1 <u>SDI Paper Template Version 1.6 Date 11.10.2012</u>

Gastroprotective activity of methanol leaves extract of *Barleria prionitis* Linn. on ethanol and indomethacin induced ulcer in rats

Manjusha¹, Vipin Kumar^{*1}, Surender Singh²

6 ¹Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra-136119, India

²All India Institute of Medical Sciences, New Delhi-110029, India

8 9 10

7

5

11 12

ABSTRACT (ARIAL, BOLD, 11 FONT, LEFT ALIGNED, CAPS)

Aims: *Barleria prionitis* L. (Family Acanthaceae) is a medicinal plant found road side in India and whole plant or its various parts like leaves, root, bark, stem and flowers are used traditionally for various treatments like toothache, inflammation, boils, glandular swellings and ulcer. Leaf juice is useful in gastric ulcer. Here, we attempt to prove the use of this plant as gastroprotective agent.

Study Design: This study was conducted to evaluate the antiulcer activity of methanol extract obtained from the leaves of *Barleria prionitis* Linn.

Mention the design of the study here.

Place and Dration of Study: The experiments were conducted at Pharmacology lab of Institute of Pharmaceutical Sciences, Kurukshetra University during the period of July 2012 to December 2012.

Material and methods: Antiulcer activity was performed using the protocols of ulcer induced by ethanol and indomethacin at two different doses (250 and 500mg/kg). Parameters like volume of gastric juice, pH, free acidity, total acidity, aspartate amino transferase (AST) and alanine amino transferase (ALT) were also determined in ethanol induced ulcer model.

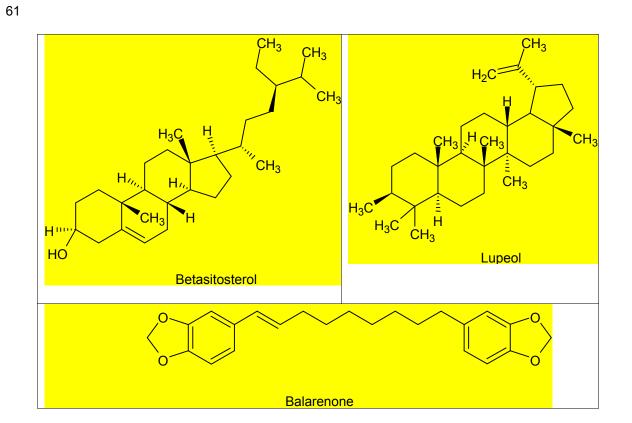
Results: The reduction in ulcer index in *Barleria prionitis* treated animals was found to be statistically significant (P=.05), when compared with control groups in both the models. Significant changes were observed in total acidity at dose 500mg/kg only and changes were significant in AST, ALT levels at both the doses. Other parameters showed non-significant results.

Conclusion: The results of the present study show that the methanolic extract of *Barleria prionitis* L. possess antiulcer activity. This work supports the traditional use of this plant in treating gastric ulcer.

13 14 15

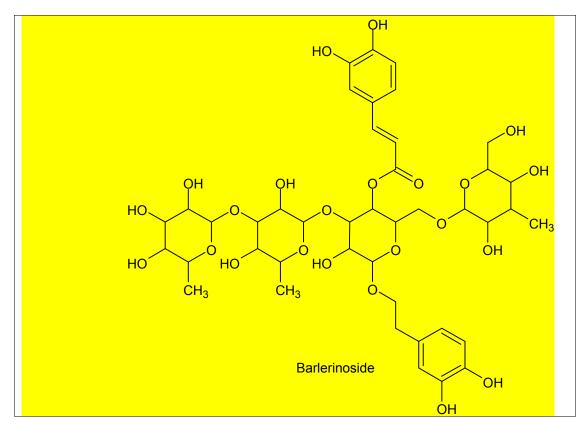
Keywords: Barleria prionitis, Gastroprotective activity, Ulcer index, Methanol extract, Ethanol

16 **1. INTRODUCTION**


17

18 Gastric hyperacidity is a very common global problem that affects millions of people 19 worldwide [1,2]. In hyperacidity stomach acid levels are high in the g.i.t, on some occasions 20 this excess acid secretion can lead to inflammation, irritation or erosion of stomach mucosa 21 which is known as gastritis that can be acute (brief and sudden) and chronic (longer lasting). 22 It may provoke peptic ulcer if untreated [3,4]. An ulcer is the disruption in the skin or mucus 23 membrane lining alimentary canal. Ulceration occurs when there is imbalance between 24 aggressive (acid-pepsin secretions) and protective factors (such as mucus secretion, 25 mucosal barrier, cell regeneration, blood flow and prostaglandins) [5,6]. About 95% of ulcers 26 are duodenal, while gastric ulcers are less common. The gastric mucosa is continuously 27 exposed to various noxious agents like acid, pepsin, bile acids, bacterial products and drugs. 28 These agents have been contributed in the pathogenesis of gastric ulcers by increasing 29 gastric acid and pepsin secretion, inhibiting prostaglandin synthesis and by decreasing 30 gastric blood flow and gastric motility [7]. The current treatment of peptic ulcer is mainly done 31 with H₂ receptor antagonists, proton pump inhibitors, and antimuscarinics. But, most of these 32 treatments produce adverse reaction like, hypersensitivity, arrhythmia, impotence, 33 gynecomastia and hematopoietic disorders [8-11]. Therefore, there is requirement for new 34 and safer treatment, with fewer side effects. Plants extracts are among the suitable 35 treatments for the prevention of gastric ulcer [12].

Barleria (Acanthaceae) ia a large genus with about 230 species of herbs and shrubs
 distributed chiefly in the tropical and subtropical parts of the world. About 30 species occur in
 India, many of which are known for their ornamental and/or medicinal value. Some of the
 important species of this genus are *B. prionitis*, *B. greenii*, *B. albostellata*. *B. cristata*, *B.* gibsoni, *B. strigosa*, *B. tomentosa* etc. In some *Barleria* species biological activities such as
 anti-inflammatory, analgesic, antileukemic and hypoglycemic have been reported [13,14].


42 Barleria prionitis L. common name: Vajradanti known as Sahachara in Ayurveda is a 43 medicinal plant found throughout South Africa, India, Sri-Lanka, and tropical Asia [15,16]. Its 44 leaves juice is used in stomach problems, ulcer, fever and urinary infections in indigenous 45 system of medicine of India [17]. Some Indian tribes use leaves to reduce irritation and for 46 treatment of piles [18,19]. The aerial parts are used in the fever, toothache, inflammation and 47 gastrointestinal disorder; bark in whooping cough as an expectorant. Whole plant especially roots are used as tonic and diuretic [20,21]. Leaves stem and roots of plant possess anti-48 49 inflammatory and antibacterial activities [22,13]. It is also used in jaundice, hepatic obstruction and dropsy [23]. Iridoid rich fraction of aerial parts has been reported for 50 51 hepatoprotective activity [24].

52 Phytochemical studies on hydro-methanolic extract of B. prionitis showed the presence of 53 glycosides, steroids, tannins and flavonoids [25]. Iridoid glycosides, shanzhiside methyl 54 ester, 6-O-trans-p-coumaroyl-8-O-acetylshanzhiside methyl ester, barlerin, acetylbarlerin, 7-55 methoxydiderroside and lupulinoside have been isolated from aerial parts [26]. The 56 structures of some major phytoconstituents are given in Figure 1. No study was conducted 57 scientifically to prove the gastroprotective effect of B. prionitis leaves. Hence the present 58 study was conducted to evaluate the antiulcer properties of methanolic extract of B. prionitis 59 Linn.

* Tel.: +91-94163-91274; fax: +91-1744-239617 E-mail address: vipbhardwaj@rediffmail.com.

60

62

63 2. MATERIAL AND METHODS

64

65 2.1 Plant material

66 The leaves of *Barleria prionitis* were collected from Ashoka nursery Gharunda, Karnal, 67 Haryana, India in the month of March, 2011. Then, collected leaves were positively identified 68 by Dr. H.B. Singh, Head, Raw Materials Herbarium and Museum (RHMD), New Delhi. A 69 voucher specimen of the plant (Ref. No. NISCAIR/RHMD/CONSULT/-2010-11/1497/95) has 70 been preserved there for future references.

71 2.2 Extraction

The leaves were thoroughly washed under running tap water so as to remove any type of contamination. Then washed leaves were air dried in shade, powdered in grinder and passed through sieve of mesh size no-40. The dried powder was first defatted by petroleum ether and then successive extraction was done with chloroform and methanol by hot Soxhlet extraction method. The methanol extract was concentrated in a rotary evaporator under reduced pressure. The dried crude extract was collected and preserved in airtight glass container at 4°C - 8°C.

79 2.3 Preliminary phytochemical studies

80 To determine the chemical constituents, the methanol extract obtained was thus subjected to

- 81 phytochemical analysis [27].
- 82

83 **2.4 Antiulcer activity**

84 **2.4.1 Experimental animals**

Healthy Wistar rats of either sex were obtained from a disease free animal house of Chaudhary Charan Singh, Haryana Agriculture University, Hisar, Haryana (India). The animals were housed in the animal house, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, Haryana (India). Rats were fed with commercially available feed and were maintained under standard conditions of temperature ($25^{\circ}C \pm 5^{\circ}C$), relative humidity ($55 \pm 10^{\circ}$), and 12/12 h light/dark cycle. They were housed in standard polycarbonate cages with wire mesh top and husk bedding.

92

93 2.4.2 Experimental design

Wistar rats weighing between 175-250 g of either sex were used for antiulcer study. All
animals were divided into 4 groups of 6 animals. Before the experiments, animals were
deprived of food but allowed free access to water.

97

98 2.4.3 Dose and route of administration

For experimentation 250mg/kg and 500mg/kg doses of *Barleria prionitis* methanolic (BPM) extract were used. Fresh drug solutions were prepared in sterile distilled water at the time of administration and were administered Per Oral (p.o.) so as to avoid any additional stress to the animals.

103

104 2.4.4 Group designing for ethanol and indomethacin induced ulcer models

Group I (Control): Animals received only distilled water; Group II (BPM 250): Animals received *B. prionitis* (250mg/kg, *p.o.*) I hr before the ulcerogenic procedure; Group III (BPM 500): Animals received *B. prionitis* (500mg/kg, *p.o.*) I hr before the ulcerogenic procedure; Group IV (Standard): Animals received ranitidine (50mg/kg, *p.o.*) I hr before the ulcerogenic procedure.

110 2.4.5 Ethanol induced gastric mucosal lesions

111 This is a widely used model that seems to cause gastric ulcer. The activity was performed according to the slightly modified method of Mizui and Dotuchi [28]. Rats were fasted for 36 112 h before administration of absolute ethanol (1.0mL). The group I was given only distilled 113 114 water. The extract (250 mg/kg, 500mg/kg, p.o.) and ranitidine (50mg/kg, p.o.) as standard drug, were given to Group II, III and IV respectively. One hour after treatment, all the rats 115 116 received ethanol to induce gastric ulcer. Another one hour later, animals were sacrificed by 117 cervical dislocation. The stomachs were removed, cut and opened along the greater 118 curvature, washed with normal saline to remove the gastric contents and observed for the 119 severity of the ulcers. The pH and volume of gastric juice was measured after centrifugation 120 at 2000rpm for 10 min. From the supernatant, aliquots were taken for the determination of total and free acidity. The percentage protection was calculated using the following formula:-121

122 % I = (UI of control- UI of test) ×100/UI of the control

123 Where I = Inhibition, UI= UIcer index

124 2.4.6 Ulcer indexing

- 125 The mucosal layer of the stomach was observed under a magnifying lens and ulcers were
- 126 checked. The area (mm²) of all lesions was measured using digital callipers' to give a gastric
- 127 damage score. The ulcer index was determined using the following formula [29].

128 UI =10/X

129 Where X= total mucosal area/total ulcerated area

130 **2.4.7 Total acidity and free acidity determination**

131 1.00mL of centrifuged and filtered gastric juice was taken in a conical flask. Two drops of 1% 132 phenolphthalein indicator for total acidity and Topfer's reagent for free acidity was added to 133 it. It was titrated against 0.1mol/L sodium hydroxide until a permanent pink color (total 134 acidity) or canary yellow colour (free acidity) was observed. The total/free acidity is 135 expressed as meq./L by the following formula:-

136 Total/free acidity=n×0.01×36.45×1000

Where, n is the volume of NaoH consumed, 0.01 is normality of NaoH, 36.45 is molecularweight of NaoH, 1000 is the factor (to be represented in litre).

139 2.4.8 Indomethacin induced gastric ulcers

140 In this model, the gastric lesions are induced by the inhibition of prostaglandin synthesis. 141 Activity was performed according to method of Djahanguiri [30] and 24 h fasted rats were used for study. Group I animals were treated orally with distilled water. The extract (250 142 mg/kg, 500mg/kg, p.o.) and ranitidine (50mg/kg, p.o.) as standard drug, were given to Group 143 II, III and IV respectively. One hr. after the treatment, 20mg/kg of indomethacin (dissolved in 144 145 2% sodium bicarbonate) was administered orally. After 4 h, all animals were sacrificed by cervical dislocation. The stomachs were isolated, washed with normal saline and various 146 147 parameters like ulcer index, free acidity and total acidity were measured as discussed above 148 [31].

149 2.4.9 Serum biochemical parameters

150 Blood samples were analysed for AST and ALT level estimation in ethanol induced gastric 151 lesions.

152 **2.5 Statistical analysis**

153

All the values were expressed as mean±standard error of mean. The statistical significance of difference among groups was analysed using one-way ANOVA. A value of *P*<0.05 was considered significant.

157 **3. RESULTS**

158

159 **3.1 Preliminary phytochemical screening**

160 The percentage yield of petroleum ether, chloroform and methanol leaf extracts were found 161 to be 4.9, 6.9 and 16.7% (in weight). Preliminary phytochemical screening of methanol 162 extract showed the presence of steroids, alkaloids, saponins, glycosides and flavonoids.

163 **3.2 Antiulcer activity**

164 3.2.1. Ethanol induced gastric ulcer

165 In this study, BPM was screened for gastroprotective activity against ethanol induced gastric 166 ulcer in rats. The absolute ethanol administration (*p.o.*) induced severe ulceration. BPM and 167 ranitidine groups showed the significant reduction in incidence and severity of ulceration. 168 BPM and ranitidine showed a significant change in ulcer index when compared with the 169 control group P<0.01 (Table 1). BPM and ranitidine showed slight changes in pH, volume of 170 gastric juice, free acidity and total acidity but changes were not significant when compared 171 with control group except total acidity in BPM (500mg/kg) treated group, P<0.01(Table 2).

172 Table 1. Ulcer index of ethanol and indomethacin induced gastric ulcers

Model	Group	Dose(mg/kg body weight)	Ulcer index	% Inhibition
Ethanol	Ethanol		0.90±0.01	-
	BPM	250	0.43±0.02**	52.2%
	BPM	500	0.29±0.04**	67.7%
	Ranitidine	50	0.22±0.02**	75.5%
Indomethacin	Indomethacin	20	1.35±0.15	-
	BPM	250	0.51±0.03**	62.2%
	BPM	500	0.40±0.02**	70.3%
	Ranitidine	50	0.51±0.03**	62.2%

173 Results as mean±S.E.M. for six rats. Statistical comparison was performed using ANOVA

174 followed by the Dunnett's test. **P<0.01 when compared with control group.

- 175
- 176

177 Table 2. Volume of gastric juice, pH, free acidity and total acidity in ethanol induced

178 gastric ulcer

Group	Dose(mg/kg)	Volume of gastric juice(ml)	рН	Free acidity(mmol/h)	Total acidity(mmol/h)
Ethanol		2.08±0.01	4.42±0.06	0.53±0.008	1.22±0.008
BPM	250	2.55±0.18	4.51±0.06	0.48±0.02	1.23±0.02
BPM	500	2.22±0.18	4.40±0.05	0.46±0.02	0.81±0.01**
Ranitidine	50	2.72±0.27	4.51±0.03	0.51±0.03	1.26±0.02

179 180

Results as mean±S.E.M. for six rats. Statistical comparison was performed using ANOVA followed by the Dunnett's test. **P<0.01 when compared with control group.

181 182

3.2.2 Biochemical parameters

183 Ethanolic group induced ulcer showed a increase in liver enzymes (ALT and AST) as shown

in (Table 3). When rats were pretreated with BPM (250mg/kg and 500mg/kg) and ranitidine,

there were significant reductions in serum concentration of these markers, *P*<0.01, *P*<0.05.

186 Table 3. Effect of BPM extract on liver functions tests in ethanol induced gastric

187 ulcers

ALT(IU/L)	AST(IU/L)
65.98±2.5	353±2.1
56.08±2.1*	325±7.1**
45.44±2.0**	305±4.8**
55.18±3.5*	331±3.07*
	56.08±2.1* 45.44±2.0**

188 *Results as mean*±S.E.M. for six rats. Statistical comparison was performed using ANOVA

189 followed by the Dunnett's test. **P<0.01,*P<0.05 when compared with control group.

190 3.3.3. Indomethacin induced mucosal lesions

- 191 Indomethacin (20mg/kg, p.o.) administration induced severe gastric mucosal damage. BMP,
- 192 at tested doses 250 and 500mg/kg, showed significant gastroprotective effect against gastric
- lesions, *P*<0.01. Standard drug ranitidine (50mg/kg, *p.o.*) included in the study as positive
- 194 control also exhibited significant protection, *P*<0.01 (Table1 and Figure 2& 3).

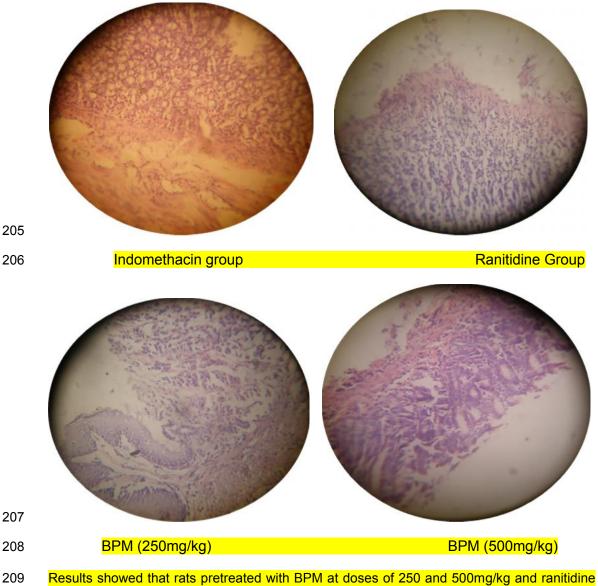
Figure 2. Macroscopic view of rat stomach in indomethacin induced gastric ulcer

197

199

198 Indomethacin Group

Ranitidine Group



BPM (500mg/kg)

202

200

Figure 2. Histopathology of rat stomach in indomethacin induced gastric ulcer
 model

Results showed that rats pretreated with BPM at doses of 250 and 500mg/kg and ranitidine
 improved the histopathology of rat stomach compared to indomethacin (control) group. Ulcer
 induced group showed severe disruption to the epithelium and deep mucosa.

212 4. DISCUSSION

213

214 Various noxious stimuli of endogenous (acid and pepsin) and exogenous (drugs and alcohol) 215 origin, constantly comes in contact with gastric mucosa. Gastric mucosal defensive mechanism, like mucosal blood flow, bicarbonate and mucus secretion protect the gastric 216 217 mucosa from damage. It is generally believed that it results from an imbalance between aggressive factor (acid, pepsin) and defensive factors (mucous secretions, prostaglandins) 218 [32]. Therapeutic agents including different plant extracts are used to regain the balance by 219 220 inhibiting the gastric acid secretion or by increasing the mucous production, stabilizing the 221 surface epithelial cells. Herbs are one of the most promising sources of new drugs as these 222 are free of or having very less side effects and adverse reactions.

223 The methanol extract of *B. prionitis* was used to evaluate gastro protective activity by using 224 ethanol and indomethacin induced gastric ulcers. Ethanol is one of the most widely used 225 agents in experimental models to evaluate the gastroprotective activity in rats [33,34]. The 226 acute effect of ethanol induced ulcer has been proved to be its rapid penetration into gastric 227 mucosa, which may cause more mucosal permeability and release of vasoactive mediators 228 such as leukotrienes C4 (LTC 4), endothelin-1(ET-1) and histamine. The vasoactive 229 mediators induce blood flow stasis in mucus membrane circulation; which increase the lesions in mucosa [35,36]. In addition, ethanol also induces reduction in mucus production, 230 231 gastric mucosal blood flow, endogenous glutathione, bicarbonate secretion, prostaglandin 232 (PG) production, tissue level of DNA, RNA and proteins, which leads to tissue injury [37-39]. 233 The other factor responsible may be formation of reactive oxygen species, which cause an 234 imbalance between oxidant and antioxidant process, that results rupture of blood vessels, 235 thus contributes to the haemorrhage, tissue necrosis and disrupting the protective mucosal 236 barrier [40,41]. Indomethacin is an indole derivative act not only as anti-inflammatory but 237 also analgesic and antipyretic. This drug has better ulcerogenic potential than other NSAIDS 238 [42] Indomethacin reduces the PG by inhibiting both COX enzymes, that impares the 239 mucosal barrier thus rendering gastric mucosa more susceptible to injury [43,44]. Further, 240 COX-1 inhibition leads to the release of ET-1 which has been shown to induce mucosal 241 injury and inhibition of PGs activate the neutrophils and the local release of reactive oxygen 242 specie (ROS) and thus starts gastric injury [45]. In the present study, B. prionitis leaves were 243 found to possess remarkable gastroprotective activity compared to the control. It is plausible 244 to suggest that antiulcer activity is associated with *B. prionitis* ability to antagonize these 245 aggressive factors while augmenting the defensive mucosal factors that protect the gastric 246 mucosa from injury. To study the side effects of *B. prionitis* on liver, serum AST and ALT 247 were determined in ethanol induced gastric ulcer model. Control group animals showed, 248 increase of serum concentration of these enzymes that indicates hepatic injury since level of 249 these enzymes increases in chemically triggered tissue injury [46]. B. prionitis administration 250 decreased the levels of AST and ALT that shows its tissue damage preventing action.

The preliminary phytochemical analysis indicated the presence of flavonoids, sterols, glycosides, saponins. These secondary metabolite classes are related to gastro protective activity. There are many studies related to the antiulcer genic properties of flavonoids [38,39]. Leaves of the plant also contain saponins. Saponins exhibit ulcer protective effect by selective inhibition of prostaglandin F_{2q} and by protection of gastric mucosa [35,40]. In view of this fact it is suggested that gastro protection elucidated by the methanol extract of *B. prionitis* may be related to the presence of these phytoconstituents.

258 **5. CONCLUSION**

The results provide support for the traditional use of this plant in the treatment of gastric ulcer. However, the data so far obtained do not indicate the specific mechanism(s) responsible for the antiulcer activity. Further studies are required to isolate the active components and to elucidate their mechanism of action. In conclusion, the results show that methanolic extract of *Barleria prionitis* Linn. possess gastro protective activity.

265 ACKNOWLEDGMENTS

The authors thank Director, Institute of Pharmaceutical Sciences, Kurukshetra University,
Kurukshetra, Haryana, India for providing excellent research facilities. The authors are
thankful to University Grant Commission, New Delhi, India for providing financial support as
Minor Research Project.

270 **COMPETING INTERESTS**

²⁵⁹

271 The authors declare that they have no competing interests.

272 AUTHOR'S CONTRIBUTION

1st author wrote the protocol, performed the study and statistical analysis 2nd author
 designed the study, managed the analysis, write the first draft of manuscript, 3rd author
 helped in the literature study and finally all the authors read and approved the final
 manuscript.

277 ETHICAL APPROVAL

All authors hereby declare that, Principles of laboratory animal care (NIH publication No.85-23, revised 1985) were followed. All the experimental procedures and protocols used in the study were reviewed by the Institutional Animal Ethics Committee (IAEC) (Register Number: 562/GO/02/a/CPCSEA) and were in accordance with the CPCSEA guidelines, Government of India.

283

303

284 **REFERENCES**

- Jainu M, Devi CSS. Antiulcerogenic and ulcer healing effects of *Solanum nigrum* (L.)
 on experimental ulcer models: Possible mechanism for the inhibition of acid formation. J Ethnopharmacol. 2006;104:156-163.
 Klein I/(nigr LC, Candolfi DB, Santin JB, Lemen M, Cashinel EV, Andrada SE
- Klein-Júnior LC, Gandolfi RB, Santin JR, Lemos M, Cechinel FV, Andrade SF.
 Antiulcerogenic activity of extract, fractions, and some compounds obtained from *Polygala cyparissias* St Hillaire & Moquin (Poligalaceae). Naunym-Schmiedberg'rs
 Archives of Pharmacology. 2010;381: 121-126.
- 292
 3. Anonumous. How to treat acidity in stomach and what are its symptoms? Simple

 293
 Remedies. 2011. Accessed on 23 April 2013. Available : www.simple-remedies.com/
- 2944. Khan R. Gastritis-Acute & Chronic Gastritis. Hpathy. 2007.Accessed on 23 April2952013. Available : health.hpathy.com/gastritis-symptoms-treatment-cure.asp.
- Muralidharan P, Srikanth J. Antiulcer activity of *Morinda citrifolia* Linn. fruit extract. J
 Sci Res. 2009;1(2): 345-352.
- 2986. Lima ZP, Severi JA, Pellizzon CH, Brito ARMS, Solis PN, Caceres A et al. Can the299aqueous decoction of mango flowers be used as antiulcer agent? J300Ethnopharmacol. 2006;106: 29-37.
- 301
 301 7. Grossman MI, Elashoff JD. Peptic ulcer: A guide for the practicing physician. Year
 302 Book Medical Publishers; 2009.
 - 8. Chan FK, Leung WK. Peptic ulcer disease. Lancet. 2002;360: 933-941.
- 304 9. Malfertheiner P, Chan FKL, McColl KEL. Lancet. 2009;374: 1449-1461.
- 305
 10. Sheen E, Triadafilopoulos G. Adverse effects of long- term proton pump inhibitor
 306 therapy. Digestive Diseases and Sciences. 2011;56: 931-950.
- 307 11. Bighetti AE, Antonio MA, Kohn LK, Rehder VLG, Foglio MA, Possenti A, et al.
 308 Antiulcerogenic activity of a crude hydroalcoholic extract and coumarin isolated from
 309 *Mikania laevigata* Schultz Bip. Phytomedicine. 2005;12: 72-77.
- Rodriguez A, Theoduloz C, Yanez T, Becerra J, Schmeda-Hirschmann G.
 Gastroprotective and ulcer healing affect of ferruginol in mice and rats: assessment
 of its mechanism of action *in vitro* models. Life Sci. 2006;79: 2503-2509.

E-mail address: vipbhardwaj@rediffmail.com.

313	<mark>13.</mark>	Amoo SO, Finnie JF, van Staden J. In vitro pharmacological evaluation of three
314		Barleria species. J Ethnopharmacol 2009;121: 274-277.
315	14.	Teotia P. Horticultural potential of Barleria prionitis L. in arid regions. J Econ Taxon
316		Bot 2000;24(2): 251-253.
317	<mark>15.</mark>	Chopra RN, Nayar SL, Chopra IC. In Glossary of Indian Medicinal Plants, CSIR:
318		New Delhi; 1965.
319	<mark>16</mark> .	Gupta HM, Saxena VK. A new acylated luteolin-7-O-β-D-glucoside from the roots of
320		Barleria prionitis (Linn.). Nat Acad Sci Lett. 1984;7: 187-189.
321	<mark>17.</mark>	Khare CP. Indian Medicinal Plants: An Illustrated Dictionary. 1st ed. New York:
322		Springer Science; 2007.
323	<mark>18.</mark>	Aneja KR, Joshi R, Sharma C. Potency of Barleria prionitis L. bark extracts against
324		oral disease causing strains of bacteria and fungi of clinical origin. New York Sci J.
325		<mark>2010;3: 5-12.</mark>
326	<mark>19.</mark>	Shukla P, Singh A, Gawri S, Alexende A, Sonwane S. In vitro propagation of
327		Barleria prionitis Linn and its antibacterial activity. Int J Pharma Prof Res. 2011;2:
328		<mark>198-200.</mark>
329	<mark>20.</mark>	Nadkarni AK. Barleria prionitis. Linn. In Dr. K. M. Nadkarni's. Indian Materia Medica,
330		3rd edn. Popular Book Depot: Bombay; 1994.
331	<mark>21.</mark>	Kirtikar KR, Basu BD. Barleria prionitis Linn. In Indian Medicinal Plants 3rd edn
332		Blatter E, Caicus JF, Mhaskar KS(eds) Sri Satguru Publication: Delhi; 2000.
333	<mark>22.</mark>	Singh B, Bani S, Gupta DK, Chandan BK, Kaul A. Anti-inflammatory activity of TAF
334		an active fraction from the plant <i>Barleria prionitis</i> Linn. J Ethnopharmacol
335		2003;85:187-193.
~~~	00	
336	23.	Khadse CD, Kadke RB. Antiinflammatory activity of aqueous extract fractions of
337		Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.
337 338		Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68. Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and
337 338 339		Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68. Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in
337 338 339 340	<mark>24.</mark>	Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68. Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.
337 338 339 340 341	<mark>24.</mark>	<i>Barleria prionitis</i> L. roots. Asian J Plant Sci Res. 2011;1: 63-68. Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404. Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and
337 338 339 340 341 342	<mark>24.</mark> 25.	<i>Barleria prionitis</i> L. roots. Asian J Plant Sci Res. 2011;1: 63-68. Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404. Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> </ul>	<mark>24.</mark> 25.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> </ul>	<mark>24.</mark> 25.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009;</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> </ul>	<mark>24.</mark> 25. 26.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> </ul>	<mark>24.</mark> 25. 26.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> </ul>	24. 25. 26. 27.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> </ul>	24. 25. 26. 27.	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> <li>353</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol. 1969;4(3): 265-267.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> <li>353</li> <li>354</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol. 1969;4(3): 265-267.</li> <li>Dijoseph JF, Eash JR, Mir GN. Gastric antisecretory and antiulcer effects of</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> <li>353</li> <li>354</li> <li>355</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashar; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol. 1969;4(3): 265-267.</li> <li>Dijoseph JF, Eash JR, Mir GN. Gastric antisecretory and antiulcer effects of WHR1582A, a compound exerting alpha-2 adrenoceptor agonist activity. J</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> <li>353</li> <li>354</li> <li>355</li> <li>356</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>31.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashan; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol. 1969;4(3): 265-267.</li> <li>Dijoseph JF, Eash JR, Mir GN. Gastric antisecretory and antiulcer effects of WHR1582A, a compound exerting alpha-2 adrenoceptor agonist activity. J Pharmacol Exp Ther. 1987;24(1):97-102.</li> </ul>
<ul> <li>337</li> <li>338</li> <li>339</li> <li>340</li> <li>341</li> <li>342</li> <li>343</li> <li>344</li> <li>345</li> <li>346</li> <li>347</li> <li>348</li> <li>349</li> <li>350</li> <li>351</li> <li>352</li> <li>353</li> <li>354</li> <li>355</li> </ul>	<ol> <li>24.</li> <li>25.</li> <li>26.</li> <li>27.</li> <li>28.</li> <li>29.</li> <li>30.</li> <li>31.</li> </ol>	<ul> <li>Barleria prionitis L. roots. Asian J Plant Sci Res. 2011;1: 63-68.</li> <li>Singh B, Chandan BK, Prabhakar A, Taneja SC, Singh J, Qazi GN. Chemistry and hepatoprotective activity of an active fraction from <i>Barleria prionitis</i> Linn. in experimental animals. Phytother Res 2005;19: 391-404.</li> <li>Maji AK, Bhadra S, Mahapatra S, Banerji P, Banerjee D. Mast cell stabilization and membrane protection activity of <i>Barleria prionitis</i> L. Pharmacog J. 2011;3: 67-71.</li> <li>Ata A, Kalhari KS, Samarasekera R. Chemical constituents of <i>Barleria prionitis</i> and their enzyme inhibitory and free radical scavenging activities. Phytochem Lett 2009; 2: 37-40.</li> <li>Khandelwal KR. Practical pharmacognosy techniques and experiments. 3rd ed. Pune: Nirali Prakashar; 1996, p. 171-172.</li> <li>Mizui T, Doteuchi M. Effect of polyamines on acidified ethanol-induced gastric lesion in rats. Jpn J Pharmacol. 1983;33(5): 939-945.</li> <li>Ganguly AK. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Experientia. 1969;25(11): 1224.</li> <li>Djahanguiri B. The production of acute gastric ulceration by indomethacin in the rat. Scand J Gastroenterol. 1969;4(3): 265-267.</li> <li>Dijoseph JF, Eash JR, Mir GN. Gastric antisecretory and antiulcer effects of WHR1582A, a compound exerting alpha-2 adrenoceptor agonist activity. J</li> </ul>

359	<mark>33</mark>	Akhtar AH, Ahmad KU. Antiulcerogenic evaluation of the methanolic extracts of
360	<mark>00</mark> .	some indigenous medicinal plants of Pakistan in aspirin-ulcerated rats. J
361		Ethnopharmacol. 1995;46:1-6.
362	24	Atta AH, Soad MN, Mouneir SM. Antiulcerogenic effect of some plant extracts.
363	<del>34</del> .	Natural Product Radiance. 2005;4:258-263.
	25	
364	<mark>35</mark> .	Wallace JL. Mechanisms of protection and healing: current knowledge and future
365	00	research. Am J Med. 2001;110:19-23.
366	36.	Al-wabel NA, Hassan A, Abbas H, Mucosa H. Antiulcerogenic effect of camel milk
367		against ethanol induced gastric ulcers in rats. Webmed Central Veterinary Medicine.
368		2012;3(3):WHCDD2804.
369	<mark>37</mark> .	Robert A, Nezamis JE, Lancaster C, Hanchar AJ. Cytoprotection by prostaglandins
370		in rats Prevention of gastric necrosis produced by alcohol, HC1, NaOH, hypertonic
371		NaCl and thermal injury. Gastroenterology. 1979;77:433-443.
372	<mark>38</mark> .	Glavin GB, Szabo S. Experimental gastric mucosal injury: laboratory models reveal
373		mechanism of pathogenesis and new therapeutic strategies. Fed Am Soc Exp Boil J.
374		<mark>1992;42:111-116.</mark>
375	<mark>39</mark> .	Germano MP, Sango R, Guglielmo M, De Pasquale R, Crissafi G. Effects of P
376		teleopsis subcrosa extract on experimental gastric ulcers and H.pylori growth. J
377		Ethnopharmacol. 1998;59:167-172.
378	<mark>40</mark> .	Lewis DA, Hanson PJ. Antiulcer drugs of plant origin. Prog Med Chem. 1991;28:
379		<mark>201-231.</mark>
380	<mark>41</mark> .	Sikiric P, Seiwerth S, Grabarevic Z, Rucman R, Petek M, Jagic V et al. The influence
381		of a novel pentadecaspeptide BPC 157, on NG-nitro-L-arginine methylester and L-
382		arginine effect on stomach mucosal integrity and blood pressure. Eur J Pharmacol.
383		1997;332:23-33.
384	<mark>42</mark> .	Batista LM, de Almeida ABA, Lima GR de M, Fâlcao H de S, Ferreira AL, Magri L de
385		P et al. Gastroprotective effect of the ethanolic extract and fractions obtained from
386		Syngonanthus bisulcatus Rul. Rec Nat Prod. 2013;7(1):35-44.
387	<mark>43</mark> .	Scarpignato C, Hunt RH. Nonsteroidal anti-inflammatory drug-related injury to the
388		gastrointestinal tract: clinical picture, pathogenesis, and prevention. Gastroenterol
389		Clin North Am. 2010;39:433-464.
390	44	Vane JR, Botting RM. Mechanism of action of non-steroidal anti-inflammatory drugs.
391		Am J Med. 1998;104:2S-8S.
392	45	Whittle BJ. Gastrointestinal effects of non-steroidal anti-inflammatory drugs. Fundam
393		Clin Pharmacol. 2002;17:301-313.
394	46	Myagmar BE, Shinno E, Ichiba T, Aniya Y. Antioxidant activity of medicinal herb
395	10.	Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats.
396		Phytomedicine. 2004;11:416-423.
397	47	Gracioso JS, Vilegas W, Hiruma-Lima CA, Souza Brito AR. Effects of tea from
398	<i>ч</i> ,.	<i>Turnera ulmifolia</i> L. on mouse gastric mucosa support the Turneraceae as a new
399		source of antiulcerogenic drugs. Biol Pharm Bull. 2002;25:487-491.
399 400	⊿۸	Gonzalez FG, Di Stasi LC. Anti-ulcerogenic and analgesic activities of the leaves of
400 401	40.	<i>Wilbrandia ebracteata</i> in mice. Phytomedicine. 2002;9(2):125-134.
401 402	40	•
	49.	Aguwa CN, Okunji CO. Gastrointestinal studies of <i>Pyrenacantha staudtii</i> leaf
403		extracts. J Ethnopharmacol. 1986;15(1):45-55.