methods to
solve this problem and to estimate the parameters of this model, i.e. principal component (PC), partial
least squares (PLS), ridge and Stein.

Principal component analysis (PCA) was explained by [Hotelling (1933)]. [Gower (1966)] evaluated
the relation between PCA and some statistical techniques. [Hawkins (1973)] recognized an error in
multivariate data by PCA. [Fomby et.al (1978)] used the properties of PCA in least squares constrains.
[De Leeuw (1986)] explained nonlinear PCA. [Marx (1992)], introduced a spectral of scale explanatory
variables that is defined by scale parameter o and is named quasistandardization. Scaling parameter
values between zero and one lead to an interpolation between correlation and covariance matrices.
[Marx (1992)] used PC and quasistandardization methods for a mine data set. [Boente et.al (2010)]
focused on detecting influential observations in PC method and its structure. [Boik (2013)] applied
PC method by paying attention to constraints on correlation matrix.

Ridge regression was explained by [Hoerl and Kennard (1970)], and [Schaefer et.al (1984)] used
ridge estimator in logistic regression. [Kibria and Saleh (2012)] and [Roozbeh and Arashi (2013)]
applied it in a probit regression model and partially linear model.

Stein estimator was introduced by [Stein (1960)] and [Schaefer (1986)] used it in multiple logistic
regression. Also [Marx and Smith (1990b)] used ridge and Stein methods for a data set from
lake acidification. [Fisher and Sun (2011)] explained improved Stein-type shrinkage estimators in
multicollinearity condition.

[Wold (1984)] introduced PLS. [Escofier and Page's (1988)] evaluated the relation between PLS
regression and multiple factor analysis and [Pages and Tenenhaus (2001)] continued it. [Bastien
et.al (2005)] applied PLS method for a data set of bordeaux wines because of multicollinearity.
[Bjorkstrom (2010)] used Krylov sequences to compare PC and PLS methods in some aspects.
[Fujiwara et.al (2012)] introduced a new methodology to select variables for PLS method based on the
nearest correlation spectral clustering. [Zerzucha et.al (2012)] discussed dissimilarity PLS applied to
nonlinear modeling.

The study, therefore, uses quasistandardization method and PC logistic regression models after
identifying multicollinearity. Then, considering assessment indicators such as deviance and sum
of coefficients variance, the best a and the best model are selected. Then by using this «, other
methods such as PLS, ridge and Stein are applied to estimate model parameters. Finally, according
to this data set, the best method is identified to estimate the model parameters.

This article consists of 3 sections. Section 1 is an introduction and gives a brief overview of logistic
regression, introduces weighted multicollinearity diagnostics, and defines quasistandardization of
explanatory variables. Section 2 explains logistic regression biased estimation methods such as
PC, PLS, ridge and Stein methods. Section 3 compares these methods with a primary data set of the
largest industrial company in the Middle East.

1.1 Logistic Regression

There are many fields of study such as medicine and epidemiology, in which it is very important to
predict a binary response variable, or equivalently the probability of occurrence of an event (success),
in term of the values of a set of explanatory variables related to it.
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Let X1, X2, ...X, be a set of continuous variables observed without error and let us consider n times of
observation of such variables that will be resumed in the matrix X' = (zi;),,, - LetY = (y1, 92, ..., yn)’
be a random sample of a binary response variable Y associated with the observation in X, that is,
yi: € {0,1}, i = 1, ...n. then, the logistic regression model is given by

Yi = T + € i=1,2,...,n, (1.1)
,where = is the expectation of Y given (X1 = z;1, X2 = zi2, ..., X, = zp) that is modelized as

6504—25:1 ;05

WZ:P{Y:1|X1:x“,Xg:mig,...,Xp:wip}: (12)

14+ 6[30+Z§-’:1 zi; 065

where fo, B1, . . ., Bp are the parameters of the model and ¢; are zero mean independent errors whose
variances are given by Varle;] = m(1 —m) i=1,2,...,n
Once the model has been estimated, its goodness of fit must be tested. The most usual method to

solve the test
Ho:li=PBo+ Y0 ;8 (i=1,2,...,n)
Hy:li # o+ 320 258 (some i)

is based on the Wilks statistic (Deviance) defined as —21n A, with A that is the usual likelihood-ratio
statistic. The deviance is given by

— N

Zyzln + (1= ) (2] e X0y (1.3)

This statistic has approximately a chi-squared distribution.
The diagonal matrix Vcontains variance of the estimated ) values. The matrix ¢ = X'VXis
named the information matrix. Denoted ® = X’V X as estimated information matrix, in other words

$ = §'Sthat § = V2 X. Then we have Var(3) = &!

1.2 Weighted Multicollinearity Diagnostics for Logistic Regression

The logistic model becomes unstable when strong dependence exists among explanatory variables,
so it seems that no variable is important when all others are in the model(multicollinearity). To develop
suitable diagnostics for multicollinearity and have a standard of comparison, scaling of the information
matrix is preferred. These diagnostics were mentioned in [Marx and Smith (1990a,b)].

Weighted Condition Number
Consider A, ..., A% as the ordered eigenvalues of &* = S+'$*, so that

Sp = L7, (1.4)

and S; — X

n

*
)‘maa:

1 .
k]':(T)z 7]:1727"'51)
J

Large values of k; (> 30) indicate ill conditioning.
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Weighted Variance proportion

Let m;., as the juth member of eigenvectors matrix of ®. The weighted proportion of variance
for the jth estimated coefficient can be expressed as

o m?u/A::

wj CJ i
that Cj; = >0, )\Tflm?u. A small eigenvalue (relative to the maximum eigenvalue) responsible
for at least two large proportions suggests that weighted multicollinearity is damaging desirable
properties of the logistic regression. For example, if w32 and ws4 are large (near one), it will be
related to multicollinearity where 3, and 3. variances will inflated.

1.3 Quasistandardization of Explanatory Variables

[Marx (1992)] introduced a class of PC estimators for generalized linear regression defined by scaling
parameter. The additional parameter allows a spectrum of standardized explanatory variables which
can result in interpolation between correlation and covariance matrices. Choice of the scaling parameters
depends on the researcher’'s objectives for the model.

Consider X = (z;;)nxp as @ matrix of continuous explanatory variables, then define:

o -1 _
Taij = q; " (n—1)72 (255 — T;)

n

G =mn-1)"" (v, —7) (1.5)

i=1

Denoted X, = (Zaij), Xo = [1|Xa]. The parameter « allows a spectrum of scaling. He indicated that
in practice it may seem unnatural to use parameter values outside the unit interval.

2 Biased Logistic Regression Estimators

Using Taylor series arguments, it can be shown that the maximum likelihood (ML) parameter estimates
are asymptotically unbiased. In making certain adjustments to ML, asymptotically biased parameter
estimates can be constructed. PC, PLS, ridge and Stein, asymptotically biased estimators, are
presented in this article.

2.1 A Continuum of Principal Component Estimators

Sample principal components (PCS) are orthogonal linear spans with maximum variance of the X,
matrix columns, denoted by Z.; = Xomaj, Where mq1, maz, ..., mqp are the eigenvectors of the
sample information matrix &, = X, V. X,, which are associated with corresponding eigenvalues
Aal > Aa2 > ... > Aap Of the &,,.

The logistic regression can be expressed in terms of PCS.

La = Xa/ga = ZaM.;Ba = Za’\/a
As a result of the invariance property of ML estimations we have:

Axpe A *pC
[e3 - MOL’Ya
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then, the prediction equation will be Y = IIP¢ where [I:P° = (#1P¢,#27¢, ... #°). This model in
terms of a specific subset (s) of principal components is,

La(s) = Zoz(s)’Ya(s) = XOAMa(s)rYa(s) = Xotﬂa(s)

where we have R

Batey = Ma(o)¥als) (2.1)
For different values of « we can have different PC estimators.
This method is able to handle multicollinearity among the explanatory variables. Also it can make for
stronger predictions. On the other hand, there is a difficulty to interpret the coefficients of the new
PC components. And This method is sensitive to the scales of explanatory variables, they need to be
normalized before computing the PC components.

2.2 Partial Least Squares Logistic Regression Estimator

Partial Least Squares Regression

PLS regression is used to study the relationship between a numerical response variable and a
set of k explanatory variables in situations in which multiple regression is unstable or not feasible at all
(strong multicollinearity, small number of observation compared to the number of variables, missing
data). We can encounter the same kind of problems also in logistic regression and, more generally
when using a generalized linear model.
PLS regression defines PLS components given by linear spans of the explanatory variables and uses
them as new explanatory variables of regression model.
PC regression and PLS regression differ in the methods used in production of new components. PC
regression produces the PC given by the covariance structure between the explanatory variables,
while PLS regression produces the PLS components given by covariance structure between the
explanatory and response variables.
PLS method is able to model multiple response variables as well as multiple explanatory variables.
And it can handle multicollinearity among the explanatory variables. Also it is robust in face of
missing data and it can make for stronger predictions. On the other hand, it is difficult to interpret
the coefficients of the new PLS components. And because the distributional properties of estimates
are not known, the researcher can not assess significance except through bootstrap induction. Also
there is no test model statistic.

PLS Generalized Linear Regression (PLS — GLR)
With this constraint that PLS components t;, = Z§:1 wj,x; are orthogonal, PLS generalized

linear regression of Y on 1, x2, ..., x, with m components is written as
m p
9(©) =Y en(d wijz;)) (22)
h=1 j=1

where w}; are achieved by the covariance structure between ) and x;. The parameter © may be
either the mean of a continuous Y, or the probability vector of the values taken by a discrete variable
Y. The link function g is chosen by the user according to the probability distribution of Y and the
model goodness of fit to the data.

PLS-GLR Algorithm
The algorithm consists of four steps:
1- computation of the m PLS components t, (h=1,2,...,m).
2- generalized linear regression of ) on the m retained PLS components.
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3- expression of PLS-GLR in terms of the original explanatory variables.
4- Bootstrap validation of coefficients in the final model of PLS-GLR.
All these steps were expressed in [Bastien et.al (2005)].

2.3 Ridge Logistic Regression Estimator
[Schaefer (1986)] suggested:

BRidge(k) = (X;VaXa + kl)ilX;VaXaB (23)

The choice of k is subjective, however [Schaefer (1986)] recommended a harmonic mean method,
k= Btl,
B3

Ridge method has fast and simple computations and interpretation of the coefficients is clear.

2.4 Stein Logistic Regression Estimator

[Schaefer (1986)] suggested an extension of the [Stein (1960)] estimator for logistic regression.
Consider shrinking the ML estimate as follows:

Bstein = cAur (2.4)
where 0 < ¢ < 1. The purpose of Stein estimation is to shrink both the estimated parameter vector,
and the associated standard errors, by a simple scaling technique. C'is chosen, which minimizes the
E(L?*) = (¢ — B) (¢ — B) criterion (with respect to c), it will be:

_ (5'5)

B'B + trace(dz1)
properties of Stein method is similar to the ridge method. And also there is no main disadvantage For
both of them.

3 Example

The objective of the study is to predict the suitable formability of steel sheets based on five explanatory
variables according to a primary data set of the Middle East’s largest industrial complex:

x1: yield strength (N/mm?)

x2: final tensile strength (N/mm?)

x3: silicon (percent)

x4: aluminium (percent)

x5 nitrogen gas (percent)

Formability is checked by bending test with the angle of zero degree, and if there will no cracks on
the steel sheet it will be a success. The steel sheet data set includes 50 observations. At first, the
data set is evaluated about multicollinearity. The result is given in table (1).

Table 1: Variance proportion decomposition
E — value k; intercept x xo T3 T4 x5
5.2711 1.0000 0.00013 0.0006 0.00020 0.0048 0.0055 0.0037
0.3508 3.8765  0.00004 0.0014 0.00003 0.2099 0.2646 0.0272
0.2096 5.0154  0.00000 0.0018 0.00002 0.2902 0.0895 0.3153
0.1449 6.0313  0.00523 0.0078 0.00703 0.0746 0.3774 0.1869
0.0215 15.6736  0.00330 0.5303 0.08123 0.0783 0.1091 0.0792
0.0022 49.0917 0.99130 0.4581 091149 0.3422 0.1539 0.3877
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The decomposition matrix has a last row of variables some are nearly one and also there is a large
condition number (> 30) with the smallest eigenvalue of the information matrix. Both of them indicate
multicollinearity. In table (2) and (3) the effects of multicollinearity can be seen on ML parameter
estimators.

Table 2: Analysis of maximum likelihood estimates

parameter df estimate standard wald pr > chisq
error chi — square

intercept 1 23.1101  12.8375 3.2407 0.0718
X 1 —0.0256 0.0400 0.4095 0.5222
Xo 1 —0.0688 0.0326 4.4596 0.0347
X3 1 —0.1397 0.1306 1.1451 0.2846
X4 1 0.0430 0.0457 0.8836 0.3472
X5 1 0.1050 0.0618 2.8825 0.0895

Table 3: Cross-table of observed and predicted response

observed predicted
response 0 1 sum
0 2 6 8
1 2 40 42
sum 4 46 50

According to p — value, only the explanatory variables x, x5 are statistically significant at the risk
level of 0.1. Also we have a high percentage of misclassified responses (16%), that we compute
them by assigning to the most probable level of response. Then we compute PC, PLS, ridge, Stein
estimators.

For every « € [0, 1.2], PC estimator with one, two, ... PCS with maximum variances and also forward
stepwise estimator are calculated , for example, in figure (1) and (2), it can be seen. Deviance value
and sum of coefficient variances are displayed for o = {0.3,0.9,1 1.2}.
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0 T T T T T T
PC1 PC2 PC3 PC4 PCS  STEP ML

——a=03 ——q=08 a=1 =12

Figure 1: deviance of estimators in terms of «

85 &8 3 8

o

PC1 PC2 PC3 PC4 PC5S SEP M

| —+—a=03 ——a=09 a=1 a=12 |

Figure 2: sum of coefficients variance for estimators in terms of «

By increasing every a € [0,1.2], the reduction in the amount of sum of coefficients variance and
deviance is evident. We can show two previous figures in other shapes (3) and (4).
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0 — T T T 7T T —

12 3 4 5§ 6 7 8 9 1011 1213

- PC1 PC2 PC3 ——PC4

—--PC5 ——step — ML

Figure 3: deviance of estimators

o P
0 T8 e T8  Eea o ma o pa oy o

12 3 45 6 7 8 91011213

-=—-PC1 PC2 PC3 ——PC4

—--PC5 ——step — ML

Figure 4: sum of coefficients variance for estimators

It can show PC estimators with 4 and 5 PCS have deviances near to deviance of ML estimators.
The sum of coefficients variances of these two estimators is a bit more than other PC estimators, but
these variances are less than deviances of ML estimator. Then we select PC estimators with 4 and 5
PCS with o = 1 as candidates.
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Also [Aucott et.al (1984)] considers that the best estimator for the parameter vector is before a sudden
increase of this variance. Then by paying attention to information in table (4) we can select PC
estimators with 3 PCS as a another candidate.

Table 4: Deviance and Sum of coeflicients variance ol pc estimators for a = 1

pc estimator deviance sum of coefficients variance
pcl 45.5765 0.17290
pc2 40.2760 15.5324
pc3 40.1439 30.5148
pcd 34.2186 78.2309
pch 33.0874 87.7345

Furthermore, we obtain PLS, ridge and Stein estimator with o = 1.
PLS Logistic Estimator
At first we compute PLS components. We should fit regression of response variable on every

explanatory variable. Due to the results of these regressions, in table (5), all explanatory variables
are significant at the risk level of 0.1.

Table 5: Coefficients and P-values logistic regressions of response on every explanatory variable

explanatory variable coefficient p — value
T —4.8894 0.1000
T2 8.1893 0.0108
T3 4.9059 0.0596
T4 —4.6026 0.0884
s —6.8512 0.0484

then we have component ¢

—4.8894x1 4 8.1893x2 + 4.9059x3 — 4.6026x4 — 6.8512x5
/(4.88942 + 8.18932 + 4.90592 + 4.60262 + 6.85122)
= —0.3613x1 + 0.6051x2 4 0.3625x3 — 0.3401x4 — 0.5062x 5

t, =

For computing t2, we should fit regression of response variable on ¢; and every explanatory variable.
The results of these regressions are reported in table (6).
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Table 6: Coefficients and P-values logistic regressions of response on every explanatory variable
and tl

explanatory variable coefficient p — value
1 8.3871 0.1708
o 3.5162 0.3896
T3 —0.9774 0.7902
4 1.5241 0.6884
5 —1.0733 0.7831

Considering p — values, none of the explanatory variables is significant for ¢, structure. Then the
model has one component. After fitting regression of response variable on ¢, we rewrite ¢; based on
explanatory variables and, the result is reported in table (7).

Table 7: Regression ol response variable on ¢; component

variable df parameter standard wald p — value
estimation error chi — squre

intercept 1 2.1695 0.5477 15.6928 < 0.0001

t 1 —8.3026 3.1436 6.9756 0.0083

Moreover we apply mentioned non-parametric validation with B = 1000 for coefficients of PLS logistic
regression according to the steel sheets data set and, it is displayed in figure (5).

T T T T T

x1 X2 X3 x4 X5

Figure 5: 95% Randomized/balanced bootstrap confidence intervals for parameters

Regarding confidence intervals and having no zero in these intervals, it can show that all explanatory
variables are significant. Finally all estimators of parameters become non Quasistandardized.

In tables (8) and (9) the results such as estimated parameters and standard deviation of estimators
based on all mentioned methods are reported, also in table (10), we have deviance and sum of
coefficients variance for estimators.
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Table 8: Estimated parameters by different methods

parameter
vector ML pc3 pcd pch
Bo 23.1101  —4.4603 6.2763 8.7784
b —0.0256 0.0173 0.0263 0.0332
3o —0.0688 0.0045  —0.0379  —0.0459
B3 —0.1397  —0.0277 0.0286  —0.0194
B4 0.0430 0.0207 0.0336 0.0057
Bs 0.1050 0.0197 0.0119 0.0284
stepwise pc ridge stein pls logistic
Bo 21.3561 11.3581 15.0609 7.9961
5 —0.0331 0.0011  —0.0167 0.0234
o —0.0616 —0.0397  —0.0448  —0.0415
s —0.1061 —0.0619  —0.0911  —0.0989
4 0.0714 0.0225 0.0280 0.0318
Bs 0.0822 0.0504 0.0684 0.0572

Table 9: Estimated standard deviation by different methods

standard deviation

vector ML pc3 pcd pch
SEBo) 12.8375 55233 88442  9.3658
SE(f) 0.0400 0.0130 00151  0.0174
SE(Bs) 0.0326 0.0050  0.0277  0.0294
SE(fs) 0.1306 0.0825  0.0001  0.1078
SE(Bs) 0.0457 0.0179  0.0197  0.0396
SE(fs) 0.0618 00344  0.0348  0.0403
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stepwise pc ridge stein pls logistic
SE(fo) 11.8460 7.5051 8.3663 10.6281
SE(f) 0.0390 0.0193 0.0261 0.0366
SE(f,) 0.0307 0.0209 0.0212 0.0277
SE(fs) 0.0895 0.0811 0.0851 0.1215
SE(B4) 0.0300 0.0280 0.0298 0.0403
SE(Bs) 0.0486 0.0340 0.0403 0.0532

Table 10: Deviance and sum of coefficients variance by different methods
ML pc3 pcd pch
deviance 29.2748 40.2739 34.2186 33.0874
sum of coefficients variance 164.8277 30.5148 78.2309 87.7345

stepwise pc ridge stein pls logistic
deviance 30.0249 31.1422 31.6766 31.6144
sum of coefficients variance 140.3416 56.3354 70.0054 112.9771

4 Conclution

a In the section (4), table (9) shows standard deviation for 3, of all estimators still are inflated,
especially for forward stepwise and PLS logistic estimators, that are the same as it is for ML
estimator.

b Table (8) shows that forward stepwise and Stein have the same sign. Also PLS logistic, PC with 5
PCS and ridge estimators have another same sign.

¢ Table (10) shows by order, forward stepwise, ridge, PLS logistic, Stein and PC estimators with 5,
4, 3 PCS have the less deviances after ML estimator. Also by order ML, forward stepwise,
PLS logistic, PC estimators with 5, 4 PCS, Stein, ridge and PC estimator with 3 PCS have the
maximum sum of coefficients variances.

Choice of which method is better depends on the purpose of the method. good parameter
estimates and good prediction ate two different aspects of the model. With complex data, we
do not expect a single model to be the best for all purposes.

According to this steel sheet data set, PC estimator with 3 PCS, ridge and Stein with regard
to deviance, have deviances near to ML estimator's deviance and their sum of coefficients
variances are much less than that of ML estimator.

Multicollinearity may lead to have parameter estimation with sign that has conflict with expected
sign in reality. Based on this steel data set, multicolinearity has no effect on the sign of ML
estimator. For example, according to expert opinions we expect x; (yield strength) and x-
(final tensile strength) appear with negative signs in model. Consequently, it seems Stein
estimator is the most reliable one among the three mentioned estimators (Stein, ridge and PC
estimator with 3 PCS).

All these methods can substantially reduce the variance of the estimated coefficients and
prediction variance for future observations outside the mainstream of weighted multicollinearity.
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