SCIENCEDOMAIN international

www.sciencedomain.org

Journal Name:	British Journal of Pharmaceutical Research
Manuscript Number:	$\mathbf{2 0 1 4}$ BJPR_8980
Title of the Manuscript:	Effect of low radiation dose on cisplatin induced hepato- testicular damage in male rats.
Type of the Article	

General guideline for Peer Review process:

This journal's peer review policy states that $\mathbf{N O}$ manuscript should be rejected only on the basis of 'lack of Novelty' provided the manuscript is scientifically robust and technically sound.
To know the complete guideline for Peer Review process, reviewers are requested to visit this link:
(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy\#Peer-Review-Guideline)

SCIENCEDOMAIN international

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed with reviewer, correct the manuscript and highlight that part in the manuscript. It is mandatory that authors should write his/her feedback here)
Compulsory REVISION comments		
Minor REVISION comments	The subject is topical and of practical importance. The manuscript is wellwritten, and the results obtained are above suspicion. I have, however, a couple of remarks. 1) In the formula giving the content of metals in the tissues studied - I think the authors have missed the volume of the AAS sample as a multiplier in the right hand expression. i. e, the formula should be: Metal content in the tissue $[\mu \mathrm{g} / \mathrm{g}]=c . v . n / m$, where: $c[\mu \mathrm{~g} / \mathrm{ml}]$ is the concentration of the metal measured in the AAS sample of volume $v[\mathrm{ml}], n$ is the dilution factor (how many times the initial volume of the sample had been diluted towards to the measured sample), and $m[\mathrm{~g}]$ is the mass of the tissue taken. In the formula given by the author, the dimensions of the quantities in left and right are not ballanced. 2) Using so many digits for the data is naïve; the number of digits of the quantity should conform with the magnitude of its standard deviation. Some examples: 205.6 ± 34.96 should be written as 206 ± 35; $38.58 \pm 2.060-\text { as: } 39 \pm 2$ 3.450 ± 0.4913 - as 3.4 ± 0.5; 0.2167 ± 0.0459 - as 0.22 ± 0.05 etc. The excess of digits is meaningless from statistical point of view.	
Optional/General comments	I recommend the manuscript suitable for publication after minor revision (vide supra).	

Note: Anonymous Reviewer

