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ABSTRACT

Background: Ischaemia-reperfusion injury (IRl) is an underlying condition in cardiovascular
disease such as arthrosclerosis and stroke, and occurs during surgery that involves the
application of a tourniquet. These clinical conditions are extremely prominent in the United
Kingdom. This pilot-study aimed to determine the effects of mild tourniquet induced IRI on
specific haematological, haemostatic and inflammatory parameters.

Patients and Methods: An in-vivo model of mild tourniquet induced IRl was performed on
15 volunteers (n=15). Tourniquet pressure was set between 20-40 mmHg for 10 minutes
and rendered the arm temporarily ischaemic. Baseline venous blood samples were taken
prior to ischaemia, then following the release of the tourniquet at 7 minutes and 48 hours
reperfusion. The parameters investigated included: full blood count, von Willebrand factor
(VWF), sE-selectin, prothrombin time (PT), Interleukin-6 (IL-6), IL-8 and IL-10.

Results: The results demonstrated a significant increase in VWF following reperfusion
(p=0.005), and increasing trends of IL-6, IL-8 and sE-selectin concentrations (p=>0.05).
Decreasing PT, white blood cell and platelet counts were observed following IRI but were not
significant (p=>0.05).

Discussion and Conclusion: The study demonstrated that brief periods of IRI caused
changes to haematological, haemostatic and inflammatory parameters. Specifically, a
significant increase in vVWF concentration was observed following tourniquet induced IRI.
This suggests that changes to vascular integrity and that of endothelial activation may be
occurring.

The results of this pilot-study provide a basis for further exploration of haematological,
haemostatic and inflammatory parameters following IRI, which may increase our knowledge
and understanding of a subject area that is not fully understood. Ultimately, further studies
may highlight areas of therapeutic intervention for the underlying occurrence of IRI in
pathological conditions, such as cardiovascular disease (CVD) and surgeries that involve the
application of a tourniquet. These predictors, however, need further work to validate
reliability in a clinical setting.
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1. INTRODUCTION

Organs and tissues require oxygenated blood to support cellular viability but the restriction or
disruption of this nutritional blood supply is deemed as ischaemia, which can result in cellular
dysfunction and necrosis [1]. Short term ischaemia causes only mild, reversible cellular
damage if blood flow is returned promptly [2]. Yet peculiarly restoring blood flow to prevent
permanent injury can result in greater injury to tissues and cells than that of the original
ischaemia. This event is known as ischaemia-reperfusion injury (IRI) and can produce
damage at a local and systemic level [3]. IRl is a common underlying clinical process that
occurs in diseases such as stroke, myocardial infarction and atherosclerosis whereby blood
passage is restricted and then reperfused during treatment [4]. Cardiovascular diseases
(CVD) are the leading cause of death in the United Kingdom, accounting for one in three of
all deaths totaling 191,000 each year [5]. Other occurrences of IRl include surgical
procedures that involve the use of a tourniquet to create a bloodless field, such as
orthopaedic knee and hip surgeries, and organ transplant whereby the ischaemic donated
organ is reperfused once positioned within the recipient.

The factors causing IRI can be divided between biochemical changes during the period of
ischaemia and those that occur upon reperfusion of the oxygenated blood. The disruption of
oxygenated blood to tissues and organs alters their metabolic activity, causing biochemical
changes at the cell surface, within the cytosol and in mitochondria [6, 7]. These prior
biochemical changes are important factors that predispose tissues to undergo free radical
damage upon reperfusion of oxygenated blood. As the oxygenated blood comes into contact
with the vascular endothelium, superoxide is produced which stimulates changes. Nitric
oxide (NO) is an endothelium derived product that provides protective measures such as
reducing reactive oxygen waste and inhibiting the production of pro-inflammatory cytokines.
During IRI, the imbalance of superoxide radicals reduces NO and removes the protective
buffer, creating an environment appropriate for a pro-inflammatory response to occur.

Previous research investigating the effects of IRl on various haematological, haemostatic
and inflammatory changes has encompassed some of the cell adhesion molecules, the
cytokine cascade and endothelium derived molecules [4, 8, 9, 10]. Specifically, interleukin-6
(IL-6) and IL-8 are inflammatory cytokines which have been reported to be up-regulated
following IRI as described by Moro et al (2007) and Huda, Solanki & Mathru (2004) in a
clinical setting [11,12]. von Willebrand Factor (vWF) and sE-selectin have also been reported
to increase in concentration as a response to endothelial activation, a key concept of IRI [13,
4, 8]. However, these papers largely focus on one of these areas, rarely exploring the causal
relationship between haematology, haemostasis and inflammation in response to IRI.

This pilot-study aimed to investigate the effects of mild-tourniquet IRl on haematological,
haemostatic and inflammatory markers. Full blood counts were used to determine if IRI
caused any significant changes to haematological parameters. The haemostatic response
was measured by investigating vVWF, sE-selectin and prothrombin time (PT), whilst the
cytokines IL-6, IL-8 and IL-10 were monitored to measure the inflammatory response
following IRI.

2. METHODOLOGY
2.1 Subject Volunteers
Ethical approval (Re: 771/13/RE/BS) for this study was permitted from the Faculty of Life

Sciences Research Committee (FREC), University of Chester. All recruited volunteers
initially completed a health questionnaire and their blood pressure (BP) recorded. Any
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individuals with a history of diabetes or cardiovascular disease were excluded from the
study, as were individuals with either low or high BP readings. 15 healthy volunteers were
recruited for the study after informed consent (n=15). The volunteers participating in this
study were aged between 20 and 45 years old (mean age 28.07 + 7.25 years; gender 13
males and 2 females).

2.2 Blood Samples

Venous blood samples were collected into vacutainers containing di-potassium ethylene
diamine tetra-aceticacid (EDTA), tri-sodium citrate and serum clot activator. Subject plasma
was obtained by centrifuging whole blood samples at 450¢g for 15 minutes, following which
all plasma samples were stored (-40°C), until required for the ELISA assays or semi
automated analysis.

2.3 Model of Ischaemia-Reperfusion Injury (IRI)

This model employed an adapted method of mild tourniquet induced forearm ischaemia-
reperfusion injury [4, 8, 14]. Venous blood samples were taken prior to commencing the
investigations from the contra-lateral arm, which stood as a control measurement (baseline)
for that particular individual. A sphygmomanometer was then placed around the upper
experimental arm and inflated to approximately 20-40 mmHg for ten minutes, as described
by others [14, 4, 8]. This procedure reduced blood flow to the arm (ischaemia). The cuff was
then removed to allow full blood flow to the arm (reperfusion). Further blood samples were
then collected at 7 minutes and 48 hours reperfusion.

2.4 Measurement of Haematological Parameters (WBC, RBC, MCV, Hb, HcT &
Plts)

Full blood counts were performed using a Coulter® MicoDiff18 automated cell counter
(Beckman Coulter, U.K.).

2.5 Measurement of Endothelial and Haemostatic Function (sE-selectin, VWF
& PT)

Measurement of sE-selectin was performed using commercially available kits supplied by
R&D Systems Europe, and involved using ELISA assay as described by the manufacturer
(R&D Systems, Catalogue # SSLE00).

Plasma vWF concentration was measured as described previously by a sandwich-type
ELISA technique, using rabbit anti-human vWF and rabbit anti-human vWF peroxidase
conjugate (Dako, UK), [15, 16, 4].

PT was measured using a Randox Monza semi-automated system as described by the
manufacturer’s instructions (Randox RX Monza Method Sheet: PTH 2752). Citrated samples
were used to measure PT, which is a haemostatic test that measures the extrinsic
coagulation pathway.

2.6 Measurement of Inflammatory Markers (IL-6, IL-8, IL-10)
Measurement of inflammatory markers (IL-6, IL-8, IL-10) was performed using commercially

available kits supplied by R&D Systems Europe, and involved using ELISA assays as
described by the manufacturer (R&D Systems, Catalogue # S6050; S8000C; S1000B).



108 2.7 Statistical Analysis
109 During this study, all results were presented as mean + standard errors (SE) or median = Iqgr.
110  Where data were normally distributed, repeated measures one-way analysis of variance
111 (ANOVA) between samples test was employed adopting a 5% level of significance. Post hoc
112  testing was conducted using the Tukey test for pairwise comparisons between means. Data
113  that did not comply with normality were analysed using the Friedman test. Where the
114 Friedman test resulted in statistical significance, subsequent tests were performed using the
115 Wilcoxon test. Statistical significance was accepted when p < 0.05.
116
117 3. RESULTS AND DISCUSSION
118
119 3.1. Measurement of Haematology (WBC, RBC, MCV, Hb, Hct and Plts)
120  Parameters
121 Following mild tourniquet induced ischaemia-reperfusion injury changes were observed in
122  several haematological parameters (Table 1). WBC, RBC and Hct demonstrated a
123  decreasing trend from baseline at both 7 minutes and 48 hours reperfusion (p=>0.05). MCV,
124 Hb and Plts showed very little change from baseline values after ischaemia-reperfusion
125  injury (p=>0.05).
126 Table 1: Effect of IRl on various haematological parameters. The points represent
127 mean/median + SE/Iqr, as determined by ANOVA or Friedman respectively. Significance accepted
128 p=<0.05, (n=15).
129
130 Legend: WBC — white blood cells; RBC — red blood cells; MCV — mean cell volume; Hb — Haemoglobin; Hct —
131 haematocrit; Plts - platelets
132
Parameter Baseline 7 minutes 48 reperfusion p-value (Significance
reperfusion p=<0.05)
WBC
(x10°/L) 6.43 + 1.66 6.37 + 1.64 6.11 +1.58 p=0.439
RB& 5.12+1.32 4.98 +1.29 497 +1.28 p=0.298
(x10'21L) A2 +1. 98 +1. 97 +1. .
'\Z'ff;’ 91.4+81.3 90.9 +81.8 91.2+81.6 p=0.06
Hb
(g/dL) 15.1£12.6 149 +11.7 15+12.3 p=0.692
?,Z; 46.06 + 11.89 44.87 + 11.57 4452 +11.5 p=0.115
Plts
(x109L) 215 +162 214+ 164 211 £ 161 p=0.819
133

134 3.2 Measurement of Endothelial and Haemostatic Function (sE-selectin, vWF

135 and PT)

136 3.2.1 sE-selectin concentration
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The results are expressed as pg/ml and represent changes in sE-selectin concentration
following mild tourniquet induced ischaemia-reperfusion injury (Figure 1). This parameter
was measured as marker of endothelial activation. Following ischaemia-reperfusion a trend
of increasing sE-selectin was observed (p=>0.05, as determined by the Friedman test).
Specifically, sE-selectin increased from baseline (33.46 + 18.12), at 7 minutes reperfusion
(35.13 £ 17.06) and peaking at 48 hours reperfusion (38.55 + 24.48).
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Figure 1: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
sE-selectin concentration. The points represent median + Iqr, p=>0.05 as determined by the
Friedman test. (n=15).

3.2.2 vWF

The results are expressed as IU/ml and represent the changes in VWF concentration
following mild tourniquet induced ischaemia-reperfusion injury (Figure 2). This parameter
was measured as marker of endothelial activation. Following ischaemia-reperfusion a
significant change in VWF was observed (p=0.005), as determined by ANOVA). Specifically,
VWF concentration increased from baseline (1.92 + 0.48) and during 7 minutes reperfusion
(3.02 £ 0.78). Following 48 hours reperfusion, VWF concentration decreased but remained
higher than those of basal values (2.59 + 0.67). Upon further analysis, pairwise comparisons
showed significant differences between baseline vs 7 minutes reperfusion (p=0.004).
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Figure 2: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
VWF concentration. The points represent mean + SE, p=0.005 as determined by ANOVA. Upon
further analysis, pairwise comparisons showed significant differences between baseline vs 7 minutes
reperfusion (p=0.004), (n=15).

3.2.3 Prothrombin Time (PT)

The results are expressed as seconds and represent the changes in PT following mild
tourniquet induced ischaemia-reperfusion injury (Figure 3). This parameter was measured as
marker of haemostatic function, specifically investigating the extrinsic pathway. Following
ischaemia reperfusion, a decrease in PT was observed from baseline (12.93 + 3.23) and at
48 hours reperfusion (12.49 + 3.23). This change was not significant (p=>0.05, as
determined by paired t-test).
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Figure 3: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
prothrombin time. The points represent median * Iqr, p=>0.05 as determined by the Friedman test.
(n=15).

3.3 Measurement of Inflammatory Markers (IL-6, IL-8 and IL-10)
3.3.11L-6

The results are expressed as pg/ml and represent changes in IL-6 concentration following
mild tourniquet induced ischaemia-reperfusion injury (Figure 4). This parameter was
measured as marker of inflammatory response. Following ischaemia-reperfusion a trend of
increasing IL-6 was observed (p=>0.05, as determined by the Friedman test). IL-6 increased
from baseline (1.22 £ 0.56), during 7 minutes reperfusion (1.52 £ 0.51) and peaking at 48
hours reperfusion (1.58 + 0.15).
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Figure 4: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
IL-6 concentration. The points represent median * Igr, p=>0.05 as determined by the Friedman
test. (n=15).

3.3.21L-8

The results are expressed as pg/ml and represent changes in IL-8 concentration following
mild tourniquet induced ischaemia-reperfusion injury (Figure 5). This parameter was
measured as marker of inflammatory response. Following ischaemia-reperfusion a trend of
increasing IL-8 was observed (p=>0.05, as determined by the Friedman test). IL-8 increased
from baseline (1.1 = 0.31), during 7 minutes reperfusion (1.57 + 0.31) and peaking at 48
hours reperfusion (1.88 £ 0.06).

IL-8 Concentration (pg/mL)

Baseline 7 Minutes Reperfusion 48 Hours Reperfusion
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Figure 5: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
IL-8 concentration. The points represent median * Igr, p=>0.05 as determined by the Friedman
test. (n=15).

3.3.31L-10

The results are expressed as pg/ml and represent changes in IL-10 concentration following
mild tourniquet induced ischaemia-reperfusion injury (Figure 6). This parameter was
measured as marker of inflammatory response. IL-10 decreased from baseline (2.23 + 0.62)
and during 7 minutes reperfusion (1.96 + 0.54). However, an increase of IL-10 to that above
baseline (2.65 = 0.74) was seen at 48 hours reperfusion. These changes observed in IL-10
concentration were not significant (p=>0.05, as determined by the Friedman test).
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Figure 6: Effect of mild tourniquet induced forearm ischaemia-reperfusion injury on
IL-10 concentration. The points represent mean + SE, p=>0.005 as determined by ANOVA, (n=15).

3.4 Discussion

This pilot-study aimed to determine whether ischaemia-reperfusion injury, using a mild
tourniquet induced forearm model, resulted in changes to haematological, haemostatic and
inflammatory parameters. Another aim was to explore whether any causal links between the
parameters and IRI could be observed. The study demonstrated that vVWF concentration
changed significantly (p=0.005) following IRI, whilst IL-6, IL-8 and sE-selectin also increased
but were not significant. The reperfusion of oxygenated blood to ischaemic tissue is known
to activate the endothelium creating a pro-inflammatory and pro-coagulation state [9, 17]. In
agreement with other, changes to the inflammatory cytokines, IL-6 and IL-8, in addition to
the observed changes to VWF and sE-selectin in our study, support the premise of
endothelial activation following IRI.

The endothelial derived molecule sE-selectin demonstrated a trend of increasing
concentration following IRI, which was in agreement with the report published by Domanski
et al. (2006]. Specifically, they found that upon renal reperfusion of the donated organ, sE-
selectin increased significantly from baseline at 3 minutes reperfusion. Yu, Hu, Li & Wen
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(2011) also demonstrated a significant increase in sE-selectin immediately following total hip
replacement and up to 24 hours post operatively [13]. Whilst these two papers reported
significant increases of sE-selectin following reperfusion, the trend observed in this report
correlates with their pattern of results. Further evidence of endothelial activation was
supported by the significant changes in vWF following during the present study. A similar
observation has previously been reported by Hughes et al. (2007; 2010), who have also
demonstrated an increase in VWF concentration in non-surgical models of IRl [4, 8].

The endothelium is the interface between blood and surrounding tissues, composed of a
monolayer of endothelial cells [18]. The endothelial surface is covered by the glycocalyx
(GCX), composed of heparin sulphate proteoglycans, which supports homeostasis of the
blood vessel wall. The conditions that arise during ischaemia, and particularly reperfusion,
cause this GCX layer to partially shed. Activation of the endothelium occurs upon GXC
shedding, causing a conversion to a pro-inflammatory and pro-coagulation state, which
disseminates injury [9, 17]. It is proposed that activation of the endothelium is aided by the
increase of sE-selectin and vWF which was observed following ischaemia-reperfusion in this
study. sE-selectin, an adhesion molecule responsible for recruitment of neutrophils,
monocytes and lymphocytes, is exclusively expressed by activated endothelial cells, which
are also the main source of VWF production [19, 20]. During IRI, the imbalance of
superoxide radicals reduces nitric oxide, an endothelium derived product, upon which vVWF
stimulation is enhanced in humans [21, 22]. VWF possesses binding and bridging functions
that can cause damage if present in plasma at high levels by increasing platelet aggregation
and thrombus formation [23]. The findings of the present study support this notion, with
circulating platelets decreasing from baseline at 7 minutes and 48 hours reperfusion (Table
1), whilst the prothrombin time decreased (Figure 3). With regards to the present study,
samples for vVWF analysis were assayed in blood collected in EDTA rather than citrated
tubes, which have previously been reported to provide higher results than blood collected in
citrate tubes [24, 25]. However, the aim of the present study was to determine the effects of
IRl on VWF and not to compare the effects of anti-coagulants on VWF, and thus was
relevant to this study.

The inflammatory changes observed in the present study are in agreement with other
research exploring the impact of IRI in a variety of clinical settings [9, 11, 26, 27]. Moro et al.
(2007) performed coronary occlusion on rats, and demonstrated that IL-6 significantly rose
upon reperfusion for several days after surgery [11]. Our results, although not significant,
also demonstrated an increase in IL-6 following IRl up to 48 hours reperfusion and are in
agreement with Moro et al. (2007). Other studies, exploring the effects of IL-6 in a clinical
setting have demonstrated similar findings of increased IL-6 concentration [9, 26, 27]. Huda
et al. (2004) demonstrated a significant increase of IL-8 after 4 hours reperfusion following
elective knee surgery [12]. Although not significant, a similar pattern of results were seen in
the present study, which demonstrated an increased IL-8 concentration following IRI up to
48 hours. It can therefore be appreciated that following mild tourniquet induced IRI, changes
to IL6 and IL-8 may be supporting a pro-inflammatory environment. In contrast to the pro-
inflammatory cytokines (IL-6 and IL-10), the anti-inflammatory cytokine IL-10 was shown to
decrease immediately following reperfusion in the present study. This finding is in contrast to
Zhao et al. (2005), who demonstrated a rapid increase of IL-10 following liver transplant
between identical twins [28]. This deviation may be because the model used in the present
paper was too mild to induce an accurate IL-10 response.

The effects of ischaemia-reperfusion at a cellular level provide many mechanisms upon
which an inflammatory response may be stimulated. Cytokines are released in a cascade,
with earlier cytokines such as TNF-a causing subsequent inflammatory cytokines such as IL-
6 and IL-8 to be released [29]. IL-6 and IL-8 both have common cells of origin; macrophages
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and endothelial cells, which together cause endothelial activation, neutrophil chemoattraction
and release. IL-6 is also responsible for up-regulation of adhesion molecules that contribute
to neutrophil adhesion to the endothelium, thought to contribute to unsuccessful organ
transplant [30]. The results of this paper demonstrate an increase in IL-6 over the course of
reperfusion measurements, but also show a decrease in white blood cells (Table 1). During
an inflammatory response the number of white blood cells would be expected to increase,
yet the results of this paper indicate that leukocytes are becoming trapped and activated.
Chemoattractants, such as IL-8, increase the adherence of neutrophils to the endothelium,
which occurs within minutes of reperfusion [31]. Activated neutrophils release proteases
such as human neutrophil elastase (HNE) from granules causing necrosis, whilst also
impacting micro-vessels, endothelial permeability and capillary plugging. The loss of the
endothelial permeability barrier causes haemorrhage, whilst platelet adhesion causes a loss
in antithrombotic activity [32]. As vVWF has already been implicated in the increase of
thrombus formation, the combination of haemostatic and inflammatory changes may be the
likely cause of IRI pathology, which is clinically relevant as excessive clot formation following
surgery is a concerning post-surgical complication. In contrast to the inflammatory cytokines,
IL-10 has been suggested to hamper endothelial activation, which in turn would reduce
adhesion molecules [33]. In the present study IL-10 was seen to decrease upon early
reperfusion, but increased above baseline at 48 hours (Figure 6). This may suggest that IL-
10 does not play a role in the down-regulation of pro-inflammatory cytokines following early
reperfusion, and could possibly be hampered by the significant increase in concentration of
vWEF, although, in order to confirm this more studies would need to be undertaken.

There were several limitations of this study, particularly the amount of reperfusion samples
that were able to be obtained following tourniquet induced ischaemia. However, due to time
constriction recruiting more subject volunteers for the study would have been beneficial and
may have helped provide statistical significance to some of the parameters that were
measured in the study. Whilst the parameters measured in this study provided information
regarding the haematological, haemostatic and inflammatory response following IRI, there are
several other parameters that could have been included. Specifically, TNF-a, which plays a
predominant role in early inflammation, cell surface adhesion molecules, such as CD11b or
CD62L, and other haemostatic parameters such as fibrinogen [34, 35]. The duration of
rendering the arm ischaemic and the set tourniquet pressure employed in the present study
was relatively short and very mild in comparison to a typical clinical setting. For example,
during lower limb orthopaedic surgery tourniquet pressure is set to approximately 250-350
mmHg for periods of up to 2 hours [36, 37]. However, despite the acknowledged limitations of
this study, the main aim was to determine the effects of effects of a non-surgical model of mild
IRl on specific haematological, haemostatic and inflammatory parameters. Generally, the
present study achieved this and provides a sound platform to continue research into this area.

4. CONCLUSION

The study demonstrated that brief periods of IRl caused changes to haematological,
haemostatic and inflammatory parameters. Specifically, a significant increase in vVWF
concentration was observed following tourniquet induced IRI. This suggests that changes to
vascular integrity and that of endothelial activation may be occurring.

The results of this pilot-study provide a basis for further exploration of haematological,
haemostatic and inflammatory parameters following IRI, which may increase our knowledge
and understanding of a subject area that is not fully understood. Ultimately, further studies
may highlight areas of therapeutic intervention for the underlying occurrence of IRI in
pathological conditions, such as cardiovascular disease (CVD) and surgeries that involve the
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application of a tourniquet. These predictors, however, need further work to validate
reliability in a clinical setting.
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ABBREVIATIONS

IRl — Ischaemia-Reperfusion Injury

vWF — von Willebrand Factor

PT — Prothrombin Time

IL — Interleukin

CVD - Cardiovascular Diseases

NO — Nitric Oxide

EDTA - di-potassium ethylene diamine tetra-aceticacid

ELISA — Enzyme-Linked Immunosorbent Assay

WBC — White Blood Cell

RBC — Red Blood Cell

MCV — Mean Cell Volume
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HcT — Haematocrit

Plts — Platelets

APTT — Activated Partial Thromboplastin Time
ANOVA - One-Way Analysis of Varience
GCX — Glycocalyx

HNE — Human Neutrophil Elastase



