

Optimization of the Cultural parameters for Improved Production of Antimicrobial Metabolites by *Streptomyces gulbargensis* DAS

ABSTRACT

Aims: To investigate the influence of appropriate culture medium by optimizing the cultural conditions affecting the growth and bioactive metabolite production by *Streptomyces gulbargensis* DAS 131 under submerged culture conditions in order to reduce the cost of fermentation process to improve the formation of antimicrobial compounds.

Place and Duration of Study: Department of Botany and Microbiology, January 2012 to May 2012.

Methodology: The impact of environmental parameters such as incubation period, pH, temperature and salt concentration and effect of various nutrients such as carbon and nitrogen sources and minerals on the antimicrobial metabolite production by *Streptomyces gulbargensis* DAS 131 was evaluated by employing agar well diffusion assay. Growth was measured in the form of dry mycelial weight.

Results: The optimum pH and temperature for bioactive metabolite production were 7 and 35 °C respectively. Highest antimicrobial metabolite production was found when the strain was inoculated into the medium amended with glucose at the concentration of 2%, soya peptone at the rate of 1% and NaCl at the concentration of 5% and incubated for six days under shaking conditions. The metabolites showed good antimicrobial activity against Gram positive and Gram negative bacteria, as well as unicellular and multicellular fungi.

Conclusion: S. gulbargensis DAS 131 isolated from the semi-arid soils of Gulbarga, Northern Karnataka province, India exhibited broad spectrum antimicrobial activity. It was found that the antimicrobial metabolite production by the strain was positively influenced by carbohydrates, nitrogen sources and minerals.

- Keywords: Optimization, Bioactive metabolites, Nutritional factors, Antimicrobial activity,
- 15 Streptomyces gulbargensisDAS 131

1. INTRODUCTION

The microbes are the source for many important drugs including antibiotics, antitumor compounds, Immunosuppressants, antiviral and antiparasitic agents. Over 10,000 of bioactive compounds have been produced by Actinomycetes which contribute to 45% of all

the bioactive secondary metabolites discovered [1]. Microbes dwelling in extreme habitats have been focused as an important source for novel compounds in recent years. The majority of studies with microbes from extreme environments were confined to bacteria and the actinomycetes from these habitats have been relatively less explored [2]. As highlighted in many reviews [3], natural products are the origin for most of the antibiotics in the market today. These products are an important source for both the existing and new drugs. Among these, actinomycetes are a biotechnologically priceless group of prokaryotes. Actinobacteria form a distinct line in the 16S rDNA tree and produce metabolites that have medical contribution from antibiotics to enzyme inhibitors. They are ubiquitously distributed in terrestrial, fresh water and extreme environments such as marine ecosystems and alkali soils [4]. They are considered to be the important group of microbes due to their ability to produce novel chemical compounds that are complex and commercially important (5). The solution to combat multidrug resistance of pathogens is to search for novel antimicrobial compounds so as to find a solution to overcome the global resistance to pathogenic bacteria.

It is widely accepted that alkaliphilic actinomycetes are a valuable source for medicinal and industrial products [6]. Extensive exploration of actinomycetes having unique therapeutic properties continues to be an important area of research. *Streptomyces* species belonging to actinomycetes have been known as prolific producers of useful bioactive metabolites. These species are also recognized as industrially important organisms for their ability to synthesize different kinds of novel secondary metabolites, accounting for 70- 80% of all natural compounds produced by actinomycetes. *Streptomyces* are well documented as source for novel drug metabolites [7]. Some of the important compounds obtained from the alkaliphilic *Streptomyces* species include Pyrocoll [8], Chinikomycin and Lajollamycin, Mediomycins A and B, Clethramycin [9], Bleomycin [10] and Caboxamycin [11] with antitumor, anti-parasitic and anti-microbial properties. Several studies were aimed at isolation of *Streptomyces* and screening them for new antibiotics. Novel actinomycetes documented and the products derived from poorly explored habitats stress the need to probe into new habitats [2].

Media supplemented with carbon, nitrogen sources [12], sodium chloride [13] and mineral salts [14] and physico-chemical parameters like temperature, pH and incubation period also play a major role on growth and production of anti-microbial metabolites. The type, addition, removal and concentration of carbon, nitrogen, and phosphate together with trace elements are reported to influence the antibiotic biosynthesis by *Streptomyces* [15]. In order to achieve the highest level of metabolite production, the optimization of process parameters is very critical [16, 17]. Hence an effort was made to understand the impact of different carbon and nitrogen sources, temperature, pH and incubation period on growth and bioactive metabolite production by *Streptomyces gulbargensis* DAS131.

2. MATERIALS AND METHODS

2.1. Isolation

During the course of screening for industrially important microorganisms, an alkali-tolerant and thermo-tolerant actinomycete isolate identified as *Streptomyces gulbargensis* DAS 131 was isolated from semi-arid soils of Gulbarga, Northern Karnataka province, India, by standard serial dilution technique using starch casein agar medium [18] and further maintained on Yeast extract malt extract dextrose (ISP-2) agar medium at 4°C [19]. The 16S rRNA gene sequence of the strain has been deposited in the NCBI genbank with the accession number DQ317411 [20].

73 2.2. Selection of culture conditions for the optimum production of bioactive

74 metabolites

Antimicrobial metabolite production by the strain was optimized by using different parameters such as incubation period, pH, temperature, NaCl, carbon, nitrogen sources and minerals.

77 78 79

80

81 82

83

84

85 86

87

88

89

90

91

92

93

94

95

96 97

75

76

2.3. Effect of Incubation period

The growth pattern and bioactive metabolite production by the strain was studied at regular intervals up to 10 days. One week old culture of S. gulbargensis DAS 131was cultivated in ISP-2 broth (seed medium) comprising of yeast extract (0.4%), malt extract (1%), dextrose (0.4%), CaCO₃-(0.2%) with pH7.2 at 37°C for 48 h. Seed culture at a rate of 10% was inoculated into the starch casein broth (production medium) consisting of soluble starch (1%), sodium caseinate (0.2%), K₂HPO₄ (0.02%), MgSO₄.7H₂O (0.02%) FeSO₄. 7H₂O (0.001%) with pH7.2. The fermentation process was carried out for 10 days under agitation at 150 rpm. At every 24 h interval, the flasks were harvested and the biomass was separated from the culture filtrate. Biomass was determined in terms of dry weight and antimicrobial metabolite production was determined in terms of their antimicrobial spectrum [21]. The crude bioactive compound produced in the fermentation medium by the isolate was extracted twice with equal volume of ethyl acetate (1:1) in a separating funnel at periodic intervals. The solvent layer was collected and evaporated in a rotary evaporator under vacuum. The crude residue thus obtained was dissolved in DMSO (dimethylsulfoxide) at a concentration of 1000µg/ml and employed for antimicrobial activity against test microorganisms like Streptococcus mutans (MTCC 497), Staphylococcus aureus (MTCC 3160), Salmonella typhi (ATCC 14028), Pseudomonas aeruginosa (ATCC 9027) and Candida albicans (ATCC 10231) by agar well diffusion method [22].

98 99 100

101

102

103

104

105

2.4. Effect of pH and temperature

To determine the influence of initial pH on growth and bioactive metabolite production, the strain was cultivated in the medium with different initial pH values ranging from 5 to 10 for six days. The strain was inoculated into production medium and grown at temperatures ranging from 20 to 50 °C at pH7 for six days to study the impact of temperature. The biomass and bioactive metabolite production were estimated and optimal pH and temperature achieved in this step was used for subsequent study.

106 107 108

109

110

111

112

2.5. Effect of NaCl concentration

The impact of salinity on growth and bioactive metabolite production by *S. gulbargensis* DAS 131 was recorded by cultivating the strain in the fermentation medium amended with different concentrations of NaCl (1-10%) at optimum pH and temperature for six days. The salt concentration in which the strain exhibits optimum levels of bioactive metabolites was fixed for further studies.

113 114 115

2.6. Effect of carbon and nitrogen sources

To determine the effect of carbon sources on biomass and bioactive metabolite production, different carbon sources like galactose, lactose, fructose, sucrose, glucose, starch, mannitol, arabinose, raffinose and rhamnose each at a concentration of 1% were added separately into the production medium, maintaining all other conditions at optimum levels. The effect of varying concentrations of the best carbon source (0.5 - 5%) on bioactive metabolite production was examined. Similarly, the influence of various nitrogen sources on

antimicrobial metabolite production was evaluated by amending different nitrogen sources like soya peptone, arginine, asparagine, meat extract, yeast extract, tryptone, soya flour, casein, beef extract and glycine each at a concentration of 0.5% were individually supplemented into the production medium containing an optimum amount of the superior carbon source. The growth and production of bioactive metabolite was determined after six days of incubation at optimum pH, temperature and salt concentration. Further, the impact of varying concentrations of optimized nitrogen source (0.1-2%) was studied to standardize the maximum antimicrobial metabolite production.

2.7. lı

2.7. Impact of K₂HPO₄

To study the impact of K_2HPO_4 on growth and bioactive metabolite production, the strain was grown in the fermentation medium amended with different concentrations of K_2HPO_4 (0.01 to 0.1%), maintaining all other conditions at optimum levels.

2.8. Statistical analysis

Results on cell growth and the production of bioactive metabolites by *S. gulbargensis* DAS 131exposed to different cultural conditions are statistically analyzed with two way analysis of variance (ANOVA).

2.9. Bioassays

The metabolites produced by the strain under optimized conditions were tested against bacteria and fungi by agar-well diffusion assay (22). The test microorganisms used to evaluate the production of bioactive metabolites were *Staphylococcus aureus*(MTCC 3160), *Streptococcus mutans* (MTCC 497), *Bacillus subtilis* (ATCC 6633), *Lactobacillus casei*(MTCC 1423), *Lactobacillus acidophilus* (MTCC 495), *Xanthomonas campestris* (MTCC 2286), *Bacillus megaterium* (NCIM 2187), *Escherichia coli* (ATCC 35218), *Enterococcus faecalis* (MTCC 439), *Pseudomonas aeruginosa*(ATCC 9027), *Salmonella typhi*(ATCC 14028), *Proteus vulgaris* (MTCC 7299), *Candida albicans* (ATCC 10231), *Aspergillus niger*(ATCC 1015), *Aspergillus flavus*(ATCC 9643), *Fusariumoxysporum*(MTCC 3075) *and Penicilliumcitrinum*(MTCC 6489).

RESULTS AND DISCUSSION

3.1. Effect of incubation period

 The growth pattern of *S. gulbargensis* DAS 131 was studied on starch casein broth. Exponential phase of the strain extended from lag phase after 24 h to 72 h. After that it exhibited stationary phase from 96 h to 144 h of incubation, then declined (Fig.1). The results revealed that the antimicrobial metabolite was early produced and reached maximum at the stationary phase. The cessation of growth in the stationary phase is most commonly caused by the exhaustion of the essential nutrients of the medium as well as accumulation of undesirable metabolites. The secondary metabolites obtained from six day old culture exhibited high antimicrobial activity against the test microorganisms. Thakur *et al.* [7] stated that the maximum incubation period required for optimum growth and antibiotic yield by the isolate *Streptomyces* sp. 201 was six days which was in complete accordance with the earlier report [23]. The incubation period for the production of bioactive metabolites seems to vary among *Streptomyces* strains. Metabolites elaborated from 5 day old culture of *Streptomyces* sp. KGG32 [24] and *S.ramulosus*-AZ-SH-29[25] showed good antimicrobial activity. Metabolites collected from 10-day old culture of *S.crystallinus* AZ-A151producing Hygromycin-B exhibited good anti-microbialactivity [26].

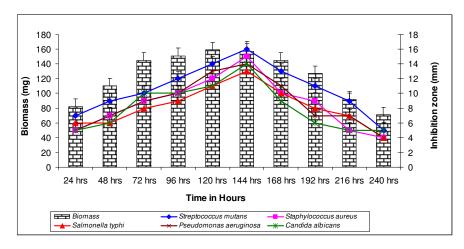


Fig.1. Growth pattern and anti-microbial activity of S. gulbargensis DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

3.2. Effect of initial pH and incubation temperature

The environmental requirements and cultural conditions for growth and bioactive metabolite production by *S. gulbargensis* DAS 131 were studied. The antimicrobial metabolite production was found to be influenced by pH of the medium. The maximum biomass and bioactive metabolite production by the strain was obtained at pH 7 suggesting its inclusion in the neutrophilicactinomycetes group (Fig. 2). Medium maintained at pH 7.0 was reported to support enhanced anti-microbial metabolite production by *Streptomyces rochei* G 164[27], *Streptomyces marinensis* [28], *Streptomycesalbidoflavus* [21], *Streptomycestorulosus* KH-4 [29], *Streptomyces* spp.VITSVK9 [30] and *Streptomycescheonanensis* VUK-A [31].

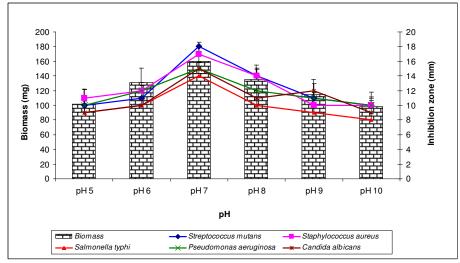


Fig. 2. Effect of pH on growth and bioactive metabolite yield of S. gulbargensis DAS 131

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

The effect of temperature on growth and bioactive metabolite production of the strain was recorded (Fig.3). There was an increase in the growth as well as bioactive metabolite production with the increase of incubation temperature from 20°C to 35°C. However further increase in temperature (above 35°C) resulted in the decline of growth and bioactive metabolite production. In terms of its optimum temperature for growth, the organism appeared to be mesophilic in nature. Atta et al. [26] reported that Streptomycescrystallinus, AZ-A151 produced high levels of Hygromycin-B production at 35°C. Ushakiranmayi et al. [33] stated that the optimum temperature capable of promoting antimicrobial metabolite produced by Pseudonocardia sp.VUK-10 isolated from Nizampatnam mangrove ecosystem was 35°C.

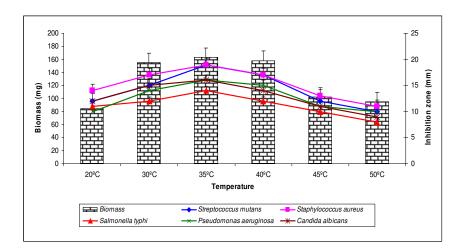


Fig.3. Effect of temperature on growth and bioactive metabolite yield of *S.gulbargensis* DAS 131

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

3.3. Effect of NaCl

 Optimum salt requirement for bioactive metabolite production was examined in the production medium supplemented with different salt concentrations ranging from 1-10%. NaClat the concentration of 5% was found to be optimum for maximum growth as well as antimicrobial compound production by S.gulbargensis DAS 131 (Fig. 4). Further increase in salt concentration reduced the antimicrobial agent biosynthesis. The requirement of NaCl for the production of bioactive metabolites seems to be different among actinomycete strains. Optimum NaCl concentration for maximum growth as well as antimicrobial metabolite production was reported to be 2% for Streptomyces tanashiensis A2D [2], 1% for Streptomyces felleus YJ1 [36] and 5% for Streptomyces VITSVK9 [30].

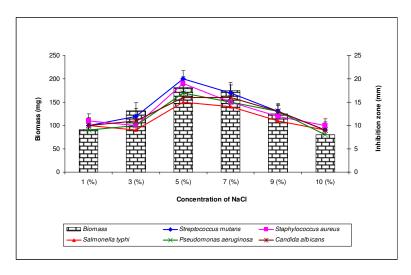


Fig. 4. Effect of NaCl on growth and bioactive metabolite yield of S. gulbargensis DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

3.4. Effect of carbon and nitrogen sources

The effect of carbon sources on biomass and bioactive metabolite production by *S. gulbargensis* DAS 131 was evaluated. The production of biomass was high with lactose followed by sucrose and starch, while significant bioactive metabolite production was obtained by the strain in glucose amended media followed by galactose and fructose. El-Enshasy *et al.* [39] reported that glucose and sucrose in pure or in polymer forms were the best C-sources for erythromycin production. Antibiotic production from alkaliphilic *S.tanashiensis* strain A2D was high in medium containing glucose as carbon source [2]. Similarly glucose was found to be the best carbon source for antibiotic production by *Streptomyces torulosus*KH-4 [29], *S. griseocarneus* [40] and *S. kanamyceticus* M27 [41].

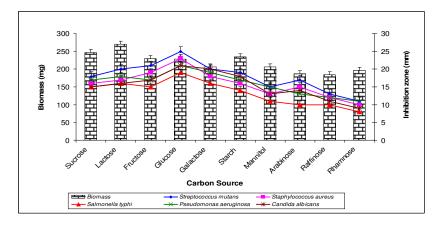


Fig. 5. Effect of different carbon sources on growth and bioactive metabolite yield of *S. gulbargensis* DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

As glucose emerged as the most preferred carbon source for bioactive metabolite production by the strain, varying concentrations of glucose (0.5-5%) was tested to determine its optimal concentration. It is noted that glucose at 3% and 2% concentrations showed optimal yields of biomass and bioactive metabolites respectively (Fig.6). Medium containing 2% glucose supported maximum levels of Natamycin production by *Streptomyces natalensis* and *Thermomonospora* spp. [38, 42] while Atta *et al.* [25] reported that medium containing 2.5% glucose supported antibiotic production by *Streptomyces ramulosus* AZ-SH-29.

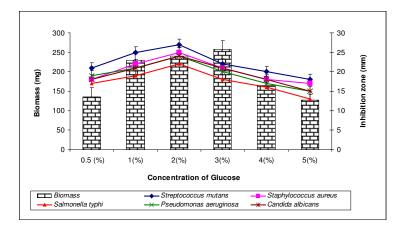


Fig.6. Effect of different concentrations of glucose on growth and production of bioactive metabolite by *S.gulbargensis* DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

Nitrogen sources are important for the production of bioactive metabolites by microorganisms. Changes in the nature and concentration of nitrogen source seem to affect antibiotic biosynthesis in different organisms. Different nitrogen sources were found to have significant effect on growth and secondary metabolite production by *S. gulbargensis* DAS 131. Among the nitrogen sources tested amendment of soya peptone in the culture medium enhanced the biomass and bioactive metabolite production by the strain (Fig. 7). Viana *et al.* [43] recorded that soya bean flour increased the clavulanic acid production by *Streptomyces* DAUFPE 3060. In contrast Thakur *et al.* [7] found that basal medium amended with asparagine as nitrogen source was proved to be the best for 2-methylheptyl isonicotinate production by *Streptomyces sp.*201.

Fig.7. Effect of different nitrogen sources on growth and bioactive metabolite production by *S. gulbargensis* DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

Influence of different concentrations of soya peptone on the production of bioactive metabolites is represented in Fig.8. It is noted that soya peptone at a concentration of 1.5% and 1% exhibited optimal production of biomass and bioactive metabolites respectively. Himabindu and Jetty [44] reported that soya bean meal at a concentration of 1% and 0.5% enhanced growth and gentamicin production by *Micromonospora echinospora*. Whereas Qin Song *et al.* [36] stated that soya bean meal at a concentration of 2% increased the bioactive metabolite production by *Streptomyces felleus* YJ1.

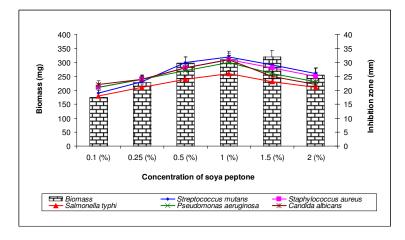


Fig.8. Effect of different concentrations of soya peptone on growth and production of bioactive metabolite by *S. gulbargensis* DAS 131.

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

3.5. Effect of K₂HPO₄

Effect of K₂HPO₄on biomass and bioactive metabolite production by the strain (Fig. 9) was studied. A slight enhancement in growth and antimicrobial activity was obtained in medium supplemented with 0.05% of K₂HPO₄. Ripa *et al.* [32] reported that among different minerals

tested, K₂HPO₄ showed positive influence on antibiotic production by *Streptomyces* RUPA-08PR. Narayana and Vijayalakshmi [21] also recorded that K₂HPO₄ slightly enhanced the production of biomass and bioactive metabolites of *Streptomyces albidoflavus*. Production of gentamicin by *M.purpurea* and antibiotic tylosin by a *Streptomyces* sp. was inhibited by high phosphate concentrations [45, 46].

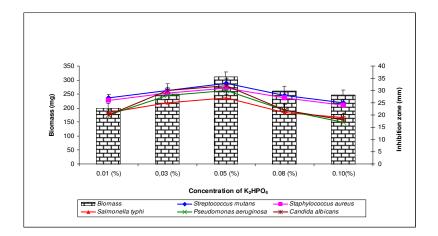


Fig.9. Impact of K₂HPO₄ on growth and bioactive metabolite production of *S. gulbargensis* DAS 131

*Data on cell growth and bioactive metabolite yield were statistically analyzed by Two-way ANOVA and found to be significant at 1%.

3.6. Bioassays

The antimicrobial metabolite produced by the strain under optimized conditions was tested against various test bacteria and fungi (Table.1& Fig.10). Among the bacteria tested, <code>Xanthomonas campestris(MTCC 2286)</code> and <code>Bacillus megaterium</code> (NCIM 2187) were highly sensitive to the metabolites produced by <code>S.gulbargensis DAS 131</code> followed by <code>Streptococcus mutans(MTCC 497)</code> and <code>Enterococcus faecalis(MTCC 439)</code>. Among the fungi tested, <code>Candida albicans</code> (ATCC 10231) was highly sensitive to the metabolites produced by the strain followed by <code>Aspergillus niger(ATCC 1015)</code> and <code>Aspergillus flavus</code> (ATCC 9643). A significant antimicrobial activity was reported on the opportunistic and pathogenic bacteria and fungi tested.

Table 1. Antimicrobial activity of *S. gulbargensis* DAS 131 against opportunistic and pathogenic bacteria and fungi under optimized conditions.

Antimicrobial Activity of Bioactive Metabolite Produced by S. gulbargensis DAS 131 under Optimized Conditions	
Bacteria	
Test Microorganisms	Zone of Inhibition(mm)
Staphylococcus aureus(MTCC 3160)	31
Streptococcus mutans(MTCC 497)	33

Bacillus subtilis(ATCC 6633)	30	
Lactobacillus casei(MTCC 1423)	32	
Lactobacillus acidophilus(MTCC 495)	31	
Xanthomonas campestris(MTCC 2286)	34	
Bacillus megaterium(NCIM 2187)	33	
Escherichia coli (ATCC 35218)	31	
Enterococcus faecalis(MTCC 439)	33	
Pseudomonas aeruginosa(ATCC 9027)	30	
Salmonella typhi(ATCC 14028)	27	
Proteus vulgaris(MTCC 7299)	28	
Fungi		
Candida albicans(ATCC 10231)	32	
Aspergillus niger(ATCC 1015)	27	
Aspergillus flavus(ATCC 9643)	26	
Fusariumoxysporum(MTCC 3075)	19	
Penicilliumcitrinum(MTCC 6489)	20	
	1	

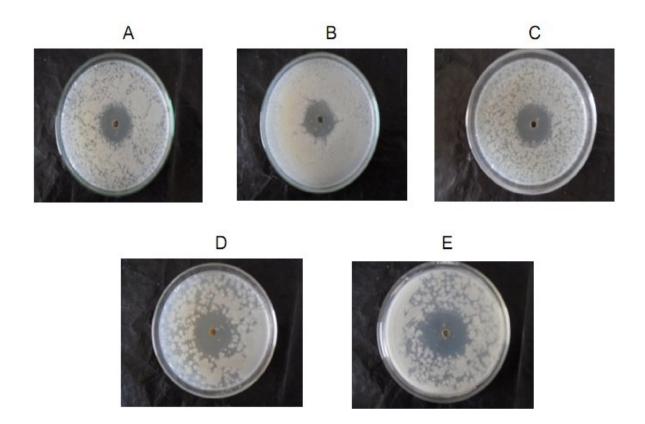


FIG. 10: Antimicrobial activity of *S.gulbargensis* DAS 131against A.*Pseudomonasaeruginosa*(ATCC 9027)B. *Escherichia coli*(ATCC 35218)C. *Salmonellatyphi*(ATCC 14028)D. *Bacillus subtilis*(ATCC 6633)E. *Candida albicans*(ATCC 10231).

4. CONCLUSION

In the present study *S.gulbargensis* DAS 131exhibited high antimicrobial activity when cultured on production medium amended with glucose (2%),soya peptone (1%), NaCl (5%) and K₂HPO₄ (0.05%)at pH 7 for six days of incubation at 35 °C. Among the bacteria tested, *Xanthomonas campestris* and *Bacillus megaterium* were highly sensitive to the metabolites produced by the strain while *Candida albicans* exhibited high sensitivity followed by *Aspergillus niger*among fungi. This is the first report on the optimization of bioactive metabolites produced by *S.gulbargensis* DAS 131.

ACKNOWLEDGEMENTS:

Financial assistance from CSIR, New Delhi is gratefully acknowledged.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

AUTHORS' CONTRIBUTIONS

UKM performed the experimental part, MVL& DA designed the study and SP performed literature search and statistical analysis. All authors read and approved the final manuscript.

REFERENCES

359 360

361 [1]. Bérdy J. Bioactive microbial metabolites. JAntibiot. 2005; 58 (1): 1-26.

362

[2]. Singh LS, Mazumdar S, Bora TC. Optimization of process parameters for growth and bioactive metabolite production by a salt-tolerant and alkaliphilic actinomycete,
 Streptomyces tanashiensis strain A2D. Journal de MycologieMedicale. 2009; 19
 (4): 225-223.

367

368 [3]. Blunt JW, Copp BR, Munro MHJ, Northcote PT, Prinsep MR. Marine natural products. Natural Product Reports. 2010; 27 (2): 165-237.

370

371 [4]. Shuvankar B, Syed GD, Savita K. Biotechnological significance of actinobacterial research in India. Recent Research in Science and Technology.2012; 4(4): 31-373 39.

374

375 [5]. Hopwood DA. Therapeutic treasures from the deep. Nature Chemical Biology.2007; 3 (8): 457-458.

377

378 [6]. Mitsuiki S, Sakai M, Moriyama Y, Goto M, Furukawa K. Purification and some properties 379 of keratinolytic enzyme from an alkaliphilic*Nocardiopsis* spp. TOA-1. 380 BiosciBiotechnolBiochem. 2002; 66 (1):164-167.

381

382 [7]. Thakur D, Bora TC, Bordoloi GN, Mazumdar S. Influence of nutrition and culturing conditions for optimum growth and antimicrobial metabolite production by *Streptomyces* spp.201. Journal de Mycologie Medicale.2009; 19 (3): 161-167.

385

386 [8]. Dietera A, Hamm A, Fiedler HP, Good fellow M, Muller WA, Brun RP. An antibiotic, 387 antiparasitic and antitumor compound produced by a novel alkaliphilic 388 *Streptomyces* strain. J Antibiot. 2003; 56 (7):639-646.

389

390 [9]. Cai P, Kong F, Fink P, Ruppen ME, Williamson RT, Keiko T. Polyene Antibiotics from 391 *Streptomyces mediocidicus*. J Nat Prod.2007; 70 (2):215-219.

392

393 [10]. Chen C, Si S, He Q, Xu H, Lu M, Xie Y. Isolation and characterization of antibiotic NC0604, a new analogue of bleomycin. J Antibiot.2008; 61(12):747-751.

395

396 [11]. Hohmann C, Schneider K, Bruntner C, Irran E, Nicholson G, Bull AT. Caboxamycin, a 397 new antibiotic of the benzoxazole family produced by the deep-sea strain 398 *Streptomyces* spp. NTK 937. J Antibiot. 2009; 62 (2):99-104.

399

400 [12]. Adinarayana K, Prabhakar T, Srinivasulu V, Rao AM, Jhansi LP. Optimization of 401 process parameters for cephalosporin C production under solid state 402 fermentation from *Acremoniumchrysogenum*. Process Biochem. 2001; 39 (2): 403 171-177.

404

[13]. Noaman NH, Fattah A, Khaleafa M, Zaky SH. Factors affecting antimicrobial activity of Synechococcusleopoliensis. Microbiol Res. 2004; 159 (4): 395-402. 407
 408 [14].Basak K, Majumdar SK. Mineral nutrition of *Streptomyceskanamyceticus* for Kanamycin formation. Antimicrob Agents Chemother. 1975; 8 (4):391-395.

410

425

432

436

442

446

- 411 [15]. Loun'es A, Lebrihi A, Benslimance C, Lefebvre G, Germain P. Regulation of spiramycin 412 synthesis in *Streptomyces ambofaciens*: effect of glucose and inorganic 413 phosphate. J MicrobiolBiotechnol. 1996; 45 (1-2): 204-211. 414
- 415 [16]. Moita C, Feio SS, Nunes L, Joa M, Curto M. Optimization of physical factors on the 416 production of active metabolites by *Bacillus subtilis* 355 against wood surface 417 contaminant fungi. IntBiodeteriorBiodegrad. 2005; 55 (4): 261-269. 418
- 419 [17]. Krishnakumar S, Premkumar J, Alexis Rajan R, Ravikumar S. Optimization of potential 420 antibiotic production by salt-tolerant actinomycetes *Streptomyces* spp. MSU29 421 isolated from marine sponge. Int J Applied Bioengineering. 2011; 5(2): 12-17. 422
- 423 [18]. Kuster K, Williams ST. Selection of media for isolation of *Streptomycetes*. Nature. 1964; 424 202(4935): 928-929.
- 426 [19].Williams ST, Cross T. Isolation, Purification, Cultivation and Preservation of Actinomycetes. In Booth C, editor. Methods Microbiology. 4: 295-334, 1971.
- 429 [20]. Dastager GS, Wen A, Dayanand BS, Mudgulkar KT, Shu PT, Xin, Xiao YZ.
 430 *Streptomyces gulbargensis*sp.nov, isolated from soil in Karnataka, India.
 431 Antonie van Leeuwenhoek. 2007; 91 (2): 99-104.
- 433 [21]. Narayana KJP, Vijayalakshmi M. Optimization of antimicrobial metabolites production by *Streptomycesalbidoflavus*. Research journal of pharmacology. 2008; 2 (1): 4-435 7.
- [22]. Cappuccino JG, Sherman N. Microbiology, Laboratory manual. Person education, INC,
 New Delhi; 2004.
- 440 [23]. Yarbrough GG. Screening microbial metabolites for new drugs, theoretical and practical 441 issues. J Antibiot. 1993; 46 (4):535-544.
- 443 [24].Oskay M. Effects of some Environmental Conditions on Biomass and Antimicrobial Metabolite Production by *Streptomyces* spp., KGG32. Int J Agric Biol. 2011; 13 445 (3): 317-324.
- 447 [25].Atta HM, Bahobail AS, El-Sehrawi MH. Studies on Isolation, Classification and 448 Phylogenetic characterization of antifungal substance produced by 449 Streptomyces albidoflavus-143.New York Science Journal. 2011; 4 (3): 40-53. 450
- 451 [26].Atta HM, Afifi MM, Elshanawany AA, Abdoul-raouf AU, El-Adly AM. Production of Hygromycin-B antibiotic from *Streptomycescrystallanius*. AZ-A151: II. Parameters controlling of antibiotic production. Academia Arena. 2012; 4 (3): 37-52.

456 [27].Chattopadhyay D, Sen SK. Optimization of cultural conditions for antifungal antibiotic accumulated by *Streptomycesrochei*G 164. Hindustan Antibiot Bull. 1997; 39 458 (1): 64-71.

459

464

469

478

482

487

491

495

- 460 [28] Adinarayana K, Ellaiah P, Srinivasulu B, Bhavani R, Adinarayana G. Response surface
 461 methodological approach to optimize the nutritional parameters for neomycin
 462 production by *Streptomyces marinensis* under solid state fermentation. Process
 463 Biochemistry. 2003; 38 (11):1565-1572.
- 465 [29].Atta HM, Bayoumi R, El-Sehrawi M, Aboshady A, Al-Humiany A. Biotechnological 466 application for producing some anti-microbial agents by actinomycetes isolates 467 from Al-Khurmah Governorate. European Journal of Applied Sciences. 2010; 2 468 (3): 98-107.
- 470 [30]. Saurav K, Kannabiran, K. Diversity and Optimization of process parameters for the 471 growth of *Streptomyces* VITSVK 9 sp. Isolation from Bay of Bengal, India. 472 Journal of Natural and Environment sciences 2010; 1(2): 56-65. 473
- 474 [31].Ushakiranmayi M, Sudhakar P, Krishna N, Vijayalakshmi M. Influence of cultural 475 conditions for improved production of bioactive metabolites by *Streptomyces* 476 *cheonanensis* VUK-A isolated from Coringa Mangrove Ecosystem. Current 477 Trends in Biotechnology and Pharmacy. 2012; 6 (1): 99-111.
- 479 [32].Ripa FA, Nikkon F, Zaman S, Khondkar P. Optimal conditions for antimicrobial metabolites production from a new *Streptomyces* spp.Rupa-08 isolated from Bangladesh Soil. Mycobiology. 2009; 37 (3): 211-214.
- 483 [33].MangamuriUshaKiranmayi, PodaSudhakar, KammaSrinivasulu, Muvva Vijayalakshmi.
 484 Optimization of culturing conditions for improved production of bioactive
 485 metabolites by *Pseudonocardia* spp. VUK-10. Mycobiology. 2011; 39 (3): 174486 181.
- 488 [34]. Kunnari T, Tuikkanen J, Hautala A, Hakala J, Ylihonko, K, Mantsala, P. Isolation and characterization of 8- demethoxysteffimycins in *Streptomyces steffisburgensis* by the nogalamycin biosynthesis genes. J Antibiot. 1997; 50 (6):496-501.
- 492 [35].Saha MR, Rifa FA, Islam MZ, Khondkar, P. Optimization of conditions and in vitro 493 antibacterial activity of secondary metabolite isolated from *Streptomyces* spp. 494 MNK 7. Journal of Applied Science Research. 2010; 6(5):453-459.
- 496 [36].Qin Song, Yun Huang, Hui Yang. Optimization of fermentation conditions for antibiotic 497 production by actinomycetes YJ1 strain against *Sclerotiniasclerotiorum*. J Agri 498 Sci. 2012; 4 (7): 95-102.
- 500 [37].Casida LE. Fermentation media, In: Casida, L.E. editor. Industrial Microbiology, John Wiley and Sons, Inc, New York, USA; pp: 117-135, 1987.
- 503 [38].Farid MA, El-Enshasy HA, Ei-Diwany AI, El-sayed EA. Optimization of the cultivation 504 medium for Natamycin production by *Streptomyces netalensis*. J Basic 505 Microbiol. 2000; 40 (3):157-166.

[39].El-Enshasy HA, Mohamed NA, Farid MA, El-Diwany Al. Improvement of erythromycin production by Saccharopolysporaerythrea in molasses based medium through cultivation medium optimization. Bioresour Technol. 2008: 99(10): 4263-4268. [40].Cruz R, Arias ME, Solveri J. Nutritional requirements for the production of phyla zoloisoquinolinone antibiotic by Streptomycesgriseocarneus NCIMB 40447. ApplMicrobiolBiotechnol. 1999; 53(1):115-119. [41].Pandey A, Shukla A, Majumdar SK. Utilization of carbon and nitrogen sources by Streptomyces kanamyceticus M 27 for the production of an antibacterial antibiotic. Afr J Biotechnol. 2005; 4(9): 909-910. [42].Gupte M, Kulkarni, P. A study of anti-fungal antibiotic production by Thermomonospora spp. MTCC 3340 using full factorial design. J Chem Tech Biotechnol.2003; 78(6): 605-610. [43]. Viana DA, Carneiro-Cunha MN, Araujo JM, Barros-Neto B, Lima-Filho JL, Converti A et al. Screening of variables influencing the Clavulanic Acid Production by Streptomyces DAUFPE 3060 strain. ApplBiochemBiotechnol. 2010; 160(6): 1797-1807. [44].Himabindu M, Annapurna J. Optimization of nutritional requirements for gentamicin production by *Micromonospora echinospora*. Indian J Experimental Biol. 2006; 44: 842-848. [45].Wu JY, Jenn-Wen H, Sin-Der SH, Wei-Chenand L, Yungehuan L. Optimization of cultivation conditions for fungi chromin production from Streptomyces padanus PMS-702. J Chin instChem Eng. 2008; 39 (6):67-73. [46]. Majumdar MK, Majumdar SK. Effect of minerals on neomycin production by Streptomyces fradiae. ApplMicrobiol. 1965; 13 (2): 190-193.