

Tegumental changes in adult *Schistosoma mansoni* induced by a new imidazolidinic derivative

ABSTRACT

Aims: verify the potential of the schistosomicidal imidazolidine derivative (5Z)-3-(4-bromo-benzyl)-5-(4-chloro-benzylidene)-4-thioxo-imidazolidin-2-one.

Study design: In this study, we tested the imidazolidinic derivative 3 through *in vitro* evaluations, cytotoxicity assay and analysis of Scanning Electron Microscopy to verify its therapeutic potential in the treatment of schistosomiasis.

Place and Duration of Study: Departamento de Antibióticos, Universidade Federal de Pernambuco (UFPE), Fundação Oswaldo Cruz (FIOCRUZ)/PE and (FIOCRUZ)/BA between January 2013 and march 2014.

Methodology: This study was approved by the Ethics Committee on Animal Use Research Center Aggeu Magalhães/Oswaldo Cruz Fundação (CPqAM/FIOCRUZ) authorized by the license No. 21/2011. Male albino Swiss mice were used *Mus musculus* 25 days old weighing 50 grams. Compound 3 was assayed for its cytotoxicity through cell J774 macrophage lineage. The amount of inhibitory concentration (LC50) was determined by nonlinear regression using the GraphPadPrism version 5.01. Then the compound was evaluated against adult worms of *S. mansoni* by performing the activity *in vitro* at doses 100-20 µg/mL and ultrastructural investigation by Scanning Electron Microscopy (SEM) at doses of 100 and 60 µg/ml. The PZQ was the positive control of the experiment.

Results: The derivative 3 showed LC₅₀ of 29.7 ± 3.9 mM. Compound 3 was able to have decreased motility of *S. mansoni* culminating with a mortality rate of 100% at doses of 60 and 100 μ g/mL on the fourth day of observation of the experiment. In the SEM, the compound caused various soft tissue changes of *S. mansoni* parasites such as blistering, destruction of the integument with loss of spines and tubercles, body contraction and windy.

Conclusion: the derivative imidazolidine 3 showed a promising schistosomicidal activity *in vitro*. However, conducting further studies with the completion of work in front of the live schistosomiasis is required.

Keywords: schistosomiasis, imidazolidines, tegument, microscopy.

1 INTRODUCTION

Schistosomiasis is a parasitic disease caused, in Brazil, by the Trematoda *Schistosoma mansoni*. It is still considered a parasitic disease of great importance to public health, as it continues affecting over 230 million people distributed around the world [1, 2, 3]. In Brazil, it is estimated that 2.5 million people are infected at the same time that there are 26 million people living in areas at risk of infection [4].

The outer surface of the adult *Schistosoma mansoni* worms consists of a tegument or syncytial layer that is covered with tiny spines, tubercles and apical membranes. This external layer is the contact interface between the parasite and the host and it is formed by juxtaposed lipid layers, forming the membranocalyx [5, 6, 7].

Knowing that the cutaneous surface is located between the parasite's and the host's environment and that it is responsible for presenting proteins involved in the immune response and in the repair of any damage caused by the definitive host, the tegumental structure becomes a potential biological target for the performance of a antischistosomal drug candidate [8, 9].

55 The integrity of the tegument and function of the outer surface are of great significance for the
56 survival and proliferation of *S. mansoni* when it is in contact with the infected host's environment
57 [7]. This is because such structures have a vital role in the invasion of the immune response,
58 nutrient absorption, selective uptake of drugs, metabolism of cholesterol and lipids, and in many
59 other physiological processes [10, 11, 12].

60 There are various tegumental alterations such as swelling, fusion of the tegumental ridges,
61 formation of vesicles, peeling, erosion and sometimes the collapse of the tegument [13, 14, 15].
62 Studies indicate that these tegumental changes can lead to the disappearance of the immune
63 response of the worms, leading to increased vulnerability to its host [15]. In addition to this, the
64 ability to absorb nutrients such as glucose is very affected by the destruction of the worm
65 tegument, exerting a huge influence on the metabolism of the worms, resulting in its death [16].
66 Numerous structural alterations of the tegumental surface of adult *S. mansoni* worms have been
67 observed through studies using antischistosomal compounds such as hicantone [17], niridazol
68 [18], oxaminiquine [19], praziquantel (PZQ) [20, 21, 22], atorvastatin [23], mefloquine [24, 25]
69 and thioxo-imidazolidine derivatives [26].

70 The Imidazolidines are bioactive heterocyclic compounds that exhibit various biological activities
71 such as antimicrobial activity [27], antihypertensive activity [28], antineoplastic activity [29], anti-
72 *Trypanosoma cruzi* activity [30] and antischistosomal activity [31, 32, 33]. Recent studies about
73 the in vitro antischistosomal activity with adult *S. mansoni* worms have shown promising and
74 similar results to the ones presented by PZQ [34, 26]. However, as PZQ, the mechanism of
75 action of the Imidazolidines has not been fully elucidated yet [26].

76 Given the results of the imidazolidinic compounds observed so far and due to the great need for
77 a more effective drug, this study aimed to check the antischistosomal potential of the
78 imidazolidinic derivative (5Z)-3-(4-bromo-benzyl)-5-(4-chloro-benzylidene)-4-thioxo-imidazolidin-
79 2-one (3) through an in vitro activity evaluation and an ultrastructural investigation of the
80 parasite, and to analyze the cytotoxicity of the tested compound in a mammalian cell.

81

82 2. MATERIAL AND METHODS

83

84 2.1 Chemical

85

86 The compound (5Z)-3-(4-bromo-benzyl)-5-(4-chloro-benzylidene)-4-thioxo-imidazolidin-2-one
87 (3) was obtained from Laboratório de Planejamento de Síntese de Fármacos at Universidade
88 Federal de Pernambuco (Brazil) and was duly identified by nuclear magnetic resonance of
89 hydrogen as well as infrared (IR) and mass spectroscopy (MS). The figure 1 displays the
90 synthetic route of 3. The starting reagent was imidazolidine-2,4-dione which was reacted with 4-
91 bromo-benzyl chloride under basic conditions to obtain the intermediate 3-(4-bromo-benzyl)-
92 imidazolidine-2,4-dione (1) [35]. After that, the reaction of 3-(4-bromo-benzyl)-imidazolidine-2,4-
93 dione with Lawesson's reagent in anhydrous dioxane gave rise to 3-(4-bromo-benzyl)-4-thioxo-
94 imidazolidin-2-one. The reaction mixture was heated under reflux for 24 hours [36]. Then 2-
95 cyano-3-(4-chlorophenyl)-acrylic acid ethyl ester (2) [37] was synthesised through Knoevenagel
96 condensation between 4-chloro-benzaldehyde and ethyl cyanoacetate. A Michael-type addition
97 was then performed by reacting the ester (2) with the intermediate 3-(4-bromo-benzyl)-4-thioxo-
98 imidazolidin-2-one to form the final compound (3). Reactions were monitored with analytical
99 thin-layer chromatography in silica gel 60 F254 plates and visualized under UV light (254nm).
100 Melting points were determined on a Quimis 340 capillary melting point apparatus and were not
101 corrected. Infrared spectra were recorded as KBr discs using a BRUKER (IFS66) infrared
102 spectrophotometer. Nuclear magnetic resonance ¹H NMR and ¹³C NMR spectra were recorded
103 in a VMMRS 400 MHz VARIAN spectrometer using tetramethylsilane (TMS) as the internal
104 standard and DMSO-d6 as the solvent. Chemical shifts (δ , ppm) were assigned according to the
105 internal standard signal of TMS in DMSO-d6 (δ , ppm). Coupling constants (J) are reported in
106 Hz. ¹H NMR spectra are reported in the following order: chemical shift, multiplicity, number and
107 type of proton and coupling constant(s). Mass spectra with MALDI-TOF Autoflex III (Bruker
108 Daltonics, Billerica, MA, USA). Laser Nd:YAG, 355 nm. Freq. laser: 100 Hz. The derivative 3
109 was isolated as a single isomer. X-ray crystallographic studies and ¹³C NMR have demonstrated
110 a preferred Z configuration for 5-benzylidene-thiazolidinones [38, 39, 40, 41, 42]. The presence
111 of the arylidene proton peak in ¹H NMR for the synthesized derivatives (5Z)-3-(4-bromo-benzyl)-
112 5-(4-chloro-benzylidene)-4-thioxo-imidazolidin-2-one (3) confirmed the completion of the
113 nucleophilic addition reaction. The compound was also confirmed by MS data in negative mode.
114 The IR spectrum of the compound showed characteristic peaks of the carbonile group and

115 arilidene. For the preparation of (5Z)-3-(4-bromo-benzyl)-5-(4-chloro-benzylidene)-4-thioxo-
 116 imidazolidin-2-one (3), equimolar amounts of -(4-bromo-benzyl)-4-thioxo-imidazolidin-2-one
 117 (200mg) and 2-cyano-3-(4-chlorophenyl)-acrylic acid ethyl ester (165 mg) were reacted using
 118 absolute ethanol (8 mL) as the solvent and morpholine (1 mL) as the catalyst. The reaction
 119 mixture was heated to 50°C for 8 hours and then cooled to room temperature. The solid that
 120 precipitated out was filtered under vacuum and washed with water and absolute ethanol. MF:
 121 $C_{17}H_{12}BrClN_2OS$; MW: 407.7128; MP: 202-3°C; yield: 44.73%; Rf: 0.56 *n*-hexane/ethylacetate
 122 8:2. IR (u, cm^{-1} ; KBr): 3205; 1732; 1712; 1594; ^1H NMR (400 MHz, DMSO-d6): s (1H,NH)
 123 11,33; d(2H, benzylidene) 7,70; d(2H, benzylic) 7,52; d(2H, benzylidene) 7,48; d(2H, benzylic)
 124 7,29; s(1H=CH) 6,99; s(2HNCH₂) 5,03. ^{13}C NMR (δ ppm, DMSO-d6): 44.48 (CH₂); 113,13,(2C);
 125 120,56 (C ring); 128,77(2CH); 129,74 (2CH); 131,25 (2CH); 131,46 (2CH); 131,65(CH); 133,61
 126 (CBr); 134,71 (CCl); 155,56 (C=S), 188,84 (C=O). MS (m/z) relative intensity: expected value
 127 [M]⁺ 405.954, found value (M+H)⁺ 406.936. (Fig. 1).

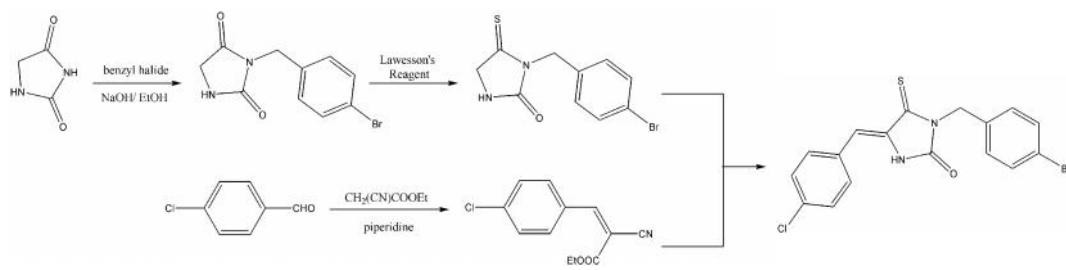


Fig. 1: obtainment of the imidazolidinic derivative.

2.2 Biological Activity

After an initial screening with imidazolidines series compounds through susceptibility testing activity *in vitro* forward to adult worms of *S. mansoni*, the imidazolidinic compound (5Z)-3-(4-bromo-benzyl)-5-(4-chloro-benzylidene)-4-thioxo-imidazolidin-2-one (3) proved to be a potential drug candidate schistosomicidal *in vitro* evaluation well as in testing and scanning electron microscopy (SEM).

2.2.1 Cytotoxicity Assay

Cells of the macrophage cell line J774 (5×10^4 cells/mL) were cultured in 96-well flat bottom tissue culture plates (100 μL /well) containing RPMI-1640 medium (Sigma-Aldrich, St. Louis, USA) supplemented with 10% Foetal Bovine Serum (FBS) (Gibco Laboratories, Gaithersburg, USA) and 50 $\mu\text{g}/\text{mL}$ of gentamicin (Hipolabor, Belo Horizonte, Brazil). The cells were cultured for 24 hours at 37°C in a 5% CO₂ atmosphere. The cells were incubated with the compounds (100 μL /well) at concentrations ranging from 100 to 5 $\mu\text{g}/\text{mL}$. Gentian Violet was used as the positive control. The negative control consisted of J774 cells containing only complete RPMI medium. The cells were incubated for 72 hours. Cell viability was measured by Alamar Blue metabolism (Invitrogen, CA, USA). After that, the absorbance was read on a spectrophotometer at 570 nm and 600 nm [43, 44, 45]. Each compound was tested in triplicate in 3 independent experiments. The 50% inhibitory concentration value (IC₅₀) was determined by nonlinear regression using the GraphPad Prism version 5.01 (GraphPad Software).

2.2.2 Parasites and Definitive hosts

Infection for each mouse was performed percutaneously using 100 *S. mansoni* cercariae (Strain LE - Belo Horizonte) that were derived from *Biomphalaria glabrata* freshwater snails maintained at Departamento de Malacologia do Centro de Pesquisa Aggeu Magalhães (CPqAM). Fifty Swiss albino mice (*Mus musculus*) (25 days of age) were used. After 60 days, a parasitological examination of the feces of the mice was conducted to evaluate the positivity of infection [46]. This project was approved by the Animal Ethics Committee from Centro de Pesquisa Aggeu Magalhães/Fundação Oswaldo Cruz (CPqAM/FIOCRUZ) and authorized by the license n°. 21/2011.

175

176

177 **2.2.3 Perfusion by the hepatic portal vein for counting adult *S. mansoni* worms**

178

179 Adult *S. mansoni* worms were obtained from mice after 60 days of infection. The animals were
180 intraperitoneally anesthetized with ketamine hydrochloride (115 mg/kg) associated with xylazine
181 hydrochloride (10 mg/kg). After anesthesia, the animals were subjected to perfusion by the
182 hepatic portal vein to remove the worms which were separated on Petri dishes with 0.85%
183 saline, and then the parasites were counted and categorized according to the gender and
184 vitality [47].

185 The parasites removed from the mice infected were washed with a medium (RPMI-1640
186 containing 20 mM HEPES pH 7.5, 100UI/mL penicillin, 100 µg/mL streptomycin and 10% FBS).
187 After washing, the adult worms were transferred to tissue culture plates containing 2 mL of
188 medium. Each well received two worms, and then they were incubated at 37°C in a 5% CO₂
189 humidified atmosphere. After a 2-hour period of adaptation to the environment, the
190 imidazolidinic derivative 3 was added at concentrations of 100 µg/mL, 80 µg/mL, 60 µg/mL, 40
191 µg/mL and 20 µg/mL. The parasites were maintained in culture for 6 days and were monitored
192 every 24 hours for evaluation of their motility, mortality and tegumental changes. PZQ was the
193 standard drug of the experiment (positive control). The worms from the negative control group
194 were treated only with dimethyl sulfoxide (DMSO) in a RPMI medium. The motility of the
195 parasites was analyzed and scored according to the criteria proposed by Horiuchi et al. [48].
196 The scoring system was as follows: 3 - normal body movement; 1.5 - partial body movement;
197 and 0 - dead.

198

199 **2.2.4 Scanning electron microscopy**

200

201 After 24 hours of treatment with the imidazolidinic derivative 3 at concentrations of 60 µg/mL
202 and 100 µg/mL, the worms were fixed with 2.5% glutaraldehyde in a 0.1 M phosphate buffer (pH
203 7.2) for 2 hours at room temperature. Then, they were washed twice in the same buffer and
204 post-fixed with 1% osmium tetroxide in a phosphate buffer for 1 hour at room temperature. All
205 the worms were dehydrated with 100% ethanol, and then dried with liquid CO₂ in a critical-point
206 dryer machine, mounted on stubs, coated with gold, and examined using an electron
207 microscopy (Field Emission Ambiental FEI Quanta 200 FEG).

208

209

210 **3. RESULTS AND DISCUSSION**

211

212 **3.1 Cytotoxicity assay and *in vitro* schistosomicidal activity of the imidazolidinic
213 compound 3**

214

215 The data relating to the mobility and mortality of the worms are summarized in Tables 01 and
216 02, respectively. Throughout the 144 hours of observation period, all the adult *S. mansoni*
217 worms incubated in absence of any drug (negative control group) exhibited typical wavy and
218 peristaltic movement along the body axis, with occasional adherence to the bottom of the
219 culture plate through the ventral sucker (score = 3). In the evaluation of the *in vitro* activity, we
220 observed that the imidazolidinic derivative 3 showed a promising response against adult *S.*
221 *mansoni* worms. On the fourth day, 100% of the worms treated with 60 and 100 µg/mL of 3 died
222 (score = 0). However, there was only a decrease of movement at other doses (80 µg/mL, 40
223 µg/mL and 20 µg/mL) (score = 1.5). At the end of the experiment, on the sixth day of
224 observation, 100% of the worms treated with the compound 3 at all doses tested died (score =
225 0), except for the dose of 20 µg/mL (score = 1.5).

226 In contrast, the worms exposed to the antischistosomal drug of choice, praziquantel (positive
227 control group), exhibited severe muscle contraction with partial movements or immobile but
228 alive (score = 1.5), which occurred immediately after praziquantel administration. During the first
229 24 hours of praziquantel treatment at all doses tested, 100% of the worms were dead (score =
230 0). Additionally, compound 3 interrupted oviposition, the suckers become non adherent and
231 there was clearance of parasites (Not paired).

232 The cytotoxicity of the compound 3 was determined in cells of the macrophage cell line J774.
233 The derivative 3 showed an IC₅₀ of 29.7±3.9 µM. However, reports in the literature indicate that

234 PZQ has high toxicity (<1 μ g/mL) and is more cytotoxic than the imidazolidinic derivatives
 235 [26,34].

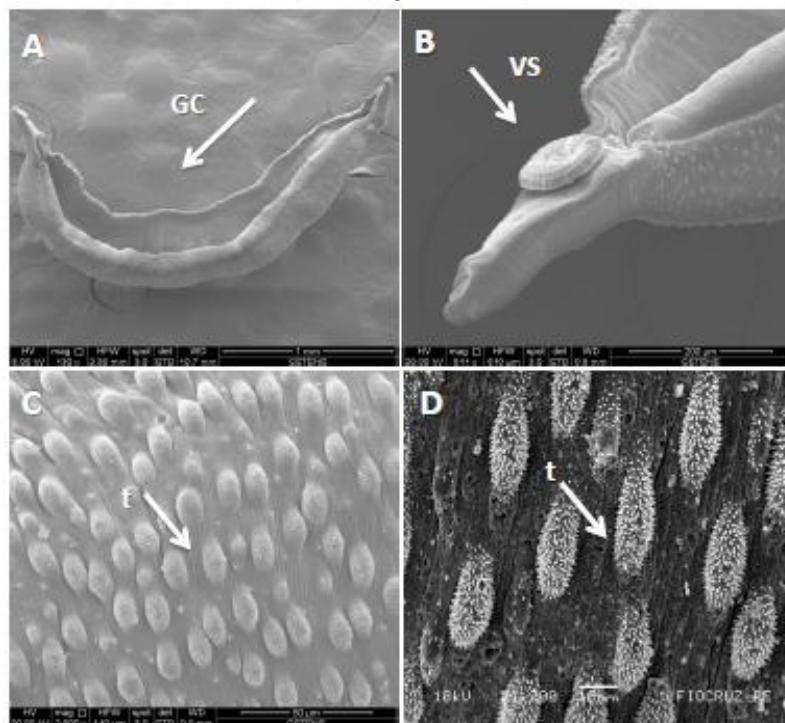
236

237 **Table 1: Motility scores of the worms from the negative control group, and from the**
 238 **groups treated with praziquantel (PZQ) and with the imidazolidinic derivative 3.**

Groups	Percent of worms (%) in motility scores after incubation																	
	24 h			48 h			72 h			96 h			120 h			144 h		
	3	1.5	0	3	1.5	0	3	1.5	0	3	1.5	0	3	1.5	0	3	1.5	0
Control	100	0	0	100	0	0	100	0	0	100	0	0	100	0	0	100	0	0
PZQ/40 μ g/mL	0	0	100	0	0	100	0	0	100	0	0	100	0	0	100	0	0	100
Compound 3																		
100 μ g/mL	8.3	75	16.7	0	41.7	58.3	0	8.3	91.7	0	0	100	0	0	100	0	0	100
80 μ g/mL	8.3	58.3	33.4	0	41.7	58.3	0	33.3	66.7	0	33.3	66.7	0	8.3	91.7	0	0	100
60 μ g/mL	16.7	58.3	25	0	41.7	58.3	0	25	75	0	0	100	0	0	100	0	0	100
40 μ g/mL	22.2	55.6	22.2	11.1	66.7	22.2	0	66.7	33.3	0	66.7	33.3	0	22.2	77.8	0	0	100
20 μ g/mL	41.7	58.3	0	41.7	58.3	0	41.7	58.3	0	41.7	58.3	0	33.3	66.7	0	0	66.7	33.3

239

240 Score criteria - 3, complete body movement; 1.5, partial body movement or immobile but alive; 0, dead.

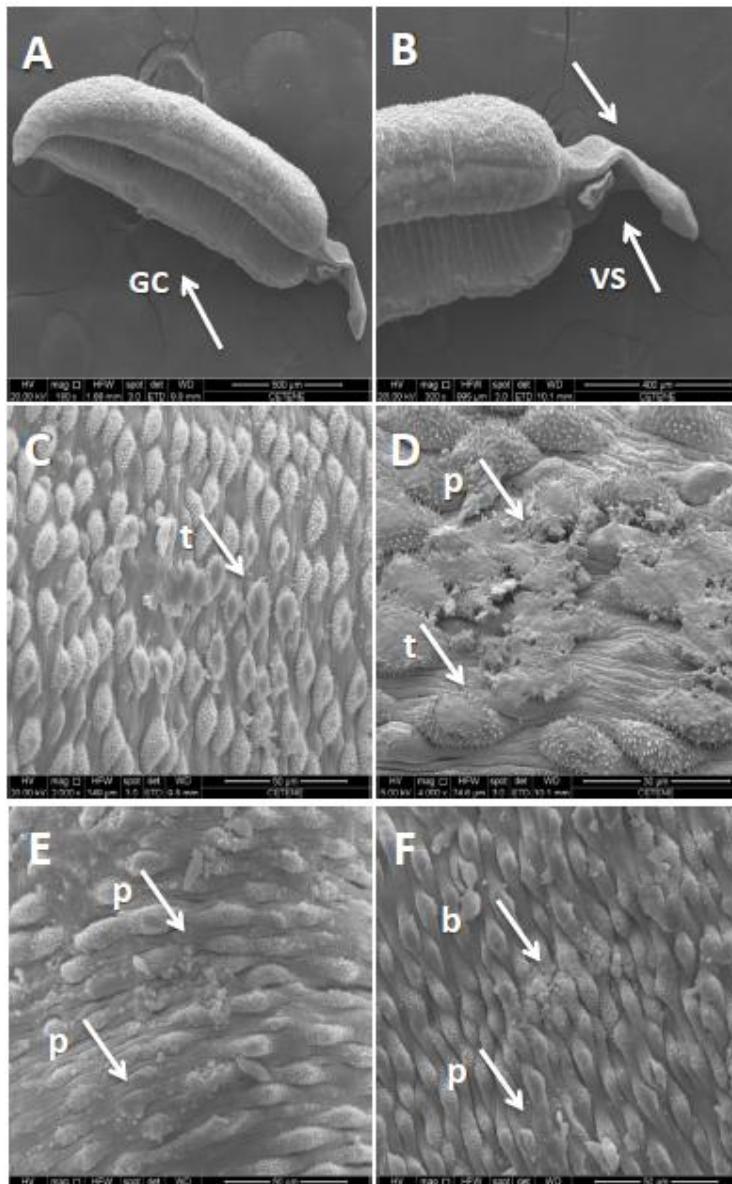

241

242 3.2 The imidazolidinic derivative 3 induced ultrastructural alterations in worm tegument

243

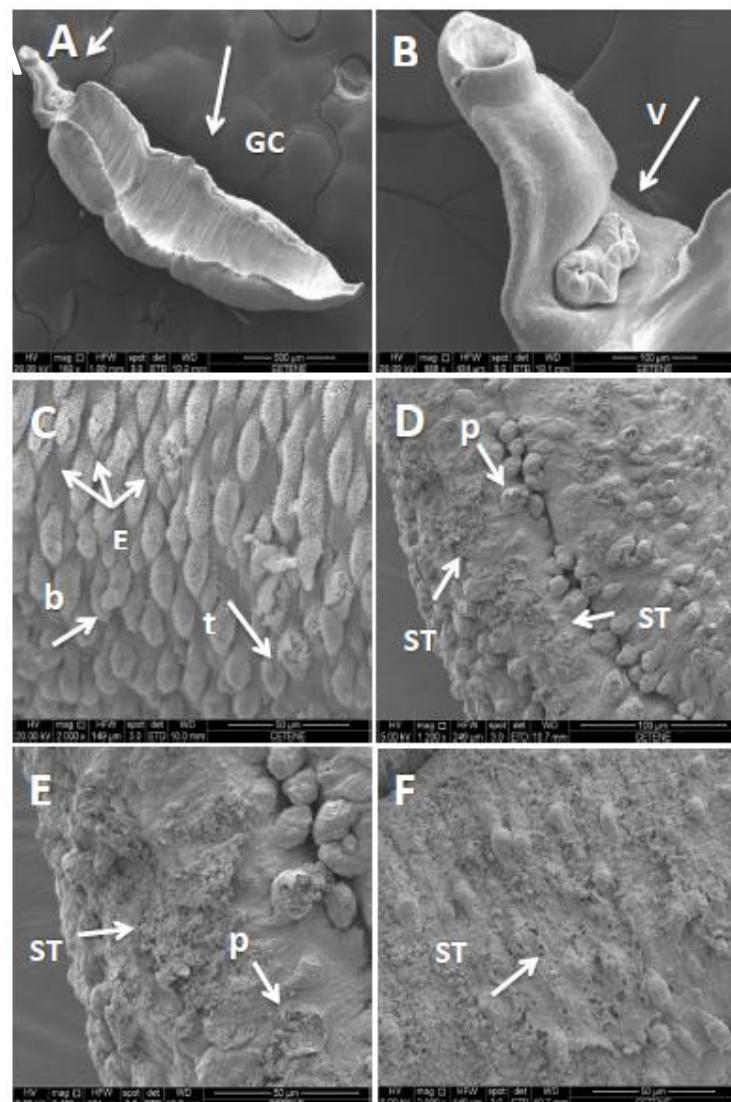
244 The scanning electron microscopy revealed detailed surface membrane ultrastructural damage
 245 caused by the exposure to the imidazolidinic derivative 3 (60 and 100 μ g/mL) compared with the
 246 negative (untreated) and positive (exposed to praziquantel) controls.

247 Male worms treated only with DMSO in RPMI-1640 medium were used as a negative control. In
 248 the anterior portion of the body, the gynecophoral canal, a longitudinal fold of the middle and
 249 posterior body that houses the female for the purpose of mating and reproduction, can be
 250 observed (Fig. 2A). Along the body axis, the oral and ventral suckers in normal state can be
 251 visualized (Fig. 2B). In the negative control group, the worm tegument was observed with a
 252 large number of tubercles and numerous spines (Fig. 2C and D).



253

254 **Fig. 2. Images of adult male *S. mansoni* from the negative control group after 24 hours of**
 255 **incubation (A-D): (A, 130x) gynecophoral canal (GC), (B, 544x) ventral sucker (VS), (C,**
 256 **2000x) worms with normal tegument (t) (arrow) and (D, 1200x) a large number of**
 257 **tubercles (t) with their spines.**


258
259
260
261
262
263
264

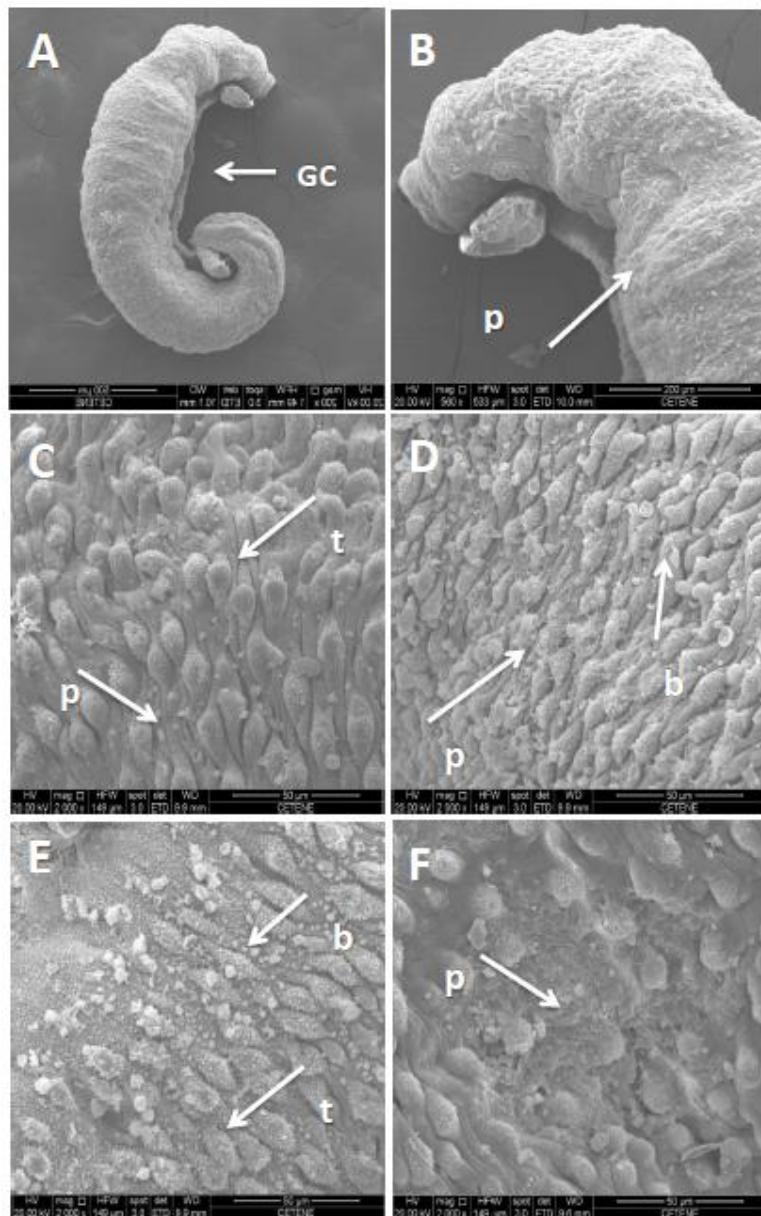
The imidazolidinic derivative 3 and PZQ induced severe damage to the worms. After 24 hours of incubation with the imidazolidinic derivative 3 at the dose of 60 μ g/mL, adult *S. mansoni* worms presented severe changes such as the contraction of the body (Fig. 3A), head and suckers (Fig. 3B), loss of spines in the tubercles (Fig. 3C and 2D), tegumental blistering and peeling of the tegument which resulted in the destruction of the tubercles (Fig. 3E and F).

265
266
267
268
269
270
271
272
273
274
275
276
277

Fig. 3. Scanning electron microscopy of the tegument of an adult *S. mansoni* worm treated with the compound 3 at a dose of 60 μ g/mL (A-F), showing the contraction on the body, gynecophoral canal (GC) (A, 180x) and ventral suckers (VS) (B, 300x); loss of spines in the tubercles (t) (C, 2000x); peeling of the tegument (p) (D, 4000x) and (E, 2000x); and blistering (b) (F, 2000x).

After 24 hours of incubation with the imidazolidinic derivative 3 at a dose of 100 μ g/mL, adult *S. mansoni* worms had a significant opening of the gynecophoral canal (Fig. 4A), contraction of the head and suckers (Fig. 4B), collapse of the tubercle with erosion of the tegument (E) (Fig. 4C) and a severe lesion revealing the layer of subtegument tissue (ST) (Fig. 4D). In this case, there was a enormous destruction of the subtegument surface (ST) (Fig. 4E and F).

278


279

280 **Fig. 4. Scanning electron microscopy of the tegument of an adult *S. mansoni* treated with**
 281 **the compound 3 at a dose of 100 µg/mL (A-F), showing opened gynecophoral canal (GC)**
 282 **(A, 2000x), contraction of the head and suckers (VS) (B, 688x), tegument erosion (E) (C,**
 283 **2000), and destruction of the subtegument tissue (ST) (D, 1200x), (E, 2400x) and (F,**
 284 **2000x).**

285

286

287 The *in vitro* effects of praziquantel (100 µg/mL) on adult male *S. mansoni* worms promoted an
 288 evident contraction of the longitudinal muscles (Fig. 5A and B). The worms were curved and
 289 shortened in appearance, and most tubercles were juxtaposed (Fig. 5C and D). Severe lesions
 290 became evident including peeling, collapse of the tubercles and appearance of many bubbles
 (Fig. 5E and F).

291
 292 **Fig. 5. Scanning electron microscopy of the tegument of the adult *S. mansoni* worms**
 293 **treated with PZQ at a dose of 100 µg/mL (A-F), showing the contraction in the body and**
 294 **the gynecophoral canal (GC) (A, 200x), the peeling of the tegument (p) and the**
 295 **contraction of the suckers (arrow) (B, 560x), loss of spines in the tubercles (t) (arrows)**
 296 **(C, 2000x), peeling (p) and appearance of bubbles (b) (D, 2000x), (E, 2000x) and (F,**
 297 **2000x).**

298

299

300

301 The evaluation of antischistosomal drug candidates is of great importance for understanding the
 302 biology of the parasite and may be prophylactic causing the death of schistosomula,
 303 suppressive for inhibiting oviposition or display a curative activity for being able to cause the
 304 death of the adult *S. mansoni* worms [49]. Thus, many parameters need to be analyzed such as
 305 motor activity, mortality, oviposition and the structural changes in order to find out what the
 306 potential of the compound against the parasite [50].

307 Among the various antischistosomal compounds already tested, the imidazolidinic derivatives
 308 are well known for their activity in several works that are studying their *in vitro* and *in vivo*

4. DISCUSSION

309 efficacy, showing promising results when compared to praziquantel, a control drug available in
310 the market for the treatment of schistosomiasis [33, 31, 34, 51].
311 Neves and colleagues have been working with imidazolidinic derivatives conducting *in vitro*
312 activities, scanning electron microscopy analyzes, cytotoxicity and measurement of cytokines
313 during acute and chronic disease. Their studies indicate that these imidazolidinic compounds
314 were able to show similar results to PZQ with 100% mortality of adult *S. mansoni* worms in the
315 first 24 hours of contact with the compound. The compound 3 did not show as fast results as the
316 compounds mentioned above, but it is able to cause the maximum mortality rate after 96
317 hours of experiment. Furthermore, supporting the work with the Imidazolidines mentioned
318 above, the compound 3, in the cytotoxicity assays, also showed to be less cytotoxic than
319 praziquantel at the cellular level [34, 26].
320 Adult *S. mansoni* worms have a variety of movements, including rapid shortening and extension
321 of the body, typical wavy and peristaltic movement along the body anterior and posterior axis
322 [52]. The motor activity of the worms could be related to the important neurotransmitters or
323 neuromodulators such as serotonin, norepinephrine, epinephrine, dopamine, acetylcholine,
324 epinephrine, glutamate and neuropeptides [53, 54, 55].
325 The mechanism of action of the imidazolidinic derivatives is not fully elucidated yet. However,
326 there is evidence that these compounds act at the levels of the cholinergic receptors [56].
327 Acetylcholine may have an important physiological role as an inhibitory neurotransmitter in *S.*
328 *mansoni* once its motor activity is reduced by inhibiting acetylcholinesterase, showing a flaccid
329 paralysis with loss of motility followed by the stretching of the worm [53]. These reports
330 corroborate our research because the compound 3 tested in this study, in some parasites, was
331 able to cause muscle relaxation and subsequent elongation of the worms. It can be seen in
332 some images of scanning electron microscopy. On the other hand, some worms showed
333 contraction of the body and suckers, similar to the results seen with PZQ which also does not
334 have a mechanism of action fully discovered, but there is already evidence showing that the
335 contraction is because of the calcium influx responsible for causing the muscle contraction [57].
336 Acetylcholinesterase is also found on the tegumental surface of the worm and has the function
337 of obtaining glucose. Since this enzyme is inhibited, the absorption of nutrients for the survival
338 of the parasite may be compromised [53]. Thus, inhibition of acetylcholinesterase may be a
339 therapeutic target against the parasite. This has been seen in studies using metrifonate which
340 showed acetylcholinesterase activity [58].
341 Another very important possible biological target to combat the disease has been the
342 tegumental surface, since this structure is involved in the immune response of the worm against
343 the definitive host. It has sensory activity and the ability to absorb nutrients [8]. Our results,
344 based on the ultrastructural analyzes, demonstrated that the treatment with the imidazolidinic
345 derivative 3, at doses of 60 µg/mL and 100 µg/mL, can be involved in the mortality of the
346 worms, since the compound was able to induce destruction of the tegument, with loss of spines
347 and tubercles, formation of bubbles and destruction of the sub-tegumental surface in adult male
348 *S. mansoni* worms.
349 Studies indicate that the tegumental changes are more pronounced in male worms than in
350 female ones, since there is not a frequent contact between the female worms and the definitive
351 host environment because they remain in the gynecophoral canal of the male worms [16, 59].
352 These data corroborate our experiments once it was possible to show that only the male
353 parasites showed greater changes in the tegumental surface in relation to the female parasites.
354 This can also be seen in many previous studies with antischistosomal compounds, such as
355 oxamniquine [60, 19], artemether [15], miltefosine [61], mefloquine [24, 25], praziquantel [62,
356 63, 21, 64] and thioxo-imidazolidinic compounds [33, 32, 26].
357 Imidazolidinic compounds such as (Z)-3-(4-chlorobenzyl)-5-(4-nitro-benzylidene)- imidazolidine-
358 2,4-dione, (Z)-3-(4-chloro- benzyl) -5-(4-fluoro-benzylidene)-1-methyl-2- thioxo-imidazolidin-4-
359 one and (Z)-5-(4-fluoro-benzilidene)-1-methyl-3-(4-phenyl-benzyl)-2-thioxo-imidazolidin-4-one
360 induced significant changes in the tegumental surface of the body of adult *S. mansoni* worms,
361 causing damage in the tegument with contraction of the body and of oral and ventral suckers,
362 disorganization and total collapse of the tubercles with loss of spines [32]. The nitro, fluorine
363 and phenyl radicals, present in the imidazolidinic derivative of this work, helped to improve the
364 efficacy of the compound against the worms [65, 66].
365 Promising results with other imidazolidinic compounds presenting chlorine and fluorine radicals
366 in their structure were also able to cause ultrastructural changes in the tegument of adult worms
367 of *S. mansoni*, such as the derivatives 1-benzyl-4-[(4 -chloro-phenyl)-hydrazono]-5-thioxo-
368 imidazolidin-2-one and 1-(4-chloro-benzyl)-4-[(4-fluoro-phenyl)-hydrazono]-5-thioxo-

369 imidazolidin-2-one. According to Thomas [66], the halogens have the ability to enhance the
370 absorption of the derivatives by the cell membranes. Thus, this may have happened in the
371 tegumental surface of the parasite treated with the above compounds as well as with the
372 compound 3 which presents the halogens fluorine and bromine in its chemical structure.
373

374 **5. CONCLUSION**

375

376 In conclusion, the imidazolidinic derivative 3 showed a promising in vitro schistosomicidal
377 activity when compared to the reference drug (praziquantel). Thus, it is necessary to investigate
378 the elucidation of the mechanism of action of this compound as well as to invest in further
379 studies to investigate its biological activity such as an in vivo evaluation.
380

381

382

383 **ETHICAL APPROVAL (WHERE EVER APPLICABLE)**

384

385 All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-
386 23, revised 1985) were followed, as well as the ethical principles of the Brazilian Society of
387 Laboratory Animal Science (SBCAL). This project was approved by the Animal Ethics
388 Committee from Centro de Pesquisa Aggeu Magalhães/Fundação Oswaldo Cruz
389 (CPqAM/FIOCRUZ) and authorized by the license no. 21/2011.
390

391

392 **REFERENCES**

393

394 1. Steinmann P, Keiser J, Bos R, Tanner M, Utzinger J. Schistosomiasis and water resources
395 development: systematic review, meta-analysis, and estimates of people at risk. Lancet. Infect. Dis
396 2006; 6: 411–425.

397

398 2. Gryseels B, Polman K, Clerinx J, Kestens L. Human schistosomiasis. Lancet. 2006; 368:
399 1106-18.

400

401 3. WHO - World Health Organization. Schistosomiasis, Media Centre Fact sheet January. 2012;
402 115.

403

404 4. Vitorino RR, Souza FPC, Costa AP, Faria-junior FC, Santana LA, Gomes AP.
405 Esquistosomose mansônica: diagnóstico, tratamento, epidemiologia, profilaxia e controle. Rev
406 Bras Clin Med São Paulo. 2012; 10(1): 39-45.

407

408 5. Morris GP, Threadgold LT. Ultrastructure of the tegument of adult *Schistosoma mansoni*. J
409 Parasitol. 1968; 54:15-27.

410

411 6. Smith JH, Reynolds ES, Von Lichtenberg F. The integument of *Schistosoma mansoni*.
412 AmJTrop Med Hyg. 1969; 18: 28-49.

413

414 7. Hockley DJ. Ultrastructure of the tegument of *Schistosoma mansoni*. Advances in

415 Parasitology. 1973; 11: 233-305.

416

417 8. Hoffmann KF and Strand M. Molecular identification of a *Schistosoma mansoni* tegumental
418 protein with similarity to cytoplasmic dynein light chains. The journal of biological chemistry.
419 1996; 271: 26117-26123.

420

421 9. Xiao SH, Shen BG, Utzinger J, Chollet J, Tanner M. Ultrastructural alterations in adult
422 *Schistosoma mansoni* caused by artemether. Memórias do Instituto Oswaldo Cruz. 2002; 97:
423 717-724.

424

425 10. Ruppel A, McLaren DJ. *Schistosoma mansoni*: surface membrane stability in vitro and in
426 vivo. Exp Parasitol. 1986; 62(2): 223-236.

427

428 11. Faghiri Z, Skelly PJ. The role of tegumental aquaporin from the human parasitic worm,
429 *Schistosoma mansoni*, in osmoregulation and drug uptake. FASEB J. 2009; 23: 2780-2789.

429 12. Pereira AS, Padilha RJ, Lima-filho JL, Chaves ME. Scanning electron microscopy of the
430 human low-density lipoprotein interaction with the tegument of *Schistosoma mansoni*. *Parasitol*
431 *Res.* 2011; 109: 1395-1402.

432 13. Xiao SH, Shen BG, Catto BA. Effect of artemether on ultrastructure os *Schistosoma*
433 *japonicum*. *Chin J Parasitol Parasit Dis.* 1996b; 14: 181-187.

434 14. Xiao S, Binggui S, Chollet J, Tanner M. Tegumental changes in 21-day-old *Schistosoma*
435 *mansoni* harboured in mice treated with artemether. *Acta tropica.* 2000; 75: 341-348.

436 15. Xiao SH, Shen BG, Chollet J, Utzinger J, Tanner M. Tegumental aalterations in juvenile
437 *Schistosoma haematobium* harboured in hamsters following artemether treatment. *Parasitology*
438 *international*, 2001; 50: 175-183.

439 16. Nahed HA, Riad HAT, Yomna IM. Effects of garlic on albino mice experimentally infected
440 with *Schistosoma mansoni*: A parasitological and ultrastructural study. *Trop Biomed.* 2009; 26:
441 40-50.

442 17 Hillman GR, Gibler WB, Anderson JB. Comparative effects of hycanthone in *Schistosoma*
443 *mansoni* and *Schistosoma japonicum*. *Am J Trop Med Hyg.* 1977; 26: 238-242.

444 18. Popiel I. & Erasmus DA. *Schistosoma mansoni*: ultrastructure of adults from mice treated
445 with oxamniquine. *Experimental Parasitology.* 1984; 58: 254-262.

446 19. Fallon PG, Fookes RE, Wharton G.A. Temporal differences in praziquantel – and
447 oxamniquine- induced tegumental damage to adult *Schistosoma mansoni*: implications for drug-
448 antibody synergy. *Parasitology.* 1996; 112: 47-58.

449 20. Becker B, Mehlhorn H, Andrews P, Thomas H & Eckert J. Light and electron microscopic
450 studies on the effect of praziquantel on *Schistosoma mansoni*, *dicrocoelium dendriticum* and
451 *Fasciola hepatica* (trematoda) in vitro. *Z Zeitschrift fur parasitennkunde.* 1980; 63: 113-128.

452 21. Liang YS, Coles GC, Dai JR, Zhu YC, Doenhoff MJ. Adult worm tegumental damage and
453 egg-granulomas in praziquantel-resistant and –susceptible *Schistosoma mansoni* treated in
454 vivo. *Journal of helminthology.* 2002; 76: 327-333.

455 22. Mohamed AH, Ezz El-din N, Fahmy ZH, El-Shennawy AM & Hassan E. Parasitological,
456 hematological and ultrastructural study of the effect of COX-2 inhibitor, pyocyanin pigment and
457 praziquantel, on *Schistosoma mansoni* infected mice. *The journal of Egyptian society of*
458 *parasitology.* 2006; 36: 197-220.

459 23 Soliman MFM, Ibrahim MM. Antischistosomal action of artovastatin alone and concurrently
460 with medroxyprogesterone acetate on *schistosoma haematobium* harboured in hamster:
461 surface ultrastructure and parasitological study. *Acta tropica.* 2005; 93: 1-9.

462 24. Manneck T, Hagenmüller Y, Keiser J. Morphological effects and tegumental alterations
463 induced by mefloquine on schistosomula and adult flukes of *Schistosoma mansoni*.
464 *Parasitology.* 2010; 137: 85–98.

465 25. Xiao SH, Xue J, Shen B. Transmission electron microscopic observation on ultrastructural
466 alterations in *Schistosoma japonicum* caused by mefloquine. *Parasitol Res.* 2010; 106 (5):
467 1179-1187.

468 26. Neves JK, De Lima MC, Pereira VR, De Melo CM, Peixoto CA, Pitta IR, Albuquerque MC,
469 Galdino SL. Antischistosomal action of thioxo-imidazolidine compounds: an ultrastructural and
470 cytotoxicity study. *Exp Parasitol.* 2011; 128(1):82–90.

471 27. Oliveira SM, Silva JBP, Hernandes MZ, Lima MCA, Galdino SL, Pitta IR. Estrutura,
472 reatividade e propriedades biológicas de hidantoínas. *Quim. Nova.* 2008; 31: 614-622.

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489 28. Amemiya Y, Hong SS, Venkataraman BV, Patil PN, Shams G, Romstedt K, Feller DR, Hsu
490 FL, Miller DD. Synthesis and alpha-adrenergic activities of 2- and 4-substituted imidazole
491 analogues. *J. Med. Chem.* 1992; 35: 750-755.

492

493 29. Peng GW, Marquez VE, Driscoll JS. Potential central nervous system antitumor agents.
494 Hydantoin derivatives. *J. Med. Chem.* 1975; 18: 846-849.

495

496 30. Caterina MC, Perillo IA, Boiani L, Pezaroglo H, Cerecetto H, Gonzalez M, Salerno A.
497 Imidazolidines as new anti-Trypanosoma cruzi agents: biological evaluation and structure-
498 activity relationships. *Bioorganic and Medicinal Chemistry*. 2008; 16: 2226-2234.

499

500 31. Oliveira SM, Albuquerque MCPA, Pitta MGR, Malagueño E, Santana JV, Lima MCA, Pitta
501 IR, Galdino SL. A Resposta do *Schistosoma mansoni* Mantido *In Vitro* frente a Derivados
502 Imidazolidinônicos. *Acta Farm. Bonaerense*. 2004; 23 (3): 343-8.

503

504 32. Albuquerque MCA, Silva TG, Pitta MGR, Silva ACA, Silva PG, Malagueño, E, Santana JV,
505 Wanderley AG, Lima MCA, Galdino SL, Barbe J, Pitta IR. Synthesis and schistosomicidal
506 activity of new substituted thioxoimidazolidine compounds. *Pharmazie*. 2005; 60: 13-17.

507

508 33. Pitta MGR, Silva ACA, Neves JKAL, Silva PG, Irmão JI, Malagueño E, Santana JV, Lima
509 MCA, Galdino SL, Pitta IR, Albuquerque MCPA. New imidazolidinic bioisosters: potential
510 candidates for antischistosomal drugs. *Mem Inst Oswaldo Cruz*. 2006; 101: 313-316.

511

512 34. Neves JKAL, Botelho SPS, Melo CML, Pereira VRA, Lima MCA, Pitta IR, Albuquerque
513 MCPA, Galdino SL. Biological and immunological activity of new imidazolidines against adult
514 worms of *Schistosoma mansoni*. *Parasitol Res.* DOI 10.1007/s00436-010-1886-y, 2010.

515

516 35. Brandao SSF, Andrade AMC, Pereira DTM, Barbosa Filho JM, Lima MCA, Galdino SL, Pitta
517 IR, Barbe J. A novel way of synthesis of 1,3,5-trisubstituted-2-thioxoimidazolidinones.
518 *Heterocycl Comm* (in press). 2004.

519

520 36. Gouveia FL, Oliveira RMB, Oliveira TB, Silva IM, Nascimento SC, Sena KXFR, Albuquerque
521 JFC. Synthesis, antimicrobial and cytotoxic activities of some 5-arylidene-4-thioxo-thiazolidine-
522 2-ones. *European Journal of Medicinal Chemistry*. 2009; 44: 2038-2043.

523

524 37. Mourão RH, Silva TG, Soares ALM, Vieira ES, Santos JN, Lima MCA, Lima VLM, Galdino
525 SL, Barbe J, Pitta IR. Synthesis and Biological Activity of Novel Acridinylidene and Benzylidene
526 thiazolidinediones. *European Journal of Medicinal Chemistry*. 2005; 40: 1129-1133.

527

528 38. Tan et al. Tan F, Ang KP, Fong YF. (Z)- and (E)-5-arylmethylenehydantoins: spectroscopic
529 properties and configuration assignment *Journal of the Chemical Society, Perkin Transactions*
530 II. 1986; 12: 1941-1944.

531

532 39 De Simone et al. De Simone CA, Zukerman-Schpector J, Pereira MA, Luu-Duc C, Pitta IR,
533 Galdino SL, Amorim ELC. 3-(4-Bromobenzyl)-5-(4-fluorobenzylidene)-imidazolidine-2,4-dione.
534 *Acta Crystallographica*. 1995; 2620-2621.

535

536 40. Guarda VLM, Pereira MA, De Simone CA, Albuquerque JC, Galdino SL, Chantegrel J,
537 Perrissin M, Beney C, Thomasson F, Pitta IR, Luu-Duc C. Synthesis and structural study of
538 arylidene thiazolidine and benzothiazine compounds. *Sulfur Letters*. 2003; 26: 17-27.

539

540 41. Karolak-Wojciechowska J, Szymanska E, Mrozek A, Kiec-Kononowicz K. Crystallographic
541 and spectroscopic studies of 5-arylidene-2-amino-imidazol-4-ones. *Journal of Molecular*
542 *Structure*. 2009; 930: 126-134.

543

544 42. Handzlik J, Szymanska E, Wojcik R, Dela A, Jastrzebska-Wiesek M, Karolak-
545 Wojciechowska J, Fruzinski A, Siwek A, Filipek B, Kiec-Kononowicz K. Synthesis and SAR-
546 study for novel arylpiperazine derivatives of 5-arylidenehydantoin with a1-adrenoceptor
547 antagonistic properties. *Bioorganic & Medicinal Chemistry*, 2012; 20: 4245-4247.

548

549 43. Keenan M, Abbott MJ, Alexander PW, Armstrong T, Best WM, Berven B, Botero A, Chaplin
550 JH, Charman SA, Chatelain E, Von Geldern TW, Kerfoot M, Khong A, Nguyen T, McManus
551 JD, Morizzi J, Ryan E, Scandale I, Thompson RA, Wang SZ, White KL.
552 Analogues of fenarimol are potent inhibitors of *Trypanosoma cruzi* and are efficacious in a
553 murine model of Chagas disease. *Journal of Medicinal Chemistry*. 2012; 55: 4189-4204.
554

555 44. Romanha AJ, Castro SL, Soeiro MN, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum
556 B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustamante
557 JM, Freitas-Junior LH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong
558 T, Degrave W, Andrade ZA. In vitro and in vivo experimental models for drug screening and
559 development for Chagas disease. *Memórias do Instituto Oswaldo Cruz*. 2010; 105: 233-238.
560

561 45. Becerra MC, Guiñazú N, Hergert LY, Pellegrini A, Mazzieri MR, Gea S, Albesa I. In vitro
562 activity of N-benzenesulfonylbenzotriazole on *Trypanosoma cruzi* epimastigote and
563 trypomastigote forms. *Experimental Parasitology*. 2012; 131: 57-62.
564

565 46. Hoffman WA, Pons JA, Janer SL. The sedimentation concentration method in
566 *Schistosomiasis mansoni*. *PR J Public Health Trop Med*. 1934; 9: 283-291.
567

568 47. Duvall RH, Dewitt WB. An improved perfusion technique for recovering adult schistosomes
569 from laboratory animals. *The American Journal of Tropical Medicine and Hygiene*. 1967; 16:
570 483-486.
571

572 48. Horiuchi A, Satou T, Akao N, Koike K, Fujita K, Nikaido T. The effect of free and
573 polyethylene glycol-liposome-entrapped albendazole on larval mobility and number in *Toxocara*
574 *canis* infected mice. *Vet Parasitol*. 2005; 129 (1-2): 83- 87.
575

576 49. Moraes J, Nascimento C, Lopes PO, Nakano E, Yamaguchi LF, Kato MJ, Kawano T.
577 *Schistosoma mansoni*: In vitro schistosomicidal activity of piplartine. *Exp. Parasitol*. 2011; 127:
578 357-364.
579

580 50. KATZ N. The discovery of Schistosomiasis mansoni in Brazil, *Acta Tropica*. 2008; 69-71.
581

582 51. Silva ACA, Neves JKAL, Irmão JI, Costa VMA, Souza VMO, Medeiros PL, Silva EC, Lima
583 MCA, Pitta IR, Albuquerque MCPA, Galdino SL. Study of theActivity of 3-benzyl-5-(4-chloro-
584 arylazo)-4-thioxo-imidazolidin-2-one against SchistosomiasisMansonii in Mice.
585 *ScientificWorldJournal*. 2012; 520-524.
586

587 52. Mendonça-Silva DL, Pessôa RF & Noel F. Evidence for the presence of glutamatergic
588 receptors in adult *Schistosoma mansoni*. *Biochemical Pharmacology*. 2002; 64: 1337-1344.
589

590 53. Noel F. Sistema neuromuscular e controle da motilidade do verme adulto. In: Carvalho OS,
591 Coelho PMZ, LENZI HL. *Schistosoma mansoni & Esquistosomose: Uma visão interdisciplinar*.
592 Rio de Janeiro: Fiocruz. 2008, 207-244.
593

594 54. Marks NJ, Maule AG. Neuropeptides in helminths: occurrence and distribution. *Advances
595 experimental medicine biology*. 2010; 692: 49-77.
596

597 55. TAMAN A, RIBEIRO P. Glutamate-mediated signaling in *Schistosoma mansoni*: a novel
598 glutamate receptor is expressed in neurons and the female reproductive tract. *Mol. Biochem.
599 Parasitol*. 2011; 176: 42-50.
600

601 56. Thibaut JPB, Monteiro LM, Leite LCC, Menezes CMS, Lima, LM, Noel F. The effects of 3-
602 methylclonazepam on *Schistosoma mansoni* musculature are not mediated by benzodiazepine
603 receptors. *European journal of pharmacology*. 2009; 606: 9-16.
604

605 57. Tallima H, Ridi R. Praziquantel binds *Schistosoma mansoni* adult worm actin, *International
606 Journal of Antimicrobial Agents*. 2007; 29: 570-575.
607

608 58. Camacho M. et al. The amount of acetylcholinesterase on the parasite surface reflects the
609 differential sensitivity of schistosome species to metrifonate. *Parasitology*. 1994; 108: 153 –
610 160.

611

612 59. Mostafa OM, Soliman MI. Experimental use of black-seed oil against *Schistosoma mansoni*
613 in albino mice: II. Surface topography of adults worms. *Egyptian Journal of Medical Laboratory
614 Sciences*. 2002; 11: 79-85.

615

616 60. Kohn A, Lopez-Alvarez ML, Katz N. Transmission and scanning electron microscopical
617 studies in the tegument of male *Schistosoma mansoni* after oxamniquine treatment. *Annales de
618 Parasitologie Humaine et compare*. 1982; 57: 285-291.

619

620

621 61. Bertão HG, Silva RAR, Padilha RJR, Albuquerque MCPA, Rádis-Baptista G. Ultrastructural
622 analysis of miltefosine-induced surface membrane damage in adult *Schistosoma mansoni* BH
623 strain worms. *Parasitol Res*. 2012; 110: 2465-2473.

624

625 62. Mehlhorn H, Becker B, Andrews P, Thomas H, Frenkel JK. In vivo and in vitro experiments
626 on the effects of praziquantel on *Schistosoma mansoni*, a light and electron microscopic study.
627 *Arzneimittel-Forschung/Drug Research*. 1981; 31: 544 – 547, 1981.

628

629 63. Cioli D, Pica-Mattoccia L. *Praziquantel*. *Parasitology Research*. 2003; 90: 3–9.

630

631 64. Xiao SH, Keiser J, Xue J, Tanner M, Morson G, Utzinger J. Effect of single-dose oral
632 artemether and tribendimidine on the tegument of adult *Clonorchis sinensis* in rats. *Parasitol
633 Res*. 2009; 104 (3): 533-541.

634

635 65. Paula FR, Serrano SHP, Tavares LC. Aspectos mecanísticos da bioatividade e toxicidade
636 de nitrocompostos. *Quim. Nova*. 2009; 32: 1013-1020.

637

638 66. Thomas G. *Química Medicinal: uma introdução*. Editora Guanabara Koogan, 2003.

639