Research Paper

EFFECTS OF LEAD (HEAVY METAL) POLLUTANT ON SOIL FERTILITY CHARACTERISTICS OF INLAND VALLEYS OF ISHIAGU, SOUTHEASTERN NIGERIA

ABSTRACT

The research work was conducted in two locations 100 meters away from mining pits to determine the effect of slope position and depth on the variation of soil chemical properties. Soil samples were collected from top-slope, mid-slope and bottom slope positions at depths 0 - 15 cm and 15 - 30 cm. The results indicated that the soils are generally clayey to clay loam and poorly drained in all the depths. The clay content of the soils were generally medium to high, ranging between 29 and 57% in all the depths. The clay percent was greater within 15 – 30 cm than 0 -15 cm soil depth in both locations. The sand content of the soils on the other hand were generally low to medium, ranging between 4 and 44% in the soil depths. Results showed a significant difference among the chemical properties of top, mid and bottom slope soils. Soil pH of the top-slope (6.2) was the highest followed by mid (5.9) and bottom slopes (5.8). Soil pH in 15 – 30 cm depth gave the highest significant (P = 0.05) value (6.2) than the 0 – 15 cm depth (5.8). It was obtained that organic carbon (2.12 %) was significantly higher in Ihietutu site than in Amaeze site with mean value of 1.41 %. Conversely, exchangeable calcium and magnesium were the highest at bottom slope followed by mid and top-slopes. The soil CEC (45.0 me/100g) was significantly higher in Ihietutu location than at Amaeze site (29.9 me/100g). It could be said that the soil in all the locations sampled is marginally fertile, especially as most of the fertility parameters (organic carbon and nitrogen), are only within the low- medium range when compared with the standard values. Exchangeable Mg. Ca and CEC are within medium and high range compared with the standard values.

Key words: leaching, hydromorphic, chemical properties, floodplain, Marginal fertility

INTRODUCTION

Soil degradation is a major threat facing many agricultural soils in west Africa. This is as a result of high annual rainfall, leaching, high soil acidity, deforestation, and poor management culture obtained in the area. The obvious effect of these ranges from landslide, soil fertility depletion, loss of biodiversity and soil erosion putting agricultural ecosystem at a risk [1]. Soil fertility is an important factor which determines the growth and productivity of plants. It is determined by the presence or absence of macro or micronutrients. The metals that are considered as heavy are those with a "density greater than a certain value, usually 5 or 6gcm⁻³" [2]. Heavy metals agreeably are one of the major pollutants that are encountered in the soil. Most readily cited examples of these substances as shown by Wild [2], include Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Lead (Pb), Mercury (Hg), Nickel (Ni) and Zinc (Zn). As Aydinalp and Marinova [3] observed, a precise knowledge of heavy metals concentration and the forms in which they are found, their dependence on soil's physico-chemical properties provide a basis for careful soil management, which will limit as far as possible, the negative impact of heavy metals on the ecosystem.

To the concern of the soil however, the effects of heavy metals pollutants could be enormous. Major amongst which is their effects on microbial activities [4]. Other negative effects of heavy metals, especially as they are being discharged through industrial effluents include negative effects on porosity and water holding capacity, CEC, mineral composition and seed germination as established on an Indian soil contaminated by discharges form fertilizer factory [5].

All heavy metals are toxic at soil concentrations above normal level [6]. The CEC of the soil is a key factor in determining heavy metal concentration and even availability in the soil. As CEC is determined by organic matter content and clay type and quantity, one is invariably saying that organic matter content and clay content affect concentration of heavy metals in the soils. Aydinalp and Marinova [3] explained the influence of these two factors on the concentration of heavy metals in the soil as follows; heavy metals tend to form complexes with organic matter in the soils which are different for each metal. In addition to forming complexes, organic matter also retain them in exchangeable forms. These two properties affect each heavy metal differently.

In general, the higher the CEC of the soil, the higher the ability of the soil to retain heavy metals, and therefore the higher the concentrations of the metals. Soil pH has direct impact on heavy metal concentration, thus, at high soil pH, heavy metals are retained in soils if the buffering capacity is high enough to resist the acidic input solution and at low levels of soil pH, cation exchange capacity becomes the more dominant process in heavy metals retention [7]. Fertilizers contain heavy metals such as lead and arsenic. Pesticides contain lead, arsenic and mercury. Sewage sludge contains cadmium, arsenic and lead [8].

Lead is certainly the most common contaminant of and permanent resident in soils [9]. Organic matter, can bind to heavy metals very effectively; for example, the number one source of lead contamination is lead-based paint, which chipped or scraped off building exteriors over periods of decades or centuries. Plant and soil microorganisms must cope with the resulting elevated levels of heavy metals in the soil. They have evolved complex systems for surviving and coexisting in such environments [7].

This research aimed at investigating the effects selected heavy metal (Pb) on the fertility indices of the soil. The objectives of the research included the determination of the concentrations of the heavy metal (Lead) in the soil, the fertility status of the soil in terms of the amounts of some of the exchangeable basic cations, the cation exchange capacity, (CEC) of the soil, organic carbon, total nitrogen and available phosphorus, and the effects of the metal on the fertility parameters.

2. MATERIALS AND METHODS

2.1 Location of the Study

The study area is located between latitude 5° 55′ N and 6° 00′ N and longitudes 7° 30′ E and 7° 35′ E. The relief of the study area is low-lying and undulating [10].

The geology of the area comprises sequences of sandy shales, with fine grained micaceous sandstones and mudstones that is Albian in age and belongs to the Asu River Group. Generally they are dark coloured shales and mudstones. The dark coloured shales are believed to have formed in stagnant marine basins and are dark coloured because they contain sulphide minerals and large quantities of organic matter [10].

Soils in the area comprise reddish brown gravely and pale clayey soils derived from shales and shallow pale brown soils derived from sandy shales. All the soils are residual. The red yellow soils are derived from the red and reddish-yellow earth formed by the weathering and subsequent ferruginisation of underlying sandstone units, the shales and igneous rocks which form the bedrock [10]. The soil classification is Ultisol, which is hydromorphic, of shale parent material with underlying impervious layer at about 40 cm depth. It is characterized by rampant flooding and water logging which is a precipitate of poor drainage resulting from the impervious layer, high soil bulk density and crusting [11]. The flooding is experienced about the peaks of the rainy season (July and September) and covers the basins and floodplains around the middle and lower courses of the river and the streams [12].

2.2 Collection of Soil Samples

Random method was used to collect soil samples from the study area. Twelve (12) auger samples were collected from each sampling location at 0-15 cm and 15 - 30 cm depths at the upper, middle and lower (bottom) courses of the streams at both east and west sides of banks. This means that two (2) points were sampled from each slope position. The auger samples were stored in labeled polythene bags. They

were dried under shade for three days, crushed, sieved with a 2 mm sieve and taken to the laboratory for the determination of particle size distribution and chemical properties.

2.3 Laboratory Methods:

Particle size distribution using hydrometer method according Gee and Bauder [13]. Soil pH was measured in a 1:2.5 soil:0.1 M KCl suspensions [14]. The soil OC was determined by the Walkley and Black method described by Nelson and Sommers [15]. Total nitrogen was determined by semi-micro kjeldahl digestion method using sulphuric acid and $CuSO_4$ and Na_2SO_4 catalyst mixture Bremner and Mulvancy [16]. Exchangeable bases were determined by the method of Thomas, [17]. CEC was determined by the method described by Rhoades [18]. Available phosphorus was measured by the Bray II method [19]. The double acid digestion technique [20] was used in sample extraction using HCI.HNO $_3$ to digest the soils for the heavy metal analysis. The lead concentration was determined by using an Instrumentation Laboratory IL251 Atomic Absorption Spectrophotometer equipped with two hollow cathode lamp holders and Rank-Hilger slotted cathode lamps.

2.4 Data Analysis:

Data analysis was performed using **GENSTAT** 3 7.2 Edition. Significant treatment means was separated and compared using Least Significant Difference (LSD) and all inferences were made at 5% Levels of probability.

3. RESULTS AND DISCUSSION

Results of physical and chemical properties of the soils samples studied are shown on (Table 1 and 2). The soils are generally clayey to clay loam. Poorly drained in all the depths, this could be as a result of the influence of parent materials, which is clayey in texture. The clay content of the soils were generally medium to high, ranging between 29 and 57% in all the depths. This could be as a result of geological fertilization of inland valleys (the transportation of clay and other finer materials on the upland soils by serious sheet erosion down the lowland) observed in the study areas. Moreso, the clay percent was greater within 15-30 cm than 0-15 cm soil depth in both locations. This could be as a result of the transportation of clay by leaching observed in the study area. Silt content was also very high in the two soil depths, ranging between 25 and 43%. In few cases the values did not follow a definite trend, showing little fluctuations within depths of the two soil depths. However, soil depth of 0-15 cm contained higher percent of silt particles.

The sand content of the soils were generally low to medium, ranging between 4 and 44% in the soil depths. This could be attributed to the parent material which are poorly leached followed by the continuous accumulation of clay and silt contents of the soil thereby increasing the aggregate stability of the soil. The value did not follow a defined trend within the depth.

Table 1: Physical Properties of Studied soils

location	Slope	Depth (cm)	Sand	Silt	Clay	Textural	
	•	. ,		%		Class	
Amaeze	Upper	1	34	33	33	CL	
Amaeze	Upper	2	44	25	31	CL	
Amaeze	Middle	1	38	33	29	CL	
Amaeze	Middle	2	38	31	31	CL	
Amaeze	Bottom	1	24	33	43	С	
Amaeze	Bottom	2	20	35	45	С	
Ihietutu	Upper	1	4	43	53	SC	
Ihietutu	Upper	2	4	41	55	SC	
Ihietutu	Middle	1	18	33	49	С	

Ihietutu	Middle	2	4	39	57	С	
Ihietutu	Bottom	1	18	29	53	С	
Ihietutu	Bottom	2	8	35	57	С	

The variations in the distribution of the soil chemical properties in the studied locations was shown in Table 2. The results showed that the soil pH measured in water varied significantly (P = 0.05) between the two locations. It was recorded that the highest pH mean value (6.2) was obtained from Ihietutu location. The results indicated that the pH decreased with slope position with the highest value obtained from the upper slope of ihietutu location. This result did not conform to the findings from the work of Garcia *et al.* [21] who reported highest Na $^+$ concentration at bottom slop position of 30 eroded sites. Hendershot *et al.* [22] also reported slightly higher pH at the down slope positions. The result indicated that soil depth gave significant (P = 0.05) variation on the pH with 15 – 30 cm soil depth giving the highest significant value, while the least pH was obtained from the 0 – 15 cm depth. The increase in soil pH down the profile could be attributed to the downward movement of Ca and accumulation therein the 15 – 30 cm depth. Previous researches also reported a sharp increase in soil pH with increasing soil depth [23, 24] due to higher accumulation of P(Ca) in the sub-surface soil [25]. Hao and Chang [26] reported similar results and revealed that in irrigated soils P(Ca) decreased in surface soil (0-15 cm) but increased at depths below 30 cm due to the downward movement of lime with peculating water to subsurface soil that cause an increase in soil pH.

 The results also indicated that organic carbon (OC) was affected positively (P = 0.05) by both location and depth. It was obtained that Ihietutu site with 2.12 % OC was significantly higher than Amaeze site with mean value of 1.41 %. Results regarding soil organic carbon and total nitrogen, though not significant, revealed an increasing trend from top to bottom slope position which might be due to their downward movement with runoff water from top slope and accumulation there at the bottom slope position. Previous researchers [27] argued that the amount of soil organic matter in the semi-arid region is the main factor of controlling soil available phosphorous and other soil fertility parameters. Thus decrease in soil organic matter content at top slope (and vice versa) with erosion hazards might have decreased the available P and K in soil at top slope position [28].

The result showed much significant soil organic carbon pool on soil depth 0-15 cm. This could be attributed to high organic matter or finer soil particles that accumulate on the top soil due to litter fall or plant stubbles decomposition.

The results equally indicated that exchangeable sodium, potassium, calcium and CEC only varied significantly (P = 0.05) among the locations with the highest exchangeable sodium obtained from Amaeze site. However, the highest mean value (8.90 me/100g) of calcium was obtained from Ihietutu location, as against 4.07 me/100g obtained in Amaeze site. The soil CEC (45.0 me/100g) was significantly higher in Ihietutu location than at Amaeze site (29.9 me/100g). Exchangeable sodium, potassium, calcium and CEC are almost equally distributed across the whole slopes and depths in both locations. The result agrees with Barthold *et al.* [29] whom their result clearly show that topography does not control the spatial variation of exchangeable K and Mg in the tropical forest soil-scape.

It was obtained (Table 2) that exchangeable magnesium concentration varied among the locations and slopes. The downward trend with decreasing significant concentrations of exchangeable Mg agrees with the findings of Tsui *et al* [30] that the differences in soil properties along the transect decreased from gentle slope to very steep slope, were also attributable to slope processes. The results showed that there were no significant variation on the soil base saturation, exchangeable acidity and available phosphorous among the slopes and soil depths studied in the two locations.

 The mean values for all the fertility parameters measured are shown in Table 2. It could be said that the soil in all the locations sampled is only marginally fertile, especially as most of the parameters for which more is better (organic carbon and nitrogen), are only within the low- medium range when compared with the standard values given by Landon [31]. Exchangeable Mg, Ca and CEC are within medium and high range compared with the standard values given by Landon [31]. Marginal fertility is a characteristic of many tropical soils mainly because of the high rate at which organic matter is lost, high rate of leaching, highly weathered mineral and low input agricultural practices. Results shows that in all the samples the

203 204

205 206 total nitrogen values were very low to high ranging between 0.11 - 1.36% and there was a decrease with depth in all the slope with Amaeze middle, recording the highest value of 1.36%.

The values recorded at Ihietutu for most of the parameters may even be regarded as the only values that can be described as reasonably above marginal level probably due to the fact that higher levels of organic wastes are incorporated into the cultural practices of the areas as is clear from the difference in the organic matter values of the area compared to the other area. The phosphorus levels in the two areas are drastically lower than even the values suggested by Landon [31] as low.

Table 2: Mean values of the fertility indics determined for the different locations

Location	Slope	Dept h (cm)	рН	OC (%)	TN (%)	Na (Me/100 g)	K Me/10 0g	Mg Me/10 0g	Ca Me/10 0g	CEC (Me/100 g)	Avail. P (mg/kg)
Amaeze	Upper	1	5.7	1.82	0.29	0.15	0.53	4.2	4.2	30.0	3.73
Amaeze	Upper	2	6.4	1.11	0.27	0.11	0.27	2.8	3.4	23.6	3.73
Amaeze	Middle	1	5.7	1.02	1.36	0.13	0.57	1.8	2.0	26.8	3.73
Amaeze	Middle	2	5.8	0.75	0.24	0.16	0.61	1.4	2.4	17.6	3.73
Amaeze	Bottom	1	5.6	2.04	0.11	0.15	0.55	1.8	6.6	42.0	5.6.0
Amaeze	Bottom	2	5.7	1.73	0.35	0.19	0.73	3.6	5.8	39.2	5.6.0
Ihietutu	Upper	1	6.4	2.75	0.25	0.08	0.44	6.2	10.6	53.6	7.46
Ihietutu	Upper	2	6.8	1.42	0.29	0.13	0.57	5.2	8.6	45.6	6.53
Ihietutu	Middle	1	5.7	3.23	0.46	0.11	0.5	3.8	9.4	52.4	7.46
Ihietutu	Middle	2	6.2	1.51	0.28	0.10	0.42	2.0	8.2	48.8	3.73
Ihietutu	Bottom	1	5.7	2.21	0.38	0.13	0.61	4.6	7.8	26.0	4.66
Ihietutu	Bottom	2	6.3	1.59	0.29	0.08	0.38	4.0	8.8	43.6	4.66
Mean			6.0	1.77	0.38	0.127	0.52	3.45	6.48	37.43	5.05
CV %			3.0	29.8	84.8	21.9	25.9	23.1	22.2	30.6	28.7
LSD (0.05) L	ocation		0.24	0.718	NS	0.0379	NS	1.09	1.97	15.65	NS
LSD (0.05) S	lope		3								
LSD (0.05) D			0.29 8	NS	NS	NS	NS	1.33	NS	NS	NS
			0.24 3	0.718	NS	NS	NS	NS	NS	NS	NS
Standard (Landon, 19	991)									
	High			3.35	0.30	2.00	15.00	1.20	8.00	30.00	140
	Medi	um		2.00	0.15	0.70	5.00	0.60	3.00	15.00	60
	Low			0.75	0.05	0.30	2.00	0.20	0.50	6.00	20

Depth 1 = 0 - 15 cm, Depth 2 = 15 - 30 cm, NS = Not significant, OC = organic carbon, TN = total nitrogen, Na = exchangeable sodium, K = exchangeable potassium, Ca = exchangeable calcium, CEC = cation exchange capacity, BS = base saturation, EA = exchangeable acidity, Avail. P = available phosphorous.

209 210 211

212 213

214

215

216 217

218

207

208

Table 3 shows the comparison of the concentration of the metal (Lead) in the sites investigated and the minimum approved values under European regulations and American literature. The result indicates that despite the variability in the metal values between the depths and slopes, and the fact that the two locations are close to mining pits, the mean values of metal investigated for both sites studied were lower than both the Bowen (1979) in Aydinalp and marinova [3] and the EU recommended means. Therefore, lead concentration in the soils of the studied locations has no much significant impact on the fertility decline of the area. Despite the variability, the results are in somewhat not in close agreement with the findings of Anonymous [32] in the soils of the Jakara dam irrigation site in which case the concentration of lead was found to be appreciably high (up to 27.9µgg⁻¹).

219 220 221

222

224

Table 3: Mean concentrations of lead for the two studied sites

Sample site	Slope	Depth	Lead (mg/kg)	concentration	Soil pH	Soil CEC (me/100)
Amaeze	Upper	1	0.286		5.7	30.0
Amaeze	Upper	2	0.326		6.4	23.6
Amaeze	Middle	1	0.401		5.7	26.8
Amaeze	Middle	2	0.571		5.8	17.6
Amaeze	Bottom	1	0.526		5.6	42.0
Amaeze	Bottom	2	0.553		5.7	39.2
Ihietutu	Upper	1	0.841		6.4	53.6
Ihietutu	Upper	2	0.828		6.8	45.6
Ihietutu	Middle	1	0.705		5.7	52.4
Ihietutu	Middle	2	0.649		6.2	48.8
Ihietutu	Bottom	1	0.839		5.7	26.0
Ihietutu	Bottom	2	0.668		6.3	43.6

LSD _(0.05) **Location** 0.1633

Minimum allowable concentration of lead in soils (mg/kg)

Bowen (1979)

(Aydinalp and Marinova

(2003)

225

226

227228229

230

231

232233

234235236

237238

239

240241

242

243

244

245

246

247

248

249

EU Values (Wild, 1996)

Sources: Lab. Analytical data and Bowen, (1979) in Aydinalp and Marinova (2003)

Conclusion

It could safely be concluded that the quality of the soil for production although not immediately under threat especially with the very low mean values of the pollutant and the lack of significant effects it exert on many of the fertility indices determined. However such safety cannot be guaranteed forever. This is because the pollutant is gradually building up, because of its nature of forming complexes and not being easily leached out.

References

- 1. Orji-Uzor E. N. and Obasi S. N. Properties and Classification of Erosion Prone Soils of Ukpor, Nnewi South L.G.A Anambra State Nigeria (2012). Int'l Journal of Agric. and Rural Dev. 2012; Volume 15 (2): 1079 1084, 2012. SAAT FUTO 2012.
- 2. Wild, A. Soils and Environment: An Introduction. Cambridge University Press; Cambridge,1996; 290pp.
- 3. Aydinalp, C. and Marinova, S. Distribution and Forms of Heavy Metals in Some Agricultural Soils; Polish Journal of Environmental Studies. 2003; 12(5): 629-633.
- 4. Wyszkowska, J. and Wyszkowski, M. Effects of Cadmium and Magnesium on Microbial Activities in Soil. Polish Journal of Environmental Studies; 2002; 11(5): 585- 591.
- 5. Tripathi, B. D.; Durvedi, R. K. and Triphathi, A. Influence of Industrial Waste on Physico-Chemical Properties of Soil and Germination/Mineral Composition of Wheat. Indian Water Division; Soil Pollution. 1990; 49: 1-2.

- 250 6. Ayolagha, G. and Nleremchi, S. C. Distribution of Heavy Metals and Total Hydrocarbons around 251 Flow Stations in Selected Upland and Wetland Soils; Journal of Nigerian Society for Biological 252 Conservation; 2000; 11(3): 88-99.
- Sharma R.J, Agrawal M. Biological effects of heavy metals: An overview. J *Exp Bot.* 2005; 26 (2 suppl):301–313.
 - 8. Pappoe A. N. M.; E. K.A. Afrifa; F.A. Armah Preliminary Assessment of Heavy Metal Distribution in the Soils of the University of Cape Coast Nature Reserve, Ghana. *International Journal of Applied Science and Technology*. 2011; Vol. 1 No. 4; July 2011.
 - 9. Jeewon, R., Hyde, K. D. Detection and diversity of fungi from environmental samples: traditional versus molecular approaches. In A. Varma & R. Oelmueller (Eds.), *Advanced techniques in soil microrobiology*. 2008; (pp. 1–151). Germany: Springer.
 - 10. Ezeh, H. N. and E. Chukwu Small scale mining and heavy metals pollution of agricultural soils: The case of Ishiagu Mining District, South Eastern Nigeria. Journal of Geology and Mining Research. 2011; Vol. 3(4) pp. 87-104, April 2011.
 - 11. FDALR. Reconnaissance soil survey of Anambra state-Nigeria, (1:250,000). Federal Department of Agric. and Land Res. (FDALR). 1985. Soil report FDALR, Kaduna. In: FAO, (ed.) 1985. Tropical forestry action plan. FAO, Rome.
 - 12. Ogbodo, E.N. Assessment of Some Soil Fertility Characteristics of Abakaliki Urban Flood Plains of South-East Nigeria, for Sustainable Crop Production. World Journal of Agricultural Sciences. 2011; 7 (4): 489-495, 2011.
 - 13. Gee GW and Bauder J. W. Particle Size Analysis. In: Klute A (ed) Methods of Soil Analysis, part 1: Physical and Mineralogical Properties. Agronomy Monograph No 9. American Society of Agronomy, Madison, pp 91–100; 1986.
 - 14. McLean, E.O. Soil pH and lime requirement. In: A.L. Page, R.H. Miller and D.R. Keeny, (eds.). *Methods of Soil Analysis*, Part 2. Am. Soc. Agron., Madison, 1982; pp: 199-224.
 - 15. Nelson DW, and Sommers LE Total carbon, total organic carbon and organic matter. In: Sparks DL (ed) Methods of soil analysis, part 3: chemical methods. Agronomy Monograph No 9. American Society of Agronomy, Madison, 1996; pp 961–1010.
 - 16. Bremner, J.M. and Mulvancy, C.S. Total Nitrogen. In: A.L. Page *et al.*, (eds.). Methods of Soil Analysis. No.9; part 2, Amer. Soc. Of Agron. Inc, Madison, Wisconsin, USA. 1982; 595-624.
 - 17. Thomas, G.W. Exchangeable cations. In: A.L. Page, R.H. Miller and D.R. Keeny, (eds.), Methods of Soil Analysis, Part 2. Am. Soc. Agron. Monogr., Madison, 1982; pp: 159-165.
 - 18. Rhoades, J.D. Cation exchange capacity. In: A.L. Page, R.H. Miller and D.R. Keeny, (eds.). *Methods of Soil Analysis*, Part 2. Am. Soc. Agron., Madison, 1982; pp: 149-157.
 - 19. Bray, R.H and L.T. Kurtz. Determination of total organic carbon and available forms of phosphorus in soils Soil Sci. J. 1945; 59:pp 39-43.
 - 20. Anderson, J. Wet Digestion versus Dry for the Analysis of Fish Tissue for Trace Metals; Afon Absorption Newsletter. 1974;11:88-89.
 - 21. Garcia, A., B. Rodriguez. B. Garcia, N. Gaborcik, V. Krajcovic and M. Zimkova. Mineral nutrients in pasture herbage of central western Spain. Soil, grassland and animal relationship. Proceedings of 13th general meeting of the European Grassland. Banska Bystrica. Czechoslovakia. June 25-29, 1990.
 - 22. Hendershot, W.H., F. Courchesne and R.S. Schemenauer Soil acidification along a topographic gradient on roundtop Mountain, Quebec, Canada. *Water, Air, and Soil Pollution.* 1992; 61(3-4):235-242.
- 295 23. Webb, A.A. and A.J. Dowling. Characterization of basaltic clay soils (Vertisols) from the Oxford Land System in central Queensland. *Australian Journal of Soil Research*. 1990; 28(6): 841-856.

UNDER PEER REVIEW

- 24. Khan F., W. Ahmad, A.U. Bhatti, R.A. Khattak and M. Shafiq. Effect of soil erosion on chemical properties of some soil series in NWFP. *Science Technology and Development.* 2004; 23(4): 31-35.
 - 25. Kaihura, F.B.S., I.K. Kullaya, M. Kilasara, J.B. Aune, B.R. Singh, and R. Lal. Soil quality effects of accelerated erosion and management systems in three eco-regions of Tanzania. *Soil and Tillage Research*. 1999; 53(1): 59-70.
 - 26. Hao, X. and C. Chang. Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid Southern Alberta? *Agriculture Ecosystem and Environment.* 2003; 94(1): 89-103.
 - 27. Pruess, A., D.E. Bushiazzo, E. Schlichting and K. Stahr Phosphate distribution in soils of the central Argentinian Pampa. Landesanstalt fur Umweltschutz, Baden-Wurtternberg, Referat Bodenschutz, Griesbachstr. 3,75000 Karisruhe 21, Germany. *Catena*. 1992; 19(1): 135-145.
 - 28. Khan, F; Z. Hayat; W. Ahmad, M. Ramzan, Z. Shah, M. Sharif *et al.* Effect of slope position on physico-chemical properties of eroded soil. *Soil Environ.* 2013; 32(1): 22-28, 2013
 - 29. Barthold, F.K.; R. F. Stallard; H. Elsenbeer Soil nutrient–landscape relationships in a lowland tropical rainforest in Panama. Forest Ecology and Management journal. 2007;, doi:10.1016/g.foreco.2007.09.089.
 - 30. Tsui, Chun-Chih; Chen, Zueng-Sang; Hsieh, Chang-Fu. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 123. 2004; 131–142
- 31. Landon, J. R. (ed). Booker Tropical Soil Manual; John Wiley and Sons Inc.; New York, 465pp 1991.