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Aims: To investigate the influence of appropriate culture medium by optimizing the cultural 
conditions affecting the growth and bioactive metabolite production by Streptomyces 
gulbargensis DAS 131

T
 under submerged culture conditions in order to reduce the cost of 

fermentation process to improve the formation of antimicrobial compounds. 
 
Place and Duration of Study: Department of Botany and Microbiology, January 2012 to 
May 2012. 
 
Methodology:The impact of environmental parameters such as incubation period, pH, 
temperature and salt concentration and effect of various nutrients such as carbon and 
nitrogen sources and minerals on the antimicrobial metabolite production by Streptomyces 
gulbargensis DAS 131

T
 was evaluated by employing agar well diffusion assay. Growth was 

measured in the form of dry mycelial weight.  
 
Results: The optimum pH and temperature for bioactive metabolite production were 7 and 
35°C respectively. Highest antimicrobial metabolite production was found when the strain 
was inoculated into the medium amended with glucose at the concentration of 2%, soya 
peptone at the rate of 1% and NaCl at the concentration of 5% and incubated for six days 
under shaking conditions. The metabolites showed good antimicrobial activity against Gram 
positive and Gram negative bacteria, as well as unicellular and multicellular fungi. 
 
Conclusion:S.gulbargensis DAS 131

T
 isolated from the semi-arid soils of Gulbarga, 

Northern Karnataka province, India exhibited broad spectrum antimicrobial activity.It was 
found that the antimicrobial metabolite production by the strainwas positively influenced by 
carbohydrates, nitrogen sources and minerals.  
 13 
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1. INTRODUCTION 17 

 18 
The microbes are the source for many important drugs including antibiotics, antitumor 19 
compounds, Immunosuppressants, antiviral and antiparasitic agents. Over 10,000 of 20 
bioactive compounds have been produced by Actinomycetes which contribute to 45% of all 21 



the bioactive secondary metabolites discovered [1]. Microbes dwelling in extreme habitats 22 
have been focused as an important source for novel compounds in recent years. The 23 
majority of studies with microbes from extreme environments were confined to bacteria and 24 
the actinomycetes from these habitats have been relatively less explored [2]. As highlighted 25 
in many reviews [3], natural products are the origin for most of the antibiotics in the market 26 
today. These products are an important source for both the existing and new drugs. Among 27 
these, actinomycetes are a biotechnologically priceless group of prokaryotes.  Actinobacteria 28 
form a distinct line in the 16S rDNA tree and produce metabolites that have medical 29 
contribution from antibiotics to enzyme inhibitors. They are ubiquitously distributed in 30 
terrestrial, fresh water and extreme environments such as marine ecosystems and alkali 31 
soils [4]. They are considered to be the important group of microbes due to their ability to 32 
produce novel chemical compounds that are complex and commercially important (5). The 33 
solution to combat multidrug resistance of pathogens is to search for novel antimicrobial 34 
compounds so as to find a solution to overcome the global resistance to pathogenic bacteria. 35 
 36 
It is widely accepted that alkaliphilic actinomycetes are a valuable source for medicinal and 37 
industrial products [6]. Extensive exploration of actinomycetes having unique therapeutic 38 
properties continues to be an important area of research. Streptomyces species belonging to 39 
actinomycetes have been known as prolific producers of useful bioactive metabolites. These 40 
species are also recognized as industrially important organisms for their ability to synthesize 41 
different kinds of novel secondary metabolites, accounting for 70- 80% of all natural 42 
compounds produced by actinomycetes. Streptomyces are well documented as source for 43 
novel drug metabolites [7]. Some of the important compounds obtained from the 44 
alkaliphilicStreptomyces species include Pyrocoll [8], Chinikomycin and Lajollamycin, 45 
Mediomycins A and B, Clethramycin [9], Bleomycin [10] and Caboxamycin [11] with anti-46 
tumor, anti-parasitic and anti-microbial properties. Several studies were aimed at isolation of 47 
Streptomyces and screening them for new antibiotics. Novel actinomycetes documented and 48 
the products derived from poorly explored habitats stress the need to probe into new 49 
habitats [2].  50 
  51 
Media supplemented with carbon, nitrogen sources [12], sodium chloride [13] and mineral 52 
salts [14] and physico-chemical parameters like temperature, pH and incubation period also 53 
play a major role on growth and production of anti-microbial metabolites. The type, addition, 54 
removal and concentration of carbon, nitrogen, and phosphate together with trace elements 55 
are reported to influence the antibiotic biosynthesis by Streptomyces [15]. In order to achieve 56 
the highest level of metabolite production, the optimization of process parameters is very 57 
critical [16, 17]. Hence an effort was made to understand the impact of different carbon and 58 
nitrogen sources, temperature, pH and incubation period on growth and bioactive metabolite 59 
production by Streptomyces gulbargensis DAS131

T
 60 

 61 

2. MATERIALS AND METHODS  62 

 63 

2.1. Isolation 64 

During the course of screening for industrially important microorganisms, an alkali-tolerant 65 
and thermo-tolerant actinomycete isolate identified as Streptomyces gulbargensis DAS 131

T
 66 

was isolated from semi-arid soils of Gulbarga, Northern Karnataka province, India, by 67 
standard serial dilution technique using starch casein agar medium [18] and further 68 
maintained on Yeast extract malt extract dextrose (ISP-2) agar medium at 4°C [19]. The 16S 69 
rRNA gene sequence of thestrain has been deposited in the NCBI genbank with the 70 
accession number DQ317411 [20]. 71 
 72 



2.2. Selection of culture conditions for the optimum production of bioactive 73 

metabolites 74 

Antimicrobial metabolite production by the strain was optimized by using different 75 
parameters such as incubation period, pH, temperature, NaCl, carbon, nitrogen sources and 76 
minerals. 77 
 78 

2.3. Effect of Incubation period  79 

The growth pattern and bioactive metabolite production by the strain was studied at regular 80 
intervals up to 10 days. One week old culture of S. gulbargensis DAS 131

T
was cultivated in 81 

ISP-2 broth (seed medium) comprising of yeast extract (0.4%), malt extract (1%), dextrose 82 
(0.4%), CaCO3-(0.2%) with pH7.2 at 37˚C for 48 h.  Seed culture at a rate of 10% was 83 
inoculated into the starch casein broth (production medium) consisting of soluble starch 84 
(1%), sodium caseinate (0.2%), K2HPO4 (0.02%), MgSO4.7H2O (0.02%) FeSO4. 7H2O 85 
(0.001%) with pH7.2.The fermentation process was carried out for 10 days under agitation at 86 
150 rpm.  At every 24 h interval, the flasks were harvested and the biomass was separated 87 
from the culture filtrate. Biomass was determined in terms of dry weight and antimicrobial 88 
metabolite production was determined in terms of their antimicrobial spectrum [21]. The 89 
crude bioactive compound produced in the fermentation medium by the isolate was 90 
extracted twice with equal volume of ethyl acetate (1:1) in a separating funnel at periodic 91 
intervals. The solvent layer was collected and evaporated in a rotary evaporator under 92 
vacuum. The crude residue thus obtained was dissolved in DMSO (dimethylsulfoxide) at a 93 
concentration of 1000µg/ml and employed for antimicrobial activity against test 94 
microorganisms like Streptococcus mutans (MTCC 497), Staphylococcus aureus (MTCC 95 
3160), Salmonella typhi (ATCC 14028), Pseudomonas aeruginosa (ATCC 9027) and 96 
Candida albicans (ATCC 10231) by agar well diffusion method [22]. 97 
 98 
 99 

2.4. Effect of pH and temperature 100 

To determine the influence of initial pH on growth and bioactive metabolite production, the 101 
strain was cultivated in the medium with different initial pH values ranging from 5 to 10 for six 102 
days. The strain was inoculated into production medium and grown at temperatures ranging 103 
from 20 to 50°C at pH7 for six days to study the impact of temperature. The biomass and 104 
bioactive metabolite production were estimated and optimal pH and temperature achieved in 105 
this step was used for subsequent study.  106 
 107 

2.5. Effect of NaCl concentration  108 

The impact of salinity on growth and bioactive metabolite production by S. gulbargensis DAS 109 
131

T
was recorded by cultivating the strain in the fermentation medium amended with 110 

different concentrations of NaCl (1-10%) at optimum pH and temperature for six days. The 111 
salt concentration in which the strain exhibits optimum levels of bioactive metabolites was 112 
fixed for further studies. 113 
 114 

2.6. Effect of carbon and nitrogen sources  115 

To determine the effect of carbon sources on biomass and bioactive metabolite production, 116 
different carbon sources like galactose, lactose, fructose, sucrose, glucose, starch, mannitol, 117 
arabinose, raffinose and rhamnose each at a concentration of 1% were added separately 118 
into the production medium, maintaining all other conditions at optimum levels. The effect of 119 
varying concentrations of the best carbon source (0.5 - 5%) on bioactive metabolite 120 
production was examined. Similarly, the influence of various nitrogen sources on 121 



antimicrobial metabolite production was evaluated by amending different nitrogen sources 122 
like soya peptone, arginine, asparagine, meat extract, yeast extract, tryptone, soya flour, 123 
casein, beef extract and glycine each at a concentration of 0.5% were individually 124 
supplemented into the production medium containing an optimum amount of the superior 125 
carbon source.The growth and production of bioactive metabolite was determined after six 126 
days of incubation at optimum pH, temperature and salt concentration.Further, the impact of 127 
varying concentrations of optimized nitrogen source (0.1-2%) was studied to standardize the 128 
maximum antimicrobial metabolite production. 129 

 130 

2.7. Impact of K2HPO4 131 

To study the impact of K2HPO4 on growth and bioactive metabolite production, the strain 132 
was grown in the fermentation medium amended with different concentrations of K2HPO4 133 
(0.01 to 0.1%), maintaining all other conditions at optimum levels. 134 
 135 

2.8. Statistical analysis 136 
Results on cell growth and the production of bioactive metabolites by S. gulbargensis DAS 137 
131

T
exposed to different cultural conditions are statistically analyzed with two way analysis 138 

of variance (ANOVA). 139 
 140 

2.9. Bioassays 141 
The metabolites produced by the strain under optimized conditions were tested against 142 
bacteria and fungi by agar-well diffusion assay (22). The test microorganisms used to 143 
evaluate the production of bioactive metabolites were Staphylococcus aureus(MTCC 3160), 144 
Streptococcus mutans (MTCC 497), Bacillus subtilis (ATCC 6633), Lactobacillus 145 
casei(MTCC 1423), Lactobacillus acidophilus (MTCC 495), Xanthomonas campestris 146 
(MTCC 2286), Bacillus megaterium (NCIM 2187), Escherichia coli (ATCC 35218), 147 
Enterococcus  faecalis (MTCC 439), Pseudomonas aeruginosa(ATCC 9027), Salmonella 148 
typhi(ATCC 14028), Proteus vulgaris (MTCC 7299), Candida albicans (ATCC 10231), 149 
Aspergillus niger(ATCC 1015), Aspergillus flavus(ATCC 9643), Fusariumoxysporum(MTCC 150 
3075) and Penicilliumcitrinum(MTCC 6489). 151 
 152 

RESULTS AND DISCUSSION 153 

 154 

3.1. Effect of incubation period  155 

 156 
The growth pattern of S. gulbargensis DAS 131

T
was studied on starch casein broth. 157 

Exponential phase of the strain extended from lag phase after 24 h to 72 h. After that it 158 
exhibited stationary phase from 96 h to 144 h of incubation, then declined (Fig.1).The results 159 
revealed that the antimicrobial metabolite was early produced and reached maximum at the 160 
stationary phase. The cessation of growth in the stationary phase is most commonly caused 161 
by the exhaustion of the essential nutrients of the medium as well as accumulation of 162 
undesirable metabolites.The secondary metabolites obtained from six day old culture 163 
exhibited high antimicrobial activity against the test microorganisms. Thakur et al. [7] stated 164 
that the maximum incubation period required for optimum growth and antibiotic yield by the 165 
isolate Streptomyces sp. 201 was six days which was in complete accordance with the 166 
earlier report [23]. The incubation period for the production of bioactive metabolites seems to 167 
vary among Streptomyces strains. Metabolites elaborated from 5 day old culture of 168 
Streptomyces sp. KGG32 [24] and S.ramulosus-AZ-SH-29[25] showed good antimicrobial 169 
activity. Metabolites collected from 10-day old culture of S.crystallinus AZ-A151producing 170 
Hygromycin-B exhibited good anti microbial activity[26].  171 
 172 



 173 
 174 

Fig.1. Growth pattern and anti-microbial activity of S. gulbargensis DAS 131
T
. 175 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 176 
found to be significant at 1%. 177 
 178 

3.2. Effect of initial pH and incubation temperature  179 
The environmental requirements and cultural conditions for growth and bioactive metabolite 180 
production by S. gulbargensis DAS 131

T
were studied. The antimicrobial metabolite 181 

production was found to be influenced by pH of the medium. The maximum biomass and 182 
bioactive metabolite production by the strain was obtained at pH 7 suggesting its inclusion in 183 
the neutrophilicactinomycetes group (Fig. 2). Medium maintained at pH 7.0 was reported to 184 
support enhanced anti-microbial metabolite production by Streptomyces rochei G 164[27], 185 
Streptomyces marinensis[28], Streptomycesalbidoflavus[21], Streptomycestorulosus KH-4 186 
[29], Streptomyces spp.VITSVK9[30] and Streptomycescheonanensis VUK-A [31].  187 

 188 
 189 

 190 
Fig. 2.  Effect of pH on growth and bioactive metabolite yield of S. gulbargensis DAS 131

T
 191 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 192 
found to be significant at 1%. 193 
 194 
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The effect of temperature on growth and bioactive metabolite production of the strain was 195 
recorded (Fig.3). There was an increase in the growth as well as bioactive metabolite 196 
production with the increase of incubation temperature from 20˚C to 35˚C. However further 197 
increase in temperature (above 35˚C) resulted in the decline of growth and bioactive 198 
metabolite production.In terms of its optimum temperature for growth, the organism 199 
appeared to be mesophilic in nature. Atta et al. [26] reported that Streptomycescrystallinus, 200 
AZ-A151 produced high levels of Hygromycin-B production at 35ºC. Ushakiranmayi et al. 201 
[33] stated that the optimum temperature capable of promoting antimicrobial metabolite 202 
produced by Pseudonocardia sp.VUK-10 isolated from Nizampatnam mangrove ecosystem 203 
was 35ºC.  204 
 205 
 206 

 207 
 208 
 209 
Fig.3. Effect of temperature on growth and bioactive metabolite yield of S.gulbargensis DAS 210 

131
T .

 211 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 212 
found to be significant at 1%. 213 
 214 

3.3. Effect of NaCl  215 
Optimum salt requirement for bioactive metabolite production was examined in the 216 
production medium supplemented with different salt concentrations ranging from 1-10%. 217 
NaClat the concentration of 5% was found to be optimum for maximum growth as well as 218 
antimicrobial compound production byS.gulbargensis DAS 131

T
(Fig. 4). Further increase in 219 

salt concentration reduced the antimicrobial agent biosynthesis. The requirement of NaCl for 220 
the production of bioactive metabolites seems to be different among actinomycete strains. 221 
Optimum NaCl concentration for maximum growth as well as antimicrobial metabolite 222 
production was reported to be 2% for Streptomyces tanashiensis A2D [2], 1% for 223 
Streptomyces felleus YJ1 [36] and 5% for Streptomyces VITSVK9 [30]. 224 
 225 
 226 
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 227 
 228 
Fig. 4. Effect of NaCl on growth and bioactive metabolite yield of S. gulbargensis DAS 131

T
.  229 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 230 
found to be significant at 1%. 231 
 232 

3.4. Effect of carbon and nitrogen sources  233 
 234 
The effect of carbon sources on biomass and bioactive metabolite production by S. 235 
gulbargensis DAS 131

T
was evaluated. The production of biomass was high with lactose 236 

followed by sucrose and starch, while significant bioactive metabolite production was 237 
obtained by the strain in glucose amended media followed by galactose and fructose.  El-238 
Enshasy et al. [39] reported that glucose and sucrose in pure or in polymer forms were the 239 
best C-sources for erythromycin production. Antibiotic production from alkaliphilic 240 
S.tanashiensis strain A2D was high in medium containing glucose as carbon source [2]. 241 
Similarly glucose was found to be the best carbon source for antibiotic production by 242 
Streptomyces torulosusKH-4 [29], S. griseocarneus [40]  and S. kanamyceticus M27 [41]. 243 
 244 

 245 
 246 
Fig. 5. Effect of different carbon sources on growth and bioactive metabolite yield of S. 247 

gulbargensis DAS 131
T
. 248 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 249 
found to be significant at 1%. 250 
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As glucose emerged as the most preferred carbon source for bioactive metabolite production 251 
by the strain, varying concentrations of glucose (0.5-5%) was tested to determine its optimal 252 
concentration. It is noted that glucose at 3% and 2% concentrations showed optimal yields of 253 
biomass and bioactive metabolites respectively (Fig.6).Medium containing 2% glucose 254 
supported maximum levels of Natamycin production by Streptomyces natalensis and 255 
Thermomonospora spp. [38, 42] while Atta et al. [25] reported that medium containing 2.5% 256 
glucose supported antibiotic production by Streptomyces ramulosus AZ-SH-29.  257 
 258 

 259 
 260 
Fig.6. Effect of different concentrations of glucose on growth and production of bioactive 261 

metabolite by S.gulbargensis DAS 131
T
.  262 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 263 
found to be significant at 1%. 264 
 265 
Nitrogen sources are important for the production of bioactive metabolites by 266 
microorganisms. Changes in the nature and concentration of nitrogen source seem to affect 267 
antibiotic biosynthesis in different organisms. Different nitrogen sources were found to have 268 
significant effect on growth and secondary metabolite production by S. gulbargensis DAS 269 
131

T
. Among the nitrogen sources tested amendment of soya peptone in the culture medium 270 

enhanced the biomass and bioactive metabolite production by the strain (Fig. 7). Viana et al. 271 
[43] recorded that soya bean flour increased the clavulanic acid production by Streptomyces 272 
DAUFPE 3060. In contrast Thakur et al. [7] found that basal medium amended with 273 
asparagine as nitrogen source was proved to be the best for 2-methylheptyl isonicotinate 274 
production by Streptomyces sp.201.  275 
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 277 
 278 
Fig.7. Effect of different nitrogen sources on growth and bioactive metabolite production by 279 
S. gulbargensis DAS 131

T
. 280 

 281 
*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 282 
found to be significant at 1%. 283 
 284 
Influence of different concentrations of soya peptone on the production of bioactive 285 
metabolites is represented in Fig.8. It is noted that soya peptone at a concentration of 1.5% 286 
and 1% exhibited optimal production of biomass and bioactive metabolites respectively. 287 
Himabindu and Jetty [44] reported that soya bean meal at a concentration of 1% and 0.5% 288 
enhanced growth and gentamicin production by Micromonospora echinospora. Whereas Qin 289 
Song et al. [36] stated that soya bean meal at a concentration of 2% increased the bioactive 290 
metabolite production by Streptomyces felleus YJ1. 291 
 292 

 293 
 294 

Fig.8. Effect of different concentrations of soya peptone on growth and production of 295 
bioactive metabolite by S. gulbargensis DAS 131

T
. 296 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 297 
found to be significant at 1%. 298 
 299 

3.5. Effect of K2HPO4 300 
Effect of K2HPO4on biomass and bioactive metabolite production by the strain (Fig. 9) was 301 
studied. A slight enhancement in growth and antimicrobial activity was obtained in medium 302 
supplemented with 0.05% of K2HPO4. Ripa et al. [32] reported that among different minerals 303 
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tested, K2HPO4 showed positive influence on antibiotic production by Streptomyces RUPA-304 
08PR. Narayana and Vijayalakshmi [21] also recorded that K2HPO4 slightly enhanced the 305 
production of biomass and bioactive metabolites of Streptomyces albidoflavus. Production of 306 
gentamicin by M.purpurea and antibiotic tylosin by a Streptomyces sp. was inhibited by high 307 
phosphate concentrations [45, 46]. 308 
 309 
 310 

 311 
 312 
Fig.9. Impact of K2HPO4 on growth and bioactive metabolite production of S. gulbargensis 313 

DAS 131
T 

.  314 

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and 315 
found to be significant at 1%. 316 
 317 

3.6. Bioassays 318 
The antimicrobial metabolite produced by the strain under optimized conditions was tested 319 
against various test bacteria and fungi (Table.1& Fig.10).Among the bacteria tested, 320 
Xanthomonas campestris(MTCC 2286)and Bacillus megaterium (NCIM 2187)were highly 321 
sensitive to the metabolites produced by S.gulbargensis DAS 131

T
followed by Streptococcus 322 

mutans(MTCC 497)and Enterococcus faecalis(MTCC 439).Among the fungi tested, Candida 323 
albicans (ATCC 10231)was highly sensitive to the metabolites produced by the strain 324 
followed by Aspergillus niger(ATCC 1015) and Aspergillus flavus (ATCC 9643). A significant 325 
antimicrobial activity was reported on the opportunistic and pathogenic bacteria and fungi 326 
tested.  327 
 328 
Table1. Antimicrobial activity ofS. gulbargensis DAS 131

T
against opportunistic and 329 

pathogenic bacteria and fungi under optimized conditions. 330 
 331 

Antimicrobial Activity of Bioactive Metabolite Produced 
by S. gulbargensis DAS 131

T
 under Optimized Conditions 

Bacteria 

Test Microorganisms Zone of 
Inhibition(mm) 

Staphylococcus aureus(MTCC 3160) 31 

Streptococcus mutans(MTCC 497) 33 
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Bacillus subtilis(ATCC 6633) 30 

Lactobacillus  casei(MTCC 1423) 32 

Lactobacillus acidophilus(MTCC 495) 31 

Xanthomonas campestris(MTCC 2286) 34 

Bacillus megaterium(NCIM 2187) 33 

Escherichia coli (ATCC 35218) 31 

Enterococcus  faecalis(MTCC 439) 33 

Pseudomonas aeruginosa(ATCC 9027) 30 

Salmonella typhi(ATCC 14028) 27 

Proteus vulgaris(MTCC 7299) 28 

Fungi 

Candida albicans(ATCC 10231) 32 

Aspergillus niger(ATCC 1015) 27 

Aspergillus flavus(ATCC 9643). 26 

Fusariumoxysporum(MTCC 3075) 19 

Penicilliumcitrinum(MTCC 6489). 20 

 332 
 333 



 334 
 335 

FIG. 10: Antimicrobial activity of S.gulbargensis DAS 131
T 

against 336 
A.Pseudomonasaeruginosa(ATCC 9027)B. Escherichia coli(ATCC 35218)C. 337 
Salmonellatyphi(ATCC 14028)D. Bacillus subtilis(ATCC 6633)E.Candida albicans(ATCC 338 
10231). 339 

 340 

4. CONCLUSION 341 
In the present study S.gulbargensis DAS 131

T 
exhibited high antimicrobial activity when 342 

cultured on production medium amended with glucose (2%),soya peptone (1%), NaCl (5%) 343 
and K2HPO4 (0.05%)at pH 7 for six days of incubationat 35°C. Among the bacteria tested, 344 
Xanthomonas campestris and Bacillus megaterium were highly sensitive to the metabolites 345 
produced by the strain while Candida albicans exhibited high sensitivity followed by 346 
Aspergillus nigeramong fungi.This is the first report on the optimization of bioactive 347 
metabolites produced by S.gulbargensis DAS 131

T
. 348 
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