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ABSTRACT  17 

 18 

The degradations induced by the external conditions are ordered by defining several classes 
of exposure for the corrosion risk, depending on the environmental actions and concrete 
work conditions. Minimal concrete covers requirements are associated with these classes. 
Among these classes, there is that corresponding to the corrosion induced by carbonation 
(XC), which applies to the reinforced concrete exposed to the air and moisture 
The aim of this paper is the evaluation of carbonation time (T1), which is the time necessary 
so that the face of carbonation arrives until the reinforcement from a probabilistic analysis. 
Monte Carlo simulations are realized under the assumption that the Water /Cement ratio, the 
relative humidity, and the pressure of the carbonic gas on the surface of the concrete are 
random variables with a log-normal probability distribution.  
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 23 

1. INTRODUCTION  24 

 25 

Carbonation reaction is due to the calcium carbonates formation by reaction between 26 
cements and atmospheric carbon dioxide (CO2) present in the air , this reaction involves the 27 
consumption of alkaline bases present in the interstitial solution of the concretes leading to a 28 
reduction in the pH from 13 to lower than 9, the corrosion of the reinforcements can be 29 
initiated by the carbonation reaching the reinforcement faces, and a steel depassivation 30 
occurs by the reduction in the pH around 9 [1].  31 
 32 
Studies of corrosion in reinforced concrete structures require very large specimens due to 33 
the heterogeneous structure of the concrete. 34 



The deterministic models consider the action of carbon dioxide on the concrete compounds 35 
comprise some limits related to the random variation of the input model parameters, 36 
because carbonation parameters should be measured at many locations [2,3,4]. Indeed, the  37 
precise knowledge of these parameters requires a probabilistic approach enable to modeling 38 
the uncertainties and analyzing their dispersion effect [4]. 39 
In this paper, a probabilistic formulation is applied to carbonation phenomenon, and statistics 40 
regarding carbonation time are investigated by performing a parametric analysis which 41 
integrates the influence of variation coefficient of relative humidity, water to cement ratio and 42 
carbonic gas pressure. 43 
 44 

2. Probabilistic analysis of concrete carbonation time 45 

 The carbonation reaction arises as follows: 46 

CO2   + (OH)2       H2O + alkaline bases      CaCO3+H2O       (1) 47 

The electro chemical process arises as follows: 48 

                          Fe + O2/2 + H2O       Fe
2+ 

+ 2(OH)
- 
                        (2) 49 

 50 

The Figure.1 illustrates the corrosion rebar process in concrete. 51 
The corrosion of the reinforcements can be initiated by the carbonation reaching the 52 
reinforcement faces, this reaction leading to a reduction in the pH from 13 to lower than 9, 53 
and a steel depassivation occurs by the reduction in the pH around 9.  54 
 55 
  56 

 57 

Fig. 1: corrosion rebar process in concrete [5]. 58 

 59 

2.1 Carbonation time ( 1T ) 60 

The carbonation rate can be determined from historical data and laboratory testing and the 61 

progression of depassivation with time can be calculated [3]. The carbonation time ( 1T ) is 62 
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the time required for the face of carbonation to reach the steel, i.e. the time of the beginning 63 
of corrosion. This corresponds to the case where the carbonation depth is equal to the 64 
concrete cover (d). 65 
 66 
 The Duracrete carbonation model describe the carbonation time by this equation:[6] 67 
 68 
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Where  70 
-   a  is the quantity of material carbonated given by: 71 

 72 

cao

COhch

M

MCH
a 2
                                                                                (4) 73 

2COM  and caoM  are the molar masses of carbonic gas and calcite;  74 

h  is the degree of hydration of cement; %80h  75 

CH  is the quantity of the cement Portland; 76 

 ch  translates the relation of the portland likely to react; %85ch  77 

-   d is the coating,.(d=3) 78 

-  ek  is the factor of environment given by 79 
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81 

absRH  and labRH  are the absolute and laboratory relative humidity, respectively.  82 

absRH = 75%, labRH  = 65%.   83 

 84 

-  ck  is a parameter taking account of the conditions of curing compound concrete, given by: 85 
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Where ct  is the duration of cure, ct = 1day and ck = 3 87 

 88 

- effD  is the effective coefficient of diffusion of CO2   89 

  2.28.16 16410.1 RHD ceff   
 

90 

 (7) 91 

c is the porosity of the paste of the carbonated concrete  92 

 93 

For the composition of concrete proposed, the effective coefficient of diffusion can be 94 

estimated at effD = 0.46 10
-8

 m
2
/s, with a value of porosity c =0.5 95 

 96 
 -  Cs is the CO2 pressure on the surface of the concrete, Cs =6.1 kg/m

3
 97 

-  T the expiry considers (year),  98 



-  t0 is the reference period (28 days),  99 

-   is the meso-climatic factor =0.1 100 
 101 

2.2 Probabilistic analysis 102 
 103 

The randomness effect analysis of the Water /Cement ratio (W/C), the relative humidity 104 
(RH), and pressure of carbonic gas (Cs) on the reinforced concrete carbonation 105 
concentrates on the evaluation of carbonation time (T1), which is the time necessary so that 106 
the face of carbonation arrives until the reinforcement from a probabilistic analysis. 107 
The parameters of the lognormal distribution of W/C, RH and Cs are expressed as. [7,8] 108 
         109 
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 113 
 114 

Where ( CW / ,
2

/ CW ), ( RH ,
2

RH ) and ( Cs ,
2

Cs ) are statistics (mean and variance) of 115 

W/C, RH and Cs, respectively. 116 
 117 
Monte Carlo simulations are realized, 10000 independent samples of the parameters W/C, 118 
RH and Cs with a log-normal distribution are generated, and the deterministic numerical 119 
procedure is applied to each individual simulation, providing 10000 values of the time 120 
carbonation parameters [9-10]. 121 
 122 
Finally, statistics of the time factors (mean, standard deviation and confidence interval) are 123 
calculated. 124 
 125 
 126 

3.   Results and discussion 127 

 128 
The mean values (μ) and the coefficients of variation (Cv) of the different parameters were 129 
estimated respectively from Model Code FIB proposals. [11] 130 
 131 

CW / =0.5                   CWCv /  varies between 0 and 0.5.  132 

65.0RH .               RHCv  varies from 0 to 0.01 133 

Cs  = 6.1 kg/m
3             

 CsCv

  

varies between 0 and 0.5.  134 

 135 
 136 
The behavior of the coefficient of variation of carbonation time versus the number of 137 
realizations is also investigated, Figure 2. And the convergence of the final settlement 138 
coefficient of variation is observed for a number of realizations Nsamp around 300, this 139 
number is chosen equal to 10000. [12] 140 
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 150 

Fig.2. Carbonation time coefficient of variation versus W/C, Cs and RH. 151 



The Chi-Square goodness of fit test is used to evaluate the fit of the assumed carbonation 152 
parameters probability distribution [13] and the shape of the corresponding histograms 153 
suggests a log-normal distribution, which is adopted in this study, Figure 3.  154 
 155 
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(a). Probability                         (a). Probability density function of the carbonation time versus W/C. 
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(b). Probability density function of the carbonation time versus Cs. 
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(c). Probability                        (c). Probability density functions of the carbonation time versus RH. 
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(d). Probability density function of the carbonation time versus     W/C,Cs and RH. 
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Fig. 3: Probability density function of the carbonation time versus W/C, Cs and RH. 158 
 159 

160 



As the coefficient of variation CWCv /  varies from 0 to 0.5, a decrease in the mean value of 161 

the carbonation time of 3.71% is observed, see Figure.4.  162 
 163 
The confidence interval is important, and constant, indicating that water to cement ratio 164 
variability affects the dispersion of the carbonation time, with a weak effect on the mean 165 
value. 166 
 167 
The speed of concrete carbonation depends mainly on the dioxide carbon penetration inside 168 
the cement matrix. Indeed, the diffusion of carbon dioxide through the porous structure of 169 
concrete is determined by the Water to cement ratio and porosity. More W/C ratio is greater, 170 
more the amount of free water that can evaporate is important. By evaporation, the water 171 
leaves voids and promotes the diffusion of carbon dioxide through the pore network, for a 172 
significant porosity and the quantity of carbon dioxide released into the pores is important 173 

and time necessary of carbonation 1T  is short 174 

 
175 

The carbonation of concrete has an impact on the effective coefficient of diffusion,   this 
176 

coefficient is decreased after the carbonation, and the interaction between the carbon 
177 

dioxide ions and the surface of calcium silicate hydrates (CSH) negatively charged forms a 
178 

double layer electric on the surface pores and slows the CO2 diffusion [14- 15].  
179 

 
180 

The variation of  CsCv  can be observed in Figure.5. Mean value of the carbonation time 181 

increases from 4.51 to 6.17 hours (37%), which indicates that the uncertainty in the CO2 182 
concentration causes a delay in the carbonation process.  183 
 184 
The reaction of hydrated composed of concrete with carbon dioxide induces production of 185 
water, more the amount of carbon dioxide released into the pores is greater, more the 186 
quantity of water formed during carbonation is important, this training will also disrupt the 187 
process in the direction of slower reactions and increase the carbonation time. One notices 188 
an important increase of the standard deviation with parabolic curve.  189 
 190 
As the Monte Carlo simulations generate samples with broad values and as the coefficient 191 

RHCv

 

varies from 0.0 to 0.1, mean carbonation time increases from 6 to 6.20 hours (2.77%), 192 

with an important value of its confidence interval, as showed in Figure.6. The standard 193 
deviation curve shows a strong increase with linear variation. 194 
 195 
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(a) Mean  time of carbonation versus W/C coefficient of variation.       (b) Mean time of carbonation versus  W/C coefficient of variation.   
 

(c) STD time of carbonation versus W/C coefficient of variation.   (d) STD time of carbonation versus  W/C coefficient of variation.   
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Fig. 4: Carbonation time statistics and Confidence intervals versus W/C coefficient of variation. 
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(a). Mean time of carbonation versus Cs coefficient of variation.    (b). Mean time of carbonation versus Cs coefficient of variation. 
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Fig. 5: Carbonation time statistics and Confidence intervals versus Cs coefficient of variation. 
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Fig. 1. Effect of different doses of aqueous extract of Folk Recipe (100, 200, 300 mg/kg) 303 
on blood glucose levels at different time intervals in normal rabbits 304 

Test drugs:  significant from normal control, * P < 0.05; ** P < 0.001 305 
Mean ± S.E.M = Mean values ± Standard error of means of six experiments 306 

 307 

(a) Mean time of carbonation versus RH coefficient of variation.        (b) Mean time of carbonation versus RH coefficient of variation.   
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(c) STD time of carbonation versus RH coefficient of variation.        (d) STD time of carbonation versus RH coefficient of variation.   
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(e) Confidence intervals of Mean versus RH coefficient of variation.     (f) Confidence intervals of STD versus RH coefficient of variation. 

Fig. 6: Carbonation time statistics and Confidence intervals versus RH coefficient of variation. 

 
 



The effect of large values of relative humidity is preponderant over the small values. 308 
Variability of RH causes a delay in the carbonation process with an increase in the 309 
corresponding time with RH. High relative humidity values correspond to a high degree of 310 
saturation of pore, the diffusion processes of carbon dioxide to the surface reactive minerals 311 
becomes extremely low and the associated reaction mechanisms largely unavailable. 312 
A remark can be made here, the coupled effect of the three parameters uncertainty 313 
stabilizes the time of carbonation, see Figure.4.e, 5.e, 6.e, indicating that the parameters’ 314 
randomness act in opposition.  315 
 316 
 317 

4. CONCLUSION 318 

 319 
Statistics values of the carbonation time are independent of the W/C coefficient of variation. 320 
Indeed, this parameter has an important influence on the interconnection of the porous 321 
network, and consequently on the permeability of the concrete and the diffusivity of CO2 322 
within it. 323 
 324 
Variability effect of carbonic gas concentration on the carbonation time is weak; it can be 325 
assumed as deterministic for carbonation time. 326 
 327 
Variability of the water to cement ratio and the relative humidity influences slightly the 328 
carbonation time, whereas the Carbonic gas concentration heterogeneity controls the speed 329 
of carbonation by causing a delay in the carbonation process, whereas uncertainties in the 330 
three parameters instantly stabilize this time. 331 
 332 
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