RESEARCH PAPER

Developing a coffee yield prediction and integrated soil fertility management recommendation model for Northern Tanzania Developing a quantitative system for coffee yield prediction and ISFM recommendation calibrated for Northern Tanzania Formatted: Font: Arial, 18 pt

Formatted: Font: Bold

Formatted: Not Highlight

ABSTRACT

The aim of this study was to develop a simple and quantitative system for coffee yield estimation and nutrient input advice, so as to address the problem of declining annual coffee production in Tanzania (particularly in its Northern coffee zone), which is related to declining soil fertility. The study was conducted between 2010 and 2013 at TaCRI Lyamungu, with source data taken from Hai and Lushoto districts, Northern Tanzania. An earlier model QUEFTS, developed for maize but under similar conditions as those of Arabica coffee (Coffea arabica) in the study areas, was used as a benchmark. Secondary fertilizer trial data were used in model calibration for coffee, while adding two more steps related to balanced nutrition and the economics of integrated soil fertility management (ISFM). Primary soil analytical data and calculated yields on basis of tree number were used for model testing. The result was a new model which we hereby call SAFERNAC (Soil Analysis for Fertility Evaluation and Recommendation on Nutrient Application to Coffee). The model consists of three modules: SOIL (the soil properties of interest), PLANT (all the crop and crop management parameters such as physiological nutrient use efficiency, plant density, maximum possible yields per tree) and INPUT (nutrient inputs organic and inorganic). It consists of two subsequent parts - a baseline approach (no input) for coffee land evaluation; and an integrated soil fertility management (ISFM) approach that involves application of nutrient inputs, for ISFM planning and design of fertilizer experiments. The model was checked for accuracy of the adjusted equations, and found to be capable of reproducing the actual yields by 80-100%. The new model is a useful tool for use in coffee farms.

Formatted: Not Highlight

- Formatted: Not Highlight
- Formatted: Font: Italic, Not Highlight
- Formatted: Not Highlight

Formatted: Not Highlight

14 15 16

15 16 | *Key*

Key words: Coffee yield model, soil fertility evaluation, *nutrient equivalent*, nutrient inputs

17 18

1. INTRODUCTION 19

20

21 The importance of coffee in the Tanzanian economy is well documented by [1], [2], and [3], 22 among others. -Coffee prefers very deep (usually more than 1.5 m), well drained friable loam Formatted: Highlight 23 and clay soils. Soils with high available water holding capacity, a pH in the range of 5-7 and a high nutrient holding capacity are most suitable [4]. Its average nutrient removal from a 1 24 25 ha soil per growing cycle is 135 kg of N, 35 kg of P2O5 and 145 kg of K2O [5]. With a 26 substantial part also getting lost through leaching and downstream flow in the soil, it is 27 essential to replace the mined and lost nutrients by having a well-planned nutrient 28 management programme [6]. 29 30 In Tanzania, coffee is grown in a wide variety of agro-ecological zones. Mlingano Agricultural Formatted: Not Highlight 31 Research Institute (MARI) [7], following the system developed by De Pauw in 1984 and 32 adopted by [8], described the coffee zones as Eastern Plateaus (E12-E15), High plateaus and plains (H1, H2, H3, H5), Volcanoes and rift depressions (N4, N10), Central plateaus 33 (P6) and Western Highlands (W1-W4). These include an altitudinal range of 500 - 3500 34 35 metres above mean sea level, and rainfall range of 500 - 3500 mm (mostly over 1000 mm). Formatted: Not Highlight According to the fundamental growth conditions for coffee [4], [9], [10], water availability in 36 these zones does not pose a serious limitation to coffee, and neither does irradiance or 37 temperature in this tropical Tanzanian situation. This statement, however, does not take into 38 39 account the imminent threat of climate change. Following [11], this leaves soil condition as a 40 major factor of coffee productivity in the Tanzanian coffee growing zones. In the Northern Formatted: Not Highlight coffee zone, which fits into agro-ecological zones E, H and N, and is dedicated exclusively to 41 42 the production of mild Arabica coffee, annual production is on a decline [12] and soil fertility 43 degradation has been pointed out as an important limiting factor. 44 45 Soil fertility is not a distinct property of the soil as such, since many soil properties influence 46 fertility and also influence each other. In its part, soil fertility affects, and is also affected by, 47 the choices that farmers make regarding agricultural production, fertilization, and soil and 48 water conservation regimes, a study of which needs a method for measuring soil fertility. Unfortunately, there is no unique technique [13]. Ultimately, farmers are not interested in the 49 50 soil properties themselves, but how they affect agricultural production. Crop models, such as Formatted: Not Highlight 51 QUEFTS [14], become useful in explaining the effects on yields of individual soil properties 52 that are measured by soil sampling. The predicted yield can then be used as an integrative 53 indicator of soil fertility. 54 55 QUEFTS is one of the series called the Wageningen Crop Models. It uses calculated yields Formatted: Not Highlight 56 of unfertilized maize as a yardstick, and soil fertility is interpreted as the capacity of a soil to 57 provide plants with the primary macronutrients. Four successive steps are involved: a

58 calculation of the potential supplies of N, P and K, actual uptake of each nutrient, yield ranges as depending on the actual uptakes, and lastly, pairwise combination of yield ranges, 59 60 and the yields estimated for pairs of nutrients are averaged to obtain an ultimate yield estimate. QUEFFS was described [14] as a useful tool in quantitative land evaluation, whose 61 62 principles may be applied to other crops, soils, nutrients and agro-ecological regions. The 63 framework on which the model was built is in synchrony with the physiographic requirements 64 of Arabica coffee. 65

66 One of the important thrusts of Tanzania Coffee Research Institute (TaCRI) is in the area of 67 integrated soil fertility management (ISFM). Considering the diverse environments under 68 which coffee is grown, crop yield and fertilizer modelling becomes of great importance. With 69 many coffee yield modelling attempts so far based on the crop and its physiological processes [15], this work focused on the land and its capacity to support coffee. -Its objective 70 71

was to make a coffee ISFM decision support tool on basis of soil properties, organic and

inorganic nutrient inputs; calibrated for the northern coffee zone of Tanzania, with a prospect
 of scaling up and out.

75 76 77 78

79 2. METHODOLOGY80

81 **2.1 Background** 82

Efforts to collect and collate the available soil data for purposes of gauging the TaCRI recommendations on soil fertility management started in 2005. Soil data from various places in Kilimanjaro, and results from NPK reference trials at TaCRI Usagara C farm, and fertilizer x tree density trial, Lyamungu were collected. These data were used between 2007 and 2010 in calibrating an earlier developed fertilizer advice model QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) [14], [16], [17], [18], and [19], to coffee.

90 <u>2.1.1 Estimation of physiological nutrient use efficiency (PhE) by coffee</u> 91

92 Because in the trials whose data are used in this work crops had not been analyzed, the 93 uptake of nutrients was estimated by dividing the yield by the physiological nutrient use 94 efficiency (PhE), which relates agronomic yield with nutrient uptake in all crop components 95 [17]. Unfortunately there has been no real data on PhE by coffee in Tanzania. They were therefore derived from literature ([20], [21], [22], and [23]), and tuned to the results of TaCRI 96 fertilizer trials (see Table 1). It was assumed that they represent average values. The 97 medium physiological nutrient use efficiency (PhEM) is then found by dividing dry matter 98 99 production of parchment coffee by gross uptake of nutrients. (Note: In the table, dry matter 100 production of pulp and vegetative growth refers to the annual production going together with an annual dry parchment coffee production of one ton.) This results in 1000/70 (=14), 101 102 1000/12.5 (=80), 1000/63 (=16) for N, P and K.

Formatted: Not Highlight

- Formatted: Not Highlight
 Formatted: Not Highlight
 Comment [PN1]: check space
- Formatted: Not Highlight
- Formatted: Not Highlight

103	
104	Table 1: Rounded indicative values of dry matter production and average nutrient contents in
105	various components of the coffee tree.

106

Component	Dry matter	Ν	Р	К		
	<u>(DM)</u>					
Parchment coffee	1000	20	2.3	18		
Pulp	875	16	6.0	17		
Vegetative growth	2000	34	4.2	28		
Total DM; Gross uptake	3875	70	12.5	63		
i trogen, = N = Nitrogen; phosphorus = P= Phosphorus; potassium = K = Potassium.						
dapted from Cannell and Kimeu (1971).						

107 108 109

110 2.1.2 Experimental data for model calibration

In the calibration of QUEFTS, we used coffee-based data from two TaCRI's on-station field trials (NPK reference trial; fertilizer x tree density trial) to establish relationships between soil fertility indices and nutrient uptake by coffee. The NPK reference trial had been superimposed on established coffee in 1983. The design was 2³-4² factorial with N and K both applied at rates of 80, 160 and 240 kg per ha per year while all units received 60 kg P per ha per year. N and K were applied in three rounds and P in two rounds. Three-Two extra seperimental treatments were included as well: NOPOKO, N2PoK2, N2PoK2, where N2 and K2.

Formatted:	Font: Not Bold
Formatted:	Highlight
Formatted:	Highlight
Formatted:	Highlight
Formatted:	Subscript

119 stand for 160, and P_{ϱ} for 120_{T} kg ha⁻¹ year⁻¹. The fertilizer x tree density trial was started at Lyamungu in 1994. It had a split-plot design with tree density (1330, 2660, 3200 and 5000 trees ha⁻¹) as the main treatment, and N application as a sub-treatment (0, 90, 180 and 270 kg N ha⁻¹ year⁻¹, split-applied in three rounds). Only yields of the best year were used in order to minimize the risk that other factors than soil fertility and NPK had influenced yields. Some soil analytical data of both trials were available (Table 2). Starting with the parameter values of the original QUEFTS model, a trial-and-error procedure was followed until the fit could not be improved further.

- 126 127 128
- 129

130

131

133

134 135

138

132

Table 2: Soil analytical data for the two on-station trials

-	Location	SOC <u>*</u>	SON <u>*</u>	P_Bray_1	<mark>Exch-K_{exch}_</mark> _	pH_water		Formatted: Font: 9 pt, Subscript, Highlight
		g/kg	g/kg	mg/kg	mmol/kg			Formatted: Font: 9 pt, Subscript
-					4			Formatted: Subscript, Highlight
			INI	-K reference	triai		i i i	Formatted: Subscript
	Usagara C	18	2.8	67	19	5.7		
			Fertiliz	er x tree den	sity trial			
	Trees per ha							
	1330	22	2.2	86	22.1	5.7		
	2660	24	2.4	109	21.1	5.8		
	3200	21	2.1	65	17.3	5.6		
	5000	18	1.8	119	18.2	5.3		
*SO	<u>C= soil organic</u>	carbon; SO	N <u>= soil organ</u> i	<mark>c nitrogen (=</mark>	Total nitrogen)			Formatted: Highlight
Adap	oted from TaCR	Il tertilizer tri	al records					Formatted: Highlight

1361372.2 Adaptation of QUEFTS to coffee

The first task in adapting QUEFTS to coffee was to review, with the coffee crop in mind, its various steps. These steps deal with the assessment of available nutrients from soil and inputs (A), the calculation of actual uptake (U) of nutrients as a function of the amounts of available nutrients (A), and the estimation of yield (Y) as a function of the nutrients taken up (U). While QUEFTS assessed available nutrients in unfertilized soils [15] and in chemical fertilizers [16], there was a need to consider in Step 1 also organic nutrient inputs as ISFM components.

146 147 The calculation of actual uptake of nutrients (Step 2) was adopted as in QUEFTS, as it 148 mainly involved theoretical concepts. The actual uptake of Nutrient 1 (U₁) is calculated twice: 149 U_{1,2} is a function of A₁ and A₂ being the available amounts of Nutrients 1 and 2, U_{1,3} is— a 150 function of A₁ and A₃. The lower of U_{1,2} and U_{1,3} is assumed to be the more realistic one in 151 accordance with Liebig's Law of the Minimum.

In Step 3, yield ranges between maximum and minimum limits are derived on basis of the actual nutrient uptakes. Yields at maximum accumulation of N, P and K in the crop (YNA, YPA, YKA) and at maximum dilution (YND, YPD, YKD) are calculated as the product of

Formatted: Subscript

Formatted: Not Highlight

actual uptake (U) and physiological nutrient use efficiency (PhE) at accumulation and dilution
(PhEA and PhED), respectively. PhE in this study is expressed in kg parchment coffee per kg
of nutrient taken up.

160 161 Step 4 mainly followed the QUEFTS principles. Yield ranges are combined in pairs (YNP, YNK, YPN, YPK, YKN, and YKP) taking nutrient interactions into account. The average 162 value of those six yields is considered the final yield estimate (YE). Some restrictions are 163 imposed to ensure that calculated YE does not surpass the maximum dilution of N, P or K 164 (YND, YPD YKD) or the maximum yield that can be obtained in view of climate and crop 165 properties (YMAX). For coffee, the concepts of YtreeMAX and YMAX were introduced as 166 167 maximum yield limits per tree and per ha, respectively. 168

Two additional steps were introduced to facilitate the assessment of the nutrient inputs
required for a certain target yield [24]. Step 5 deals with the calculation of physiologically
optimum nutrient proportions and the correspondingly required nutrient inputs for balanced
crop nutrition. In Step 6 the economically optimum combinations of nutrient inputs are
assessed as a function of target yield, soil available nutrients, and prices of input nutrients
and yield.

177 2.3 Application of the model for coffee land evaluation

In its baseline approach, the new model was used to perform quantitative land evaluation for
coffee by estimating yields on basis of spatial soil data from Hai and Lushoto districts. -Data
for OC, Total N, Bray 1 P, exchangeable K and pH were used. Those parameters whose
units were percentage (OC and total N) and cmol_c kg⁻¹ (exchangeable K) had to be multiplied
by ten to convert to g kg⁻¹ and mmol_c kg⁻¹ respectively. Plant density was set at 2000 trees
per ha (spacing of 2.0 x 2.5 m²). Other model parameters were left as default.

185 Data on baseline yield for the two districts were converted to shapefiles under ArcView GIS 186 187 3.2 (ESRI, 1996) and then interpolated under ArcGIS 9.3. The inverse distance weighting 188 (IDW) interpolator was used with number of nearest neighbours set to 12 and the power set 189 to 2. Baseline yield data for the two districts [25] was used as a yardstick to test various 190 human intervention strategies; farmyard manure used alone, at 5 tons per ha (about 2.5 kg per tree); inorganic fertilizer N, P and K at the dosage of 160, 60 and 160 kg ha⁻¹; and a 191 192 combination of the two. Scatter diagrams were used to show the effects of farmer ISFM 193 practices in areas of low, medium and high natural fertility.

195 3. RESULTS AND DISCUSSION

197 3.1 The new model SAFERNAC

198

194

196

176

178

199 The calibration of QUEFTS for coffee gave rise to a new model SAFERNAC (Soil Analysis 200 for Fertility Evaluation and Recommendation on Nutrient Application to Coffee). The model is 201 built on Excel spreadsheet which allows for flexibility. Depending on the use to which it is 202 put, it can follow one of the two separate approaches -baseline and ISFM. The parameters that differentiate the two approaches are based on Step 1. Figure 1 is a schematic 203 representation of the model. The module PLANT comprises all indices related to the coffee 204 205 crop (plant density, maximum yields per tree and per ha, PhEA and PhED). The module 206 SOIL comprises five soil fertility indices (pH, organic carbon, total nitrogen, available

Formatted: Not Highlight Formatted: Not Highlight Formatted: Not Highlight Formatted: Not Highlight phosphorus and exchangeable potassium), and the module INPUT comprises addition of organic and/or inorganic nutrient sources, which is the purpose of ISFM. In the spreadsheet

the baseline approach is pursued by assigning zero values to all nutrient input columns. This

210 approach simulates coffee yields under natural fertility, and is meant for use in coffee land

211 evaluation. The ISFM approach assigns non-zero values to the nutrient input columns on

spreadsheet, whereby the nutrients can be inorganic, organic or a combination of the two.

TREE DENSITY PLANT SOC SON YIELD P Bray SAFERNAC K exch pН ORGANIC INORGANIC 214 Ymax PhE Trees/ha SOC Total N YIELD Bray 1 P AFERNA SOIL Exch. K pН Organic INPU Inorganic 215

Figure 5.1: Complete structure of SAFERNAC. Baseline and ISFM approaches are

separated by assigning zero and non-zero-to the "input" columns on spreadsheet.

213

215 216

217 218

210

- 219 3.2 Model assumptions and prerequisites
- 220

221 222 223 224 225 226 227 228 229 230 231 232 233	 The system operates under the following conditions, most of which affect Step 1 equations, with the other steps more generic: Soil fertility is conceived as the capacity of a soil to provide plants with nitrogen, phosphorus and potassium as primary macronutrients. The system assumes therefore that other nutrients are far less limiting than those three. Irradiance and moisture availability are optimum, Soil is well drained (minimum of drainage class 3 – [26]), Soil is deep enough (90 cm and more), pH(H₂0) is in the range 4.5-7.0, Values for SOC, P_{aBray1} and exch K_{area} for the topsoil (0-20 cm) are below 70 g kg⁻¹, 30 mg kg⁻¹ and 30 mmol kg⁻¹, respectively. 	Formatted: Subscript, Highlight Formatted: Subscript, Highlight
234	3.3 Calibration of model parameters of SAFERNAC	
235		
236 237 238 239 240 241 242	Results of model calibration are summarized in Appendix 1. These include a simplification of constants (as in fK, SAN, SAP and SAK), introduction of INPUT parameters IAi and IAo and an important PLANT parameter fD (a plant density correction factor downgrading land <u>utilization by coffee whose plant density is below 3334 trees per ha</u>) in Step 1. Another major adjustment is in Step 3, where the PhE values were recalibrated and expressed as kg parchment coffee per kg of nutrient taken up at accumulation "a" and dilution "d" as shown in Table 3. On the other hand, the factors rN, rP and rK subtracted from UN, UP and UK	 Formatted: Highlight

that YE \leq max (YND, YPD, YKD, YMAX) by using two PLANT parameters Y_{tree}MAX and YMAX.

247

243 244

Table 3: Physiological efficiency at maximum, medium and minimum availability of N, P and
 K (in kg parchment coffee)

	PhE*	Symbol	Ν	Р	К	
Maximum	PhED	D	21	120	24	
Medium	PhEM	Μ	14	80	16	
Minimum	PhEA	A	7	40	8	

respectively for maize was removed - they do not apply in areas growing coffee in Tanzania.

Step 4 follows QUEFTS principles. Additionally, limitations have been set to the model such

250 * Physiological nutrient use efficiency at dilution (d), medium (m) and accumulation (a) _____ Formatted: Not Highlight

251

252 3.4 Balanced NPK Nutrition and crop nutrient equivalents

254 Some principles of balanced NPK nutrition and crop nutrient equivalents as explained by [27] 255 and applied in Rwanda [28] are adopted in this work. It is assumed that the values of uptake 256 efficiency (UE = U/A) and those of physiological efficiency (PhE = Y/U), averaged for all 257 three nutrients N, P and K, are maximum when the available amounts and the uptakes of N, 258 P and K have optimum proportions. In case the ratio PhED/PhEA is the same for N, P and K, the optimum proportions are equal to the ratios of the reciprocals of the medium 259 260 physiological efficiencies (PhEM). -This implies that in a situation of balanced nutrition, 1 kg of available N has the same effect on coffee yield as 0.175 kg of available P, or 0.875 kg of 261 262 available K, and similarly does the uptake of 1 kg N have the same effect on coffee yield as the uptake of 0.175 kg P or 0.875 kg K. These values are used to define the unit of nutrient 263 264 equivalents, referred to as kE.

265

Once "target yield" or TY and PhEM are known, the relationship Y = U * PhEM can be used
in determining the target uptake (TU) and -target availability (TA), the latter being the sum of
SA (available nutrients from the soil) and IA (available nutrients from input). When SA is
known we can estimate the amount of nutrients needed to be added to the soil (both organic
and inorganic) to attain the target yield:- IA = TA-SA. For balanced crop nutrition, TAN = TAP
TAK, TAi being expressed in kE.

272 273 Balanced nutrition is the best possible situation from the environmental point of view, as it 274 ensures maximum uptake of the available nutrients and minimum loss to the environment. 275 Expressing quantities of nutrients in $\frac{|\mathbf{k}\rangle}{|\mathbf{k}|}$ and substituting $\underline{A}_1 = \underline{A}_2 = \underline{A}_3$, $\underline{d}_1 = \underline{d}_2 = \underline{d}_3$, $\underline{a}_1 = \underline{a}_2$ 276 = a_3 and d/a = 3 in Step 3, it follows from that U/A = 0.9583. The average value of the uptake 277 efficiencies is then maximum (being 0.96), and hence the average portion of non-utilized 278 available nutrients is at minimum, being only 4%.

279

280 Because soil available nutrients are usually not in optimum proportions, nutrient inputs should be managed in such a way that the sums of (SA + IA) get balanced. This implies that 281 282 inputs should start with the most limiting nutrient. It should be applied till-until the available 283 amounts of the most and the one but most limiting nutrients are in balance. Further 284 application should be with these two nutrients according to their optimum proportions till-until 285 the supplies of all three nutrients are balanced. From there onwards, all three nutrients are 286 applied according their optimum proportions. An example is given in Figure 2 representing an imaginary soil having organic C 26 g kg⁻¹, organic N 2.6 g kg⁻¹, P_{Bray} 52 mg kg⁻¹, exchangeable K 20 mmol kg⁻¹, and pH(H₂O) 5.2. The amounts of soil available N, P and K 287 288 289 are then 71.5, 30.4 -- and 295.4 if expressed in kg ha⁻¹, and 71.5, 173.8 and 337.6 if expressed in kE ha⁻¹. The sum of soil available nutrients is 583 kE ha⁻¹. Tree density is set at 290 291 2000 and hence fD is 0.76. The calculated yield without fertilizer application is 1086 kg ha 292 Because SAN is smaller than SAP and SAK (expressed in kE), inputs should start with N, followed by N+P, and finally with N+P+K. The maximum possible yield is 3800 kg ha⁻¹. That 293 is why in Figure 2 the yield curve levels off at high quantities of available nutrients. 294

Formatted: Highlight

Figure 2: Relation between calculated coffee yields and the amount of available nutrients expressed in kE ha⁻¹, for three ranges of nutrient input.

298

299 3.5 Outcomes of model demonstration

300

301 In Appendix 2, the outcomes of the successive steps 1-4 in the basic SAFERNAC 302 spreadsheet are shown as a two-treatment example for the on-station experiment of 303 Usagara C: amounts of available nutrients (A), actual uptake (U) of N, P and K, yield ranges 304 (Y₁A, Y₁D), yields as a function of nutrient pairs (Y_{1,2} and Y_{2,1}) and the final yield estimate 305 YE. U1,2 stands for UN(P), UP(K), UK(N); U1,3 for UN(K), UP(N), UK(P). Y1,1 stands for 306 YNP, YPK, YKN; and Y2,1 stands for YPN, YKP, YNK. The model was run using the soil 307 analytical data in Table 2 as starting points.

308

Figures 3a and <u>3</u>b compare the yields simulated by SAFERNAC (YE) with actual yields (Y_{act})
 for the NPK reference trial Usagara C and the fertilizer and tree density trial Lyamungu, of
 which soil data are given in Table 2. Actual yields were 80-100% of the simulated yields
 (<u>underscoring the importance of fD which was varied in the latter trial</u>) and the lines through
 the origin showed good R² values. The calibrated equations have therefore demonstrated
 their capability to reproduce the yields of the trials that had been used for their calibration to
 a satisfactory degree.

Formatted: Highlight

temperate fruit trees for which Lushoto district is so famous. -Mtae is an upcoming coffee

area with few farmers who are using the new improved coffee varieties. It is easier for
 farmers to adopt new varieties because doing so does not require uprooting any existing
 coffee trees

	Fertilizer alone	1200	0.68	0.31	<mark>988</mark>	0.35	0.05		Formatted	Eont: Not Bo	d. Hiahliaht
	Manure alone	<mark>438</mark>	0.88	<mark>0.76</mark>	<mark>426</mark>	0.60	<mark>0.44</mark>		Formatted	Font: Not Bol	d, Highlight
	Parameter	Y-int	Slope	R ²	Y-int	Slope	R ²				
	District		Hai			Lushoto					
378	and combination	of the two) a	against baseli	ne yields, b	both calculate	ed with SAFEF	RNAC.				
377	Table 4: Summa	rv of scatter	-nlot equation	s comparir	na ISEM inter	ventions (mar	ure fertiliza	or			
375											
374											
3/3											
372											
371											
370											
369											
368											
367											
366											
365											
360 361 362 363 364	(the increasing Y decreasing slope fertility and vice-v its accumulation. districts, differ in a	Y-intercept), e). In other versa, and t The noted soil fertility a	and diminish words, respo hat the uptake variable R ² v and therefore	es progres nse to fert e of a nutri alues are a response to	sively as ba tilizer input i ient is higher an indication o ISFM interv	seline yield in s greater in s in its dilution that the soils ventions.	acreases (th coils of lowe and lower , even with	ie er in in			
000			1 12 2 2 2				/				

<mark>1240</mark>

0.25

<mark>0.02</mark>

Formatted: Font: Not Bold, Highlight

379

Combination

380 381 382

3.8 Description of SAFERNAC in relation to major model categories

<mark>0.66</mark>

1500

383 A model is a simplified representation of a system. A system is a limited part of reality that 384 contains interrelated elements. The totality of relations within the system is the "system structure". Simulation is the building of mathematical models and the study of their behaviour 385 386 in reference to those of the systems [30]. Models may be categorized as descriptive or 387 explanatory, empirical or mechanistic, static or dynamic depending on whether a component of time is included, deterministic or stochastic depending on the level of probability allowed; 388 simulating and optimizing depending on intended use [30], [31]. SAFERNAC can be 389 390 considered partly as a mechanistic model, partly as an empirical model. It is explanatory, but 391 since it does not simulate changes in time it is not a dynamic model.

0.22

392 The major part of the model which is described in this paper (Steps 1-4), deals with 393 simulation of (nutrient-limited) coffee yields, but as balanced nutrition and economically optimum applications of N, P and K are incorporated (Steps 5 and 6), SAFERNAC has
optimizing properties as well. Like QUEFTS, it is meant as a useful tool in quantitative land
evaluation and in decisions regarding integrated soil fertility management (ISFM). The yield
predicted by SAFERNAC in its baseline module (with no nutrient inputs) can be used as an
integrative indicator of soil fertility, which is one of the land qualities used in land evaluation.
The principle of balanced NPK nutrition can be applied to arrive at target yields in the most
profitable and environmentally friendly way.

401 3.9 Nutrient limited, water limited and potential yields of coffee

402 In many crop growth models, it is usual principle to distinguish between potential, water limited, nutrient limited and actual yields [11], [32]. SAFERNAC and QUEFTS simulate 403 nutrient-limited yields, with the assumption that soil nutrient supplies in the agro-ecological 404 405 zones that grow coffee in Tanzania would limit crop growth more severely than water 406 availability (the determinant of water-limited yields -WPP), and certainly more than irradiance or temperature (which, together with the crop characteristics, govern the potential 407 408 yield - RPP). It may be necessary in the future to include an agro-meteorological component 409 (like the one suggested by [14]) as climate change becomes more and more important for 410 coffee in the country. 411

412 So far SAFERNAC has been developed for a mono-crop of non-shaded coffee. This means 413 that it is more useful in coffee estates (most of which prefer non-shaded coffee) than in smallholder farms. In shaded systems however, irradiance needs to be considered because 414 it is known to be a growth-limiting factor. Integration of various levels of shade (and various 415 416 intercropping regimes) could enrich the PLANT parameter in SAFERNAC. Once this is 417 achieved, the model will expand its usability to smallholder coffee producers. Another option 418 would be to incorporate (parts of) SAFERNAC into a general coffee growth simulation model in the similar way that QUEFTS was incorporated in TechnoGIN [33]. 419 420

422 4. CONCLUSION

421

423

439

A new model called SAFERNAC has been developed for yield estimation and fertilizer 424 425 recommendation in coffee. It can follow two separate approaches, a baseline and an ISFM 426 approach. It uses some chemical soil characteristics (soil organic carbon and/or soil organic 427 nitrogen, available P, exchangeable K and pH in-(water)), nutrient inputs (organic and 428 inorganic), and maximum yields per tree and per ha for predicting the parchment coffee yield. When the model is run from soil fertility alone without intervention, it acts as a coffee 429 430 land evaluation tool. When it is used to guide some crop management decisions such as intensification of coffee production, both natural soil fertility and input of nutrients in form of 431 432 chemical fertilizer, organic nutrient sources or a combination of the two, play a role. 433 Additional required model inputs are then quantity and quality of added nutrient sources and tree density. It is also possible to ask the model to assess the required nutrient additions for 434 435 a certain target coffee yield, given tree density and the mentioned soil data. The model then 436 becomes an ISFM decision support tool for coffee. SAFERNAC can be used in coffee yield prediction in different coffee producing areas of the world, 437 as long as they meet the 438 assumptions and pre-requisites set therein.

The model was checked using yields of on-station trials of TaCRI and the data for SOC,
 SON, P_{Bray 1}, exchangeable K, pH water, tree density and applied fertilizer NPK whereby it
 was able to reproduce the trial yields by 80-100%. Model usability for coffee land evaluation
 and ISFM intervention was tested with soils of Hai and Lushoto districts. Northern Tanzania.

Formatted: Font color: Red

Formatted: Not Highlight

6	
	Formatted: Font: (Default) Arial
"Authors have declared that no competing interests exist."	
AUTHORS' CONTRIBUTIONS	
1 A shara A Daalaa ahkir sharka maaraa ahkir amakarir afsharashada a	
Author A: Designed this study, managed the analysis of the study, wr	ote the protocol and
Authors B. C and E: Managed the literature searches	
Author D: Provided all the ideas of his model QUEFTS, on which this	work was based, and
also contributed in literature searches.	
All authors read and approved the final manuscript.	
[1] Baffes, J. 2003. Tanzania's Coffee Sector: Constraints and C	Challenges in a Global
Environment. Accessed 30th	June 2011.
http://www.aec.msu.edu/fs2/inputuseworkshop/Baffes Tan	zania Coffee.pdf.
3 [2] Carr, M.K.V., Stephens, W., Van der Vossen, H.A.M. and Nyan	ga, A. 2003. – Lanzania
towards a profitable and sustainable coffee industry in Ta	nzania ICPS Cranfield
University, Silsoe, UK. 142 pp.	
2	
3 [3] Hella, J.P., Mdoe N.S and Lugole, J.S. 2005. Coffee baseline rep	oort for Tanzania Coffee
Research Institute. Bureau for Agricultural Consultancy	and Advisory Service,
Sokoine University of Agriculture, Morogoro, Tanzania. 40p	op.
7 [4] Wintgens, J.N. 2012, Coffee: Growing, Processing, Sustainable P	roduction: A Guidebook
for Growers, Processors, Traders, and Researchers. Wiley	-VCH; 3 edition (2012)
9 1022 pp.	
) I III Our O Mar Danst E Dahawaya I and Da III E (2020)	Land such stien Dart 0.
I [5] Sys, C., Van Hansi, E., Debaveye, J. and Beernaert, F. 1993.	Land evaluation Part 3:
Belaium 199 nn	GADC, 1050 Blussels,
[6] Maro, G.P., Monyo, H.E., Nkya, E.O and Teri, J.M. 2006. The soi	I fertility status of coffee
growing areas in Tanzania. In: Proceedings of the 21 st –A	SIC Conference, 9 -14
September, 2006, Montpellier Cedex, France. 1419-1422.	
) [7] Mlingano Agricultural Research Institute (ΜΔRI) 2009 Soile	of Tanzania and their
) potential for agriculture development. Report to MAFSC . July	2009. 72pp.
[8] Van Oosterom, A.P., Kaitaba, E.G., Schuiling, C., Onderstal,	J. and Gijsbertse, H.A.
1998. Land resources of Tanzania: Use and potential for c	offee production (map).
Coffee Management Unit, Min. of Agric. & Coops., Dar es Sa	laam, Tanzania.

196 197	[9] Wrigley, G. 1988. Coffee: Tropical Agriculture Series. Longman Scientific and Technical, Formatted: Justified John Wiley and Sons Inc., NY 10158
198 199 500 501	[10] Oberthur, T., Pohlan, J. and Soto, G. 2012. Plant nutrition: Sustainable nutrient management. In: Oberthur, T. et al (eds). Specialty coffee: managing quality. An IPNI/SEAP publication (2012), -123-149.
503 504	[11] Van Ranst, E., Verdoodt, A and Louwagie G. 2002. Land evaluation: Practical (Formatted: Indent: Left: 0", Hanging: 0.5") exercises manual. Lab. of Soil Sci., Ghent University, Belgium.117pp.
506 507 508	[12] Maro, G.P., Kitalyi, A., Nyabenge, M. and Teri, J.M. 2010. Assessing the impact of land Formatted: Justified degradation on coffee sustainability in Kilimanjaro region, Tanzania. Proc. ASIC 23, 3 rd -8 th October, 2010. 607-614.
510 511	[13] Mulder, I. 2000. Soil fertility: QUEFTS and farmers' perceptions. IIED/IES Working ← Formatted: Justified Paper No. 30, July, 2000. 68pp.
513 514 515 516 517	[14] Janssen, B.H., Guiking, F.C.T., van der Eijk, D., Smaling, E.M.A., Wolf, J. and van Formatted: Justified Reuler, H., 1990. A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 46: 299-318.
519 520 521 522 523	[15] Camargo, MBP., Santos, MA., Pedro, M.J Jr and Fahl, J.I. 2008 Agrometeorological Model for Monitoring and Predicting Coffee (<i>Coffea arabica</i> L.) Productivity in São Paulo State, Brazil. Proc. ASIC 22, Campinas Brazil, 14-19 October, 2008. 7pp.
524 525 526 527	[16] Janssen, B.H. and F.C.T. Guiking, 1990. Modelling the response of crops to fertilizers. In Formatted: Justified, Indent: Hanging: 0.52" Beusichem, M.L. van (Ed.). Plant nutrition - physiology and applications. Developments in Plant and Soil Sciences, Volume 41. Kluwer Acad. Publ., Dordrecht, etc.: 699-703.
528 529 530	[17] Janssen, B.H. and de Willigen, P. 2006. Ideal and saturated soil fertility as benchmarks in nutrient management 1: Outline of the Framework. Elsevier: Agric., Ecosystems & Environment 106 (2006). 132-146.
532 533 534	[18] Mowo, J.G., Janssen, B.H., Oenema, O., German, L.A., Mrema, J.P and Shemdoe, R.S. 2006. Soil fertility evaluation and management by smallholder farmer communities in Northern Tanzania. Agriculture, Ecosystems and Environment 116, 47-59.
535 536 537 538 539	[19] Tabi, F.O., Ogunkunle, A.O. and Diels, J. 2007. The development of a prototype land. Formatted: Justified Formatted: Jus
541 542 543	[20] Heinemann, C. 1965. Kaffee. In: Scharrer, K. and Linser, H. Handbuch der Pflanzenernahrung und Dungung. Dritter Band. Zweite Halfte. Dungung der Kulturpflanzen, Springer Verlag, Wien, New York: 1133-1164. (German)
544 545 546 547	[21] Cannell, M.G.R. and Kimeu, B.S. 1971. Uptake and distribution of macro-nutrients in trees of Coffea Arabica L. in Kenya as affected by seasonal climatic differences and the presence of fruits. Ann. Appl. Biol. 68:213-230

548 549 550 551	[22] Snoeck, J. and Lambot, Ch. 2004. Fertilization. Section 8.1 in: Wintgens, J.N. (Ed.)* Coffee: Growing, Processing, Sustainable Production. WILEY-VCH, Weinheim: 247- 269.	Formatted: Justified
552 553 554	[23] Van der Vossen, H.A.M. 2005. A critical analysis of the agronomic and economic sustainability of organic coffee production. Expl Agric. 41: 449-473.	Formatted: Justified
555 556 557 558 559 560	[24] Janssen, B.H. 2011. Simple models and concepts as tools for the study of sustained soil productivity in long-term experiments. II. Crop nutrient equivalents, balanced supplies of available nutrients, and NPK triangles. Plant and Soil 339: 17-33. DOI 10.1007/s11104-010-0590-8	
561 562 563 564 565	[25] Huth, N.I., Handerson, C. and Peake, A. 2009. Development and testing of a+- horticultural crop model within APSIM. Proc. 18 th World IMACS/MODSIM Congress, Cairns, Australia, 13-17 July 2009. 526-532. Accessed 30 June 2011. http://mssanz.org.au/modsim09	Formatted: Justified
566 567	[26] FAO, 1990. Guidelines for soil description. 3 rd edition (revised), FAO, Rome: 70pp.	
568 569 570	[27] Janssen, B.H., 1998. Efficient use of nutrients: an art of balancing. Field Crops Research 56: 197-201.	
571 572 573	[28] Bucagu, C., Vanlauwe, B. and Giller, K.E. 2013. Managing Tephrosia mulch and fertilizer to enhance coffee productivity on smallholder farms in Eastern African Highlands. Europ. J. Agronomy 48:19-29	
575 576 577 578	[29] Reid, J.B., Stone, P.J., Pearson, A.J. and Wilson, D.R. 2002. Yield response to nutrient supply across a wide range of conditions 2: Analysis of maize yields. Elsevier Science, BV., Field Crops Research 77 (2002), 173-189.	
579 580 581	[30] Miglietta, F. and Bindi, M. 1993. Crop growth simulation models for research, farm management and agrometeorology. EARSEL Advances in Remote Sensing Vol 2 No. 2 (VI) 1993. 148-157	
582 583 584 585	[31] Cheeroo-Nayamuth, BF. 1999. Crop modeling/simulation – an overview. AMAS, Food and Agric. Res. Council, Reduit, Mauritius. 22pp	
586 587 588	[32] Van Ittersum, M.K. and Rabbinge, R. 1997. Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research Vol. 52: 197-208	
589 590 591 592 593 594 595	[33] Ponsioen, Th,C., Hengsdijk, H., Wolf, J., Van Ittersum, M.K., Rotter, R.P., Tran Thuc Son, Laborte, A.G. 2006. TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southern Asia. Agricultural Systems 87 (2006): 80-100	

DEFINITIONS, ACRONYMS, ABBREVIATIONS

Acronym	Description / Long form
Δ	Availability (of a certain nutrient) for plant uptake
2	Short form of PhEA or PhEmin
d	Short form of PhED or PhEmox
	Short form of Phelo of Phelinax
FAU	Ploot and agricultural organization of the Onlied Nations
	Plant density correction factor: = 1 where D >= 3334 trees per na.
l _i	Input of nutrients in inorganic nutrient sources
	Input of nutrients in organic nutrient sources
	Available input nutrients
	Model component dealing with application of nutrients
ISFM	Integrated soil fertility management
K	Potassium (or potash fertilizer)
kE	Nutrient equivalent (same effect on yield as 1kg N)
MRF	Maximum recovery fraction
N	Nitrogen
OC (or SOC)	Soil organic carbon
Р	Phosphorus
PhE	Physiological (or internal utilization) efficiency
PhEA	Physiological efficiency at accumulation
PhED	Physiological efficiency at dilution
PhEM	Physiological efficiency at balanced nutrition
PLANT	Model component dealing with plant properties like density
QUEFTS	Quantitative evaluation of the fertility of Tropical Soils
r	Parameter describing minimum uptake required for yield (not used for
	coffee in Northern Tanzania)
RE	Relative effectiveness of nutrients in organic sources
RPP	Radiation-thermal Production Potential
SA	Amount of available nutrients from soil alone (natural fertility)
SAFERNAC	Soil analysis for fertility evaluation and recommendation on nutrient
	application to coffee
SOIL	Model component dealing with soil properties of interest
SV	Substitution value (same as RE)
ТА	Target amount of available nutrients
TaCRI	Tanzania Coffee Research Institute
TU	Target uptake (for a target vield)
TY	Target vield
U	Uptake
WPP	Water-limited production potential
Yact	Actual vields from experimental sites
YE	Yield estimated by the model
YKA	Yield associated with the uptake of potassium at accumulation
YKD	Yield associated with the uptake of potassium at dilution
Ymax	Maximum attainable vield under salient phenological set-up
νΝΔ	Vield associated with the untake of nitrogen at accumulation

YND	Yield associated with the uptake of nitrogen at dilution
YPA	Yield associated with the uptake of phosphorus at accumulation
YPD	Yield associated with the uptake of phosphorus at dilution

APPENDIX 1 SUMMARY RESULTS OF CALIBRATING QUEFTS TO COFFE	Ε.
---	----

607	

Model	QUEFTS	SAFERNAC
steps		
1	fN= 0.25 (pH-3)	fN = 0.25 * (pH - 3)
	fP= 1-0.5 (pH-6) ²	$fP = 1 - 0.5 * (pH - 6)^2$
	fK=0.625 (3.4-0.4 pH)	<i>f</i> K = 2 - 0.2 * pH
	SN=fN * 6.8 * SOC or fN*68* SON	SAN = $fN * 5 * SOC \text{ or } fN * 50 * SON$
	SP=fP* 0.35 * SOC+0.5 * P-	$SAP = fP^* 0.25^* SOC + 0.5^* P_{Bray-1}$
	Olsen	SAK = fK * 400 * exch.K _{exch} /SOC
	SK= (fK * 400 * <mark>exch.K_{exch})/</mark>	
	(2+0.9*SOC)	N:
	Not considered	$IAN_i = MRFN * IN_i = 0.7 * IN_i$
		$IAP_i = MRFP * IP_i = 0.1 * IP_i$
		$IAK_i = MRFK * IK_i = 0.7 * IK_i$
	Not considered	$IAN_{o} = REN * MRFN * IN_{o} = 0.42 * IN_{o}$ $IAP_{o} = REP * MRFP * IP_{o} = 0.087 * IP_{o}$ $IAK_{o} = REK * MRFK * IK_{o} = 0.7 * IK$
	Not considered	$fD = -0.06 (D/1000)^2 + 0.5 (D/1000)$
		where: -D = number of trees per ha, and $fD = 1$ for D = $\frac{3333-3334}{1000}$ ha ⁻¹ .
2	Befer OLIEETS papers	Adopted as in OLIEETS
- 3	YND = 70 * (UN-5)	$Y_{A} = a_{1} * _{A}$
5	YNA = 30 * (UN-5)	$Y_{4}D = d_{4} * 11_{4}$
	YPD = 600 * (UP-0.4)	(a and d referring to PhEA and PhED in kg
	YPA = 200 * (UP-0.4)	parchment coffee per kg of nutrient taken up)

Formatted:	Highlight
Formatted:	Subscript, Highlight
Formatted:	Highlight
Formatted:	Subscript, Highlight
Formatted:	Highlight
Formatted:	Subscript, Highlight

	YKD = 120 * (UK-2)	
	YKA = 30 * (UK-2)	
	Factor "r" subtracted from U in	The "r" factor removed. Situations that $U \le r$
	the equations of yields.	are not applicable in coffee growing areas.
4	Refer QUEFTS papers	Adopted as in QUEFTS. Concepts of $Y_{tree}MAX$
		and YMAX added:
		$Y_{tree}MAX = 2.2 - 0.15 X$
		YMAX = 1000 * X * YtreeMAX
		where X is 0.001 times number of trees per
		ha.
		(YE should not exceed YND, YPD, YKD or
		YMAX).
5	Additional step, not in QUEFTS	AN:AP:AK = UN:UP:UK = 1/PhEMN :
		1/PhEMP : 1/PhEMK = (1/14): (1/80): (1/16)
		or 1 : 0.175 : 0.875
		1 kEN = 0.175*kEP =0.875*kEK
		Where kE = kilo nutrient equivalent per ha.
6	Additional step, not in QUEFTS	An economic loop that considers the
		quantities and prices of inputs and output for
		calculating the economic optimum nutrient
		application

APPENDIX 2: OUTCOMES OF MODEL CALIBRATION

		0:0:0			240:60:240		 Comment [PN2]: insert level fertili		
Step	Quantity	<u>0 kg </u> N	<u>0 kg</u> P	<u>0 kg </u> K	<u>240 kg N</u>	<u>60 kg </u> P	<u>240 kg </u> K		
1	SA	52	21	199	144	24	291		
	ŀΔ	0	0	0	168	6	168		
		0	0	0	0	0	0		
	I₀A	0	0	0	0	0	0		
	A	52	21	199	312	30	459		
2	U _{1,2}	51.7	17.5	129.2	137.4	23.1	245.1		
	U _{1,3}	51.8	20.6	174.7	143.7	24.0	242.1		
	U	52	17	129	137	23	242		
3	Y.A	362	700	1033	962	925	1937		
	Y.D	1086	2099	3100	2886	2774	5810		
4	Y _{1,2}	886	1072	1084	1745	2114	2465		
	Y _{2.1}	970	1085	1055	1716	2464	2135		
	YE			<u>1420</u>			<u>2978</u>		
	Comp. Y _{act}			1143			2404	 Commer	t [PN3]: check
								Formatte	ed: Highlight