1	*Original Research Paper
2	Determination of Mineralization Rate of Organic Materials Using Carbon Dioxide
3	Evolution as an Index
4	¹ Makinde E.A.and ^{2*} L. S. Ayeni
5	² Department of Botany, Lagos State University, Ojo Lagos
6	Department of Agricultural Science, Adeyemi College of Education, Ondo, Ondo State
7	Nigeria
8	esthermak2005@yahoo.com
9	Author for correspondence: ² *leye_sam@yahoo.com
10	
11	Abstract
12	A study was conducted on a sandy loam soil to determine the rate of CO ₂ release by Kola Pod
13	Husk (KPH) and Pacesetter Grade B (PGB) (sorted city waste plus cow dung) in southwest
14	Nigeria. Each of Kola Pod Husk and PGB applied at 0.25 g to 50 g soil, and a control were
15	incubated for 16 weeks. The treatments were replicated four times on a completely
16	randomized design. Evolution of CO2 by all the treatments increased as the period of
17	incubation increased from the first week to the sixth week of the experiment. After the 6^{th}
18	week, PGB decreased CO ₂ at 7 th and 8 th week and increased it between 9 th and 11 th week and
19	thereafter finally decreased it as incubation period progressed. KPH decreased CO ₂ between
20	7^{th} and 8^{th} week and then increased it from 9^{th} - 11^{th} week before the CO_2 finally declined till
21	the termination of the experiment. Compared with control, KPH and PGB significantly (p>
22	0.05) increased CO_2 evolution. The rate of mineralization in the first 1-7 weeks of incubation
23	was in the order of PGB > KPH> control, while the last 12-16 weeks of incubation was in the
24	order of KPH>PGB> control. Pacesetter Grade B reached its peak of CO ₂ evolution at 9 th
25	week of incubation while KPH reached its peak at 13th week of incubation
26	Key words: Kola pod husk, Pacesetter Grade B Fertilizer, organic carbon, soil nutrients
27	Introduction
28	Most Nigerian soils are low in native nutrient contents and soil organic matter. They
29	are however high in clay content of Kaolinic (1:1) type (Ogunwale <i>et al.</i> , 2002). The soile are
30	hence low in CEC and are not able to retain adequate amount of nutrient elements, mey
31	therefore require split application of fertilizers to be able to support good crop growth
	(Agboola <i>et al.</i> , 1981). The procurement costs of the fertilizers are higher than what an
32	
33	average Nigerian farmer can afford (Agbede and Kalu, 1995). The few rich farmers that

could afford the procurement of the fertilizer could not get adequate quantity from the market. Most of the raw materials needed for local production are imported at exorbitant cost (Fagbenro and Agboola, 1983). In addition, there has been recent clamour for organic foods and agricultural products in the world market (Pawar *et al.*, 2003). The need to increase the soil organic matter contents for sustainable Nigerian agricultural soils (Lombin, 1981; Ogunwale *et al.*, 2002) coupled with the problems above has called for a shift from the use of inorganic fertilizer to the use of organic fertilizers.

Organic materials are capable of promoting crop growth and increasing yield by way of improving soil physical, chemical and biological properties (Titiloye *et al.*, 1985; Wallace, 1994). Organic fertilizers improve the physical properties of soils; maintain the soils in better tilth and increases wholding capacity (Agboola and Omueti, 1982; Lal, 1986; Ogunwale *et al.*, 2002). It also supplies both major and minor plant nutrients (Ayeni, 2011, Ayeni *et al.*, 2008). The supplied nutrients can substitute for appreciable amounts of inorganic fertilizer (Tollesa, 1999).

Over the years, various organic materials have extensively been used as fertilizers and their beneficial effects documented. They have subsequently been recommended as sources of nutrient supply to farm crops. It is observed that since the introduction of inorganic fertilizers into the Nigerian agriculture, in-depth research into the use of organic fertilizer as sources of plant nutrients. For example, the rate of decomposition of organic materials has not been adequately determined. Although some information on the mineralization of compost is available as reported by Van De Kerkove (1990) and cited by Jedidi *et al* (1993), more data are needed on their mineralization rates in order to ascertain the best time they could be applied to the crops for optimum performance. This study was therefore set up to investigate the rate of decomposition of industrially manufactured organic fertilizer called Pacesetter Grade B and Kola Pad Husk, using CO₂ evolution as an index.

Materials and Methods

Kola Pod Husks (KPH) and Pacesetter Grade B fertilizer (non fortified sorted city wastes plus cow dung, PGB) were used for the conduct of the experiment. The KPH was obtained from the Kola processing unit of Cocoa Research Institute of Nigeria (CRIN) and PGB fertilizer was obtained from the Pacesetter Fertilizer Plant at Bodija, Ibadan Nigeria. Kola Pod Husk was sun dried to constant weight and milled to pass through 2 mm sieve before analysis.

The C0₂ evolution as index method was used to compare the mineralization potential of the various amendments. The carbon dioxide evolution study was carried out according to the procedure described by Moorhead *et al.* (1988) and adopted by Ipinmoroti *et al.* (1997). Fifty grams of 2 mm sieved soil were weighed into each of the 12 incubation flasks, with four flasks representing each of the two organic materials and the control without organic material addition. Each of the milled organic materials was weighed and mixed with soil in the flasks at the rate equivalent to 10 tonnes ha⁻¹ (i.e. 0. 25 g per 50 g soil). Each treatment was replicated four times. The treated soil in each flask was moistened to 70% field capacity of the soil and incubated in the laboratory at room temperature (28°C). Absorbent was used to cover the mouth of each flask in order to reduce evaporation or gaseous escape. The moisture content was adjusted fortnightly with de-ionized water. The carbon dioxide evolved from the flasks was collected in a bottle containing 25 ml of 0.1 M Ca (OH)₂. The amount of carbon dioxide evolved was determined by titration with 0.05 M HCI, using phenolphthalein as indicator.

The amount of carbonate evolved was calculated using the following equation:

```
82 meq of C0_2 = 0.2727(25 - (titre x f) 0.027
```

83 f = $\frac{\text{volume of Ca(OH)}_2}{\text{volume of Ca(OH)}_2}$

84 Blank titre

85 meq of C = equivalent weight of C Molarity of Ca $(OH)_2$

86 Where 0.2727 = ratio of carbon in carbon dioxide

87 25ml = Volume of Ca (OH)₂ in the flask/bottle

The soil pH was determined in 1:2 soil/water ratio and read with pH meter. Total N was determined by the normal Microckjedahl method soil OC was determined by wet dichromate oxidation method. Available P was determined by Bray -1- method. Exchangeable K, Ca, Na and Mg were extracted with 1N ammonium acetate at pH 7. Exchangeable K was determined by flame photometer while Ca and Mg were determined by Atomic Absorption Spectrophotometer Exchangeable acidity was extracted by 0.1M KCl before titrated with 0.1M HCl. The micronutrients (Mn , Fe, Cu and Zn) were extracted with HCl and determined by AAS. The ECEC was determined by the summation of the cations.

97 Data analysis

Data obtained were analysed using ANOVA. Least Significant Difference (LSD) was employed to separate the differences among the treatments at P < 0.05.

Result and Discussion

The initial properties of the soil used for the incubation study (Table 1) indicated that the soil was slightly acidic, low in total N, C/N ratio, K, Ca and Mg. The soil was adequate in available P, Fe and Mn. This indicates that the soil is poor in plant nutrients, thus; it is a medium that the potential of PGB and KPH in releasing plant nutrients could be adequately determined.

Table 1: Some physical and chemical characteristics of soil used in the study

Parameters	Soil
$pH(H_2O)$	5.3
Total N (g kg ⁻¹)	1.3
Organic Carbon (g kg ⁻¹)	10.5
C/N ratio	7.7
Available P (mg kg ⁻¹)	8.3
Exchangeable bases (c mol kg ⁻¹)	
K	0.2
Ca	0.2
Mg	0.2
ECEC	0.7
H + Al	0.1
% Base Saturation	84.5
Micronutrients (mg kg ⁻¹)	
Mn	
Fe	21.0
Cu	11.0
Zn	1.5
Particle size analysis (g kg ⁻¹)	10.1
Sand	
Silt	
Clay	912
Texture Class	54
	34
	Sandy Loam

\bigcirc

Nutrients	Pacesetter Grade B (PGB)	Kola Pod Husk (KPH)
pH (H ₂ O)	6.5	6.8
C:N	13.19	24.8
%		
N	1.46	1.06
C	19.55	26.05
P	0.92	1.11
K	5.83	7.65
Ca	0.33	0.38
Na	0.15	0.2
Mg	0.28	0.28
Mgkg ⁻¹		
Zn	10.4	11.0
Cu	1.9	2.0
Mn	30.0	31.0
Fe	11.0	11.1

In figure 1, evolution of CO₂ by the control experiment, KPH and PGB increased as the period of incubation increased from the first week up to the sixth week of the experiment. The control experiment decreased the volume of CO₂ produced as from the sixth week to the 16th week when the experiment was terminated.

There was reduction in the volume of CO₂ produced by the Pacesetter Grade B Fertilizer at 7th and 8th week of incubation when compared with the rate at which CO₂ was released between 1st and 6th week of incubation. There were increases in the evolution of CO₂ at 9, 10 and 11th week of incubation in the soil samples treated with PGB but at gradual rate when compared to the rate CO₂ evolution at the 8th week of incubation. Also, PGB gradually decreased the volume of CO₂ evolved as from 9th week till the termination of the experiment. Kola Pod Husk exhibited slight different characteristics in releasing CO₂ to the soil compared with control experiment and PGB. Kola Pod Husk increased the volume of CO₂ released as from the 1st week of incubation to the 6th week, decreased CO₂ evolution between 7th and 8th week and then increased CO₂ evolution from the 9th week of incubation to the 11th week before the CO₂ evolved finally declined till the termination of the experiment.

Compared with control, PGB significantly increased (P<0.05) CO₂ evolution from the 1st week of the experiment to the 11th week (except week) of incubation. Also, compared with control, KPH significantly (P<0.05) increased evolution throughout the period of the conduct of the experiment (Fig. 1)

This work shows that the rate at which PGB and KPH released CO₂ was different (Table 3) from each other. The percentage change in the volume of CO₂ evolved during the incubation process by PGB and KPH showed that PGB had higher increase in CO₂ at the earlier stage of the experiment (1-6 weeks) while KPH had higher increase in CO₂ at the later end of the experiment. This shows that KPH tended to be slower in carbon mineralization than PGB at early stage of incubation.

Through out the period of the incubation, the values of CO_2 in the control experiment were lower than the soil samples amended with PGB and KPH. This shows that the treatments that were applied to the soil samples actually influenced the evolution of CO_2 in the experiment. The high volume of CO_2 released by the control between 1-6 weeks of the experiment might be addition of moisture and the presence of microorganism which attacked the native organic carbon.

The results of this experiment showed that the incorporation of the amendments into the soil significantly increased the biological activities which could be categorized into three stages. A stage of intense activity at the beginning of incubation (1-6 weeks) caused by rewetting of the soil plus amendment mixtures, corresponding to the use of the easily metabolized C present in the PGB, KPH and the native soil. Secondly, a stage of reduced activity (7-8 weeks) characterized by a drop in CO₂ as a result of the decreased amount of easily biodegradable organic matter and lastly, a stage of moderate stable activity between 9-16 weeks showing that the decomposition has reached advance stage.

The higher CO₂ released by KPH and PGB over the control indicated higher microbial activities in these materials as reported by Kilpatrick *et al* (2001) and Leslie (2002).

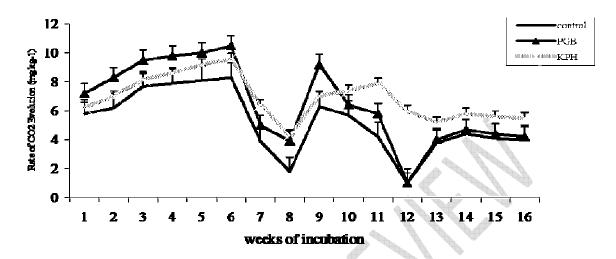


Figure: Time course of CO2 evolution (mgkg-1) by kola pod husk (KPH) and pacesetter organomineral fertilizer (PGB)

Table 3: Percentage increase in CO2 evolution as affected by Pacesetter Grade B Fertilizer (PGB) and Kola Pod Husk (KPH)

weeks	PGB	KPH
1	41.38	6.45
2	33.87	11.43
3	23.38	6.09
4	24.1	8.14
5	23.46	11.96
6	26.51	13.51
7	2.04	23.44
8	2.08	9.43
9	50	32.43
10	36.11	36.49
11	38.1	46.83
12	25	42.36
13	5.26	47.22
14	6.82	24.14
15	7.32	26.49
16	5	27.27

The reduction in CO₂ values after the initial upsurge might caused by exhaustion of the readily oxidized labile contents of the various media which include sugar, starch and cellulose as reported by Obatolu (1991). However, the decomposition of the high molecule carbohydrates and lignin thereafter must have resulted in the second phase of increase in CO₂ values thereafter. This supports the report by Olayinka and Adebayo (1987) that CO₂ release increases over a period of time with organic materials. The relative decrease and the subsequent stable values across the various media at the latter weeks (week 12 - 16) confirmed the report of Kilpatrick *et al.* (2002) that decomposition of the organic materials had reached advanced stage and their nutrient contents could be made available for plant use.

From the results of this study, it could be deduced that mineralization of organic materials in the soil depends upon the type of organic material. Also, the rate of mineralization is faster in the mixture involving city waste materials (PGB) with lower C/N ratio and than in KPH, while the reverse was the case at the latter stage of the incubation. The comparison of the two amendments using C0₂ evolution as an index method showed that PGB was more stable than KPH at the initial stage. Arable crops such as leaf vegetables that could complete their life cycles within eight weeks would benefit more from PGB than KPH due to their nutrient releases patterns, while crops with longer life cycles would benefit more from the use of KPH as fertilizer.

Conclusion

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181 182

183

184

188

- Experiment conducted to show the rate of CO₂ release by kola pod husk and organic fertilizer
- called Pacesetter Grade B showed that both treatments increased CO₂ at different rates. The
- 187 two organic materials can be used to increase soil fertility.

References

- Agbede, O. O. and B. A. Kalu. 1995. Constraints of small- scale farmers in increasing crop
- yields: farm size and fertilizer supply. *Nigeria Journal of Soil Science*. 11: 139-159.
- 191 Agboola A.A and J. A.I., Omueti. 1982. Soil fertility problems and its management in
- tropical Africa. In: International conference on land clearing and development.
- 193 Proceedings 2: IITA, Ibadan, Nigeria.
- Agboola, A A. J.AI. Omueti and O. Titiloye. 1981. Chemical composition of industrial and
- agricultural waste products containing water sources. *Proceeding of 2nd National*
- 196 *Conference on Water Pollution:* pp. 198-220
- 197 Ayeni, L.S., M.T. Adetunji, S.O. Ojeniyi, S.B. Ewulo and A.J. Adeyemo, (2008).

198	Comparative and cumulative effect of cocoa pod husk ash and poultry manure on soil
199	and nutrient contents of maize yield. American - Eurasian Journal of Sustain. Agric.
200	2(1): 92-97.
201	Ayeni, L.S., (2011). Cumulative effect of combined cocoa pod ash, poultry manure, NPK
202	20:10:10 fertilizer on major cations release for crop production in southwestern
203	Nigeria. Int. J. Agric. Soil Sci., 1(7): 248-253
204	Fagbenro, J. A and A A. Agboola. 1983. Effect of different levels of humic acid on
205	the growth and nutrient uptake of Teak seedlings. Journal of Plant Nutrition. Vol.
206	16: Pp. 1465-1483.
207	Ipinmoroti., R. R., G.O. Adeoye and M.K.C Sridhar. 1997. Potassium extraction from farm
208	wastes. Proceedings of Soil Science Society of Nigeria Conference. Benin. 21st -
209	25th Nov. 1999. Pp. 87 - 90.
210	Jedidi N., O. Vann Cleamput and AM' HIRI 1993. Mineralisation of organic amendments in
211	a Tunishian soil organic matter Dynamics and Sustainability of Tropical Agriculture
212	(Ed) Mutoagoyk and R Merr (eds) HTA/K.U Leuven. Pp 163-169
213	
214	Lal, R 1986. A Soil surface management in the Topics for Intensive Land use and
215	Sustained Production. In: Advance in soil science, 5: 1-108.
216	Leslie Cooperband. 2002. The Art and science of composting. A resource for farmers and
217	compost producers. University of Wisconsin-isconsin- Madison centre for Integrated
218	Agricultural systems, March 29,2002. Pp. 1-17.
219	Lombin, L. G. 1981. Approximating the potassium fertilization requirement of cotton on
220	some representative semi-arid tropical savannah soils of Nigeria Canadian Journal
221	of Soil Science, 61: 507-516.
222	Obatolu C.R 1991. Growth and nutrient uptake of coffee (coffee spp) seedlings grown on
223	different organic materials. PhD. Thesis. Dept. of Agronomy. University of
224	Ibadan.xiv + 289pp.
225	Ogunwale, J.A, J.O. Olaniyan and M.O. Aduloju. 2002. Morphological, physio-chemical
226	;and clay mineralogical properties of soils overlaying basement complex rocks in
227	Ilorin East, Nigeria. Moor Journal of Agricultural Research., 3.2: 147 - 154.

228	Olayinka. A, and R .H. Adebayo 1987. Effect of pre-incubated cow dung on plant growth,
229	nutrient uptake and soil chemical properties. Paper presented at the 15th Annual
230	conference of the Soil Science Society of Nigeria. September 20 - 24. Kaduna.
231	Pawar, V.M., M.K.V. Parbhani, S.N. Puri and M.O., K.V. Rahuri. 2003. Organic farming.
232	In Organic Production. Pp. $1 - 12$.
233	Titiloye, E.O., A.A., Agboola and E.O. Lucas. 1985. Evaluation of fertilizer values of
234	organic waste materials in southwestern Nigeria. biological Agriculture and
235	Horticulture 3:25-37.
236	Tollesa, D. 1999. Effect of organic and inorganic fertilizers on maize grain yield in western
237	Ethiopia. African Crop Science Conference Proceedings, 4:229-232.
238	Wallace, A. 1994. Soil Organic Matter as Essential Material; in Solving Environmental
239	Problems Com. Soil Science and Plant Analysis 25: 1-2.
240	
241	
242	
243	
244	
245	
246	
247	
248	
249	
250	
251	
252	
253	
254	
255	
256	
257	
258	
259	