

1
2 **Grinding-assisted Solid-State Metathetic**
3 **Synthesis of Divalent Transition Metal**
4 **Tungstates**

5
6 **U. Sujana Kumari^{1*}, P. Suresh², A. V. Prasada Rao³**

7
8 ^{1, 2, 3}Department of Inorganic and Analytical Chemistry, Andhra University,
9 Visakhapatnam, 530003, India.

10
11 **ABSTRACT**
12

13
14 A convenient solid state metathetic synthesis has been developed for the preparation of
15 metal tungstates MWO_4 where $M = Mn, Fe, Co, Ni$ and Zn using Na_2WO_4 and respective
16 MCl_2 as reactants. Stoichiometric quantities of respective reactants were mixed and ground
17 for 2hrs. XRD patterns of the homogenised mixture heat treated at 400^0C for 4hrs and then
18 washed free from $NaCl$ bye product were in good agreement with the respective JCPDS
19 data showing the formation of phase pure compounds in each case without any
20 contamination. Microstructural investigation indicated particle size of the order of μm .

21
22 **Keywords:** *Solid state metathesis, Manganese tungstate, Iron tungstate, Cobalt tungstate,*
23 *Nickel tungstate, Zinc tungstate.*

24
25 **1. INTRODUCTION**

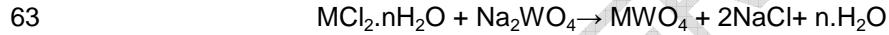
26
27
28
29
30
31
32 MWO₄ type compounds where M is a divalent transition metal ion have attracted a lot
33 scientific interest in recent times because of their many useful properties. These compounds
34 exist in two different crystal structures namely Scheelite and wolframite. Bivalent metal ions
35 with large ionic radius such as Ca²⁺, Sr²⁺, Ba²⁺ and Pb²⁺ prefer to form scheelite type
36 structures whereas metal ions with smaller ionic radius viz. Zn²⁺, Fe²⁺, Co²⁺, Ni²⁺ and Cd²⁺
37 tend to crystallize in wolframite type of structure. Crystal structure of Scheelite CaWO₄ is
38 tetragonal with calcium surrounded by eight oxygens with isolated tetrahedra of WO₄ being
39 nearly regular, where as in wolframite each W is coordinated to six oxygens unlike scheelite.
40 MWO₄ type divalent transition metal compounds have been reported to be useful for
41 humidity sensors [1], photocatalysts [2], photochromic [3] and as photoanodes [4].

42
43
44
45
46
47 3d transition metal tungstate powders have been synthesized by different techniques such
48 as solid-state reaction [5], chemical synthesis [6-10], hydrothermal [11-13], microwave
49 hydrothermal [14], self propagation [15], template synthesis [16], combustion [17], molten
50 salt [18] and aqueous salt metathetic reaction [19]. Among these methods, solid-state

51 * Tel.: +91-9490149128.

52 E-mail address: sujana.uriti1@gmail.com.

38 reactions invariably involve higher temperatures of more than 800°C while solution based
39 chemical methods require special equipment and subsequent annealing of amorphous or
40 nano powders to temperatures above 500°C for several hours to render them into crystalline
41 form. Compared to these two basic approaches, solid-state metathesis (SSM) offers a easy
42 and convenient route for the synthesis of many mixed metal oxides. These reactions involve
43 double exchange with preferred formation of an alkali halide with large lattice energy which
44 favours the reactions at lower temperatures compared to solid-state reactions between
45 constituent metal oxides. SSM has been successfully employed for the synthesis of
46 perovskite oxides [20], ordered double perovskites [21], titanium and vanadium pnictides [22]
47 and molybdates [23].


48 In continuation of our earlier work relating to room temperature solid-state metathetic
49 synthesis of Ca, Sr, Ba, Pb and Cd tungstates and synthesis of phase pure BaSnO₃ and
50 BaZrO₃ we now report the solid-state metathetic synthesis of transition metal tungstates
51 MWO₄ where M²⁺ = Fe, Mn, Co, Ni and Zn. Since the transition metal tungstates are
52 potential photocatalysts in the visible region [6] for the degradation of organic pollutants
53 from the industrial exhausts, synthesis of these compounds at lower temperatures so as not
54 to effect the surface area of support is highly essential.

55

56 **2. EXPERIMENTAL**

57

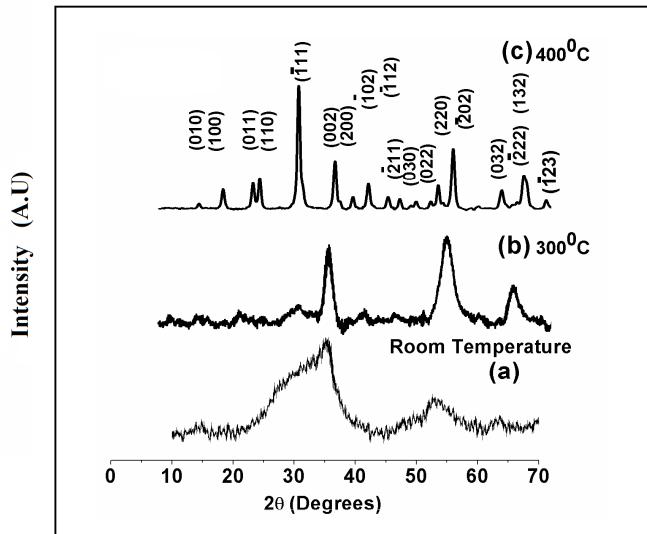
58 Metal chlorides, MCl₂ (where M=Fe, Mn, Co, Ni and Zn) along with Na₂WO₄ are used as
59 precursors. Stoichiometric quantities of the reactants were weighed and the mixture was
60 ground in an agate mortar for 2hrs with addition of ethanol as per the reaction given below.

62

63 The homogenised mixture was dried in an air oven and subjected to heat treatment at
64 different temperatures. The resultant solid was washed with water until free from chloride
65 and the residue after drying was characterised for phase identification by X-ray
66 diffractometer (panalytical "X" Pert pro) using CuK_α radiation. Microstructural investigation
67 and elemental analysis was done by Scanning Electron Micrograph (JEOL JSM 6610 LV)
68 equipped with an energy dispersive spectrometer. Raman spectra were recorded using
69 SENTERRA from BRUKER Corporation.

70

71

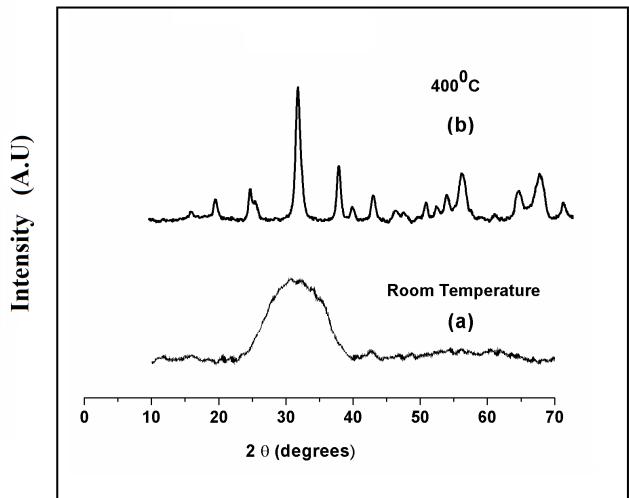

72 **3. RESULTS AND DISCUSSION**

73

74

75 XRD patterns obtained for homogenised mixtures of MCl₂ + Na₂WO₄ (where M= Fe, Mn, Co,
76 Ni and Zn) subjected to heat treatment at 400°C for 4hrs followed by washing with water until
77 free from chloride and dried are given in Figures 1 to 4. XRD patterns of homogenised
78 mixture of NiCl₂ + Na₂WO₄ at room temperature and heat treated at 300°C and 400°C for
79 4hrs followed by washing are shown in Fig.1. XRD patterns indicate formation of well
80 crystalline NiWO₄ only for the sample heat treated at 400°C for 4hrs. All the peaks in the
81 XRD pattern could be indexed as the observed pattern is in good agreement with that of
82 NiWO₄ given in JCPDS file no.15-0755. No extra peaks were noticed which indicates the
83 formation of phase pure sample.

84



85
86

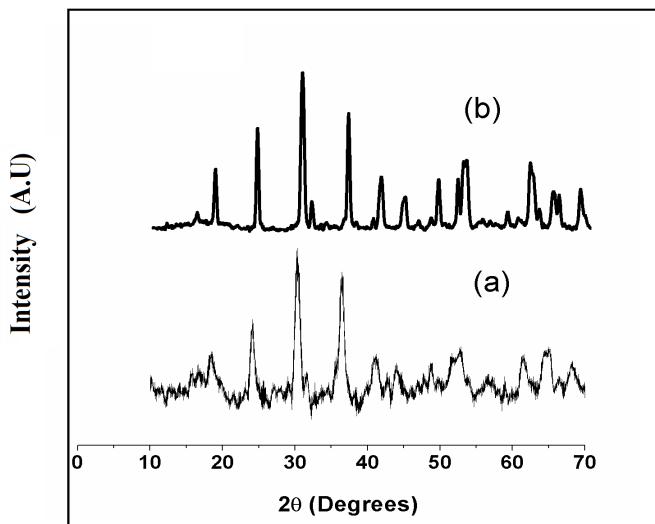
87 **Fig. 1. XRD patterns of stoichiometric mixture of $\text{NiCl}_2 + \text{Na}_2\text{WO}_4$ ground for 2hrs a)**
88 **room temperature b) heat treated at 300°C for 4hrs c) heat treated at 400°C for 4hrs**
89 **and washed free of chloride.**

90

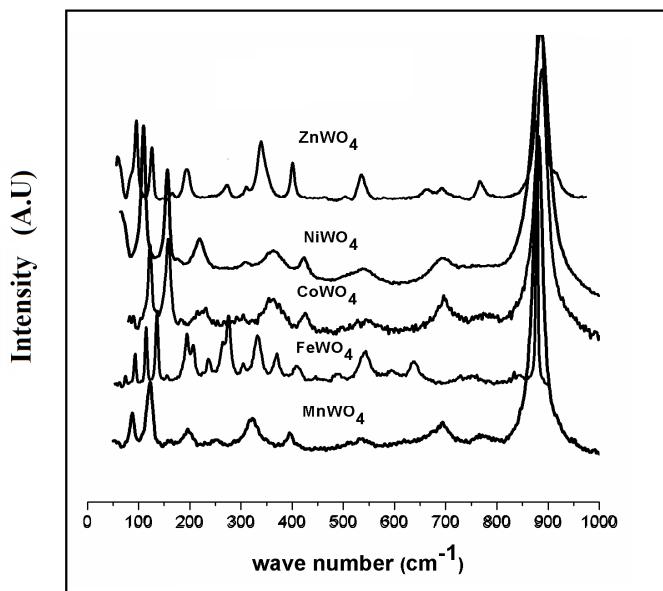
91 Fig 2 shows the XRD patterns of homogenised mixture of stoichiometric amounts of ZnCl_2
92 and Na_2WO_4 , ground for 2 hrs at room temperature and subjected to heat treatment of
93 400°C for 4hrs, both washed free of chloride and dried. XRD pattern of homogenised
94 mixture without heating showed no characteristic peaks indicating only amorphous form of
95 the material. However, when subjected to heat treatment at 400°C , characteristic peaks due
96 to formation of well crystalline phase pure ZnWO_4 were obtained and the data is in
97 agreement with that reported in JCPDS file no.73-0554.

98
99
100
101

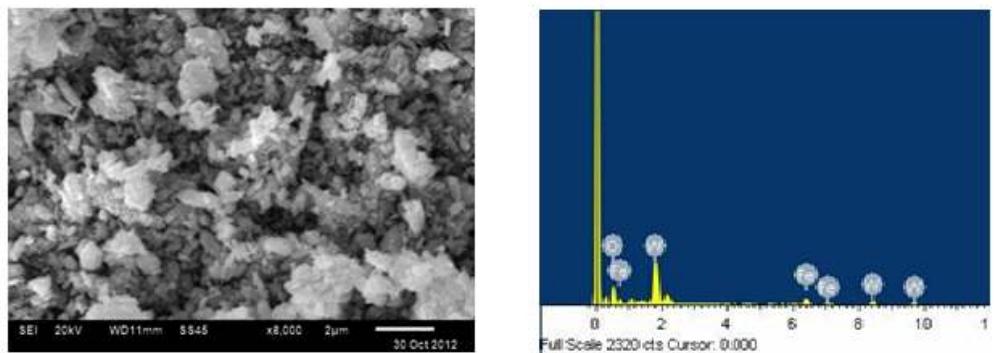
100 **Fig. 2. XRD patterns of stoichiometric mixture of $\text{ZnCl}_2 + \text{Na}_2\text{WO}_4$ ground for 2hrs a)**
101 **room temperature, b) heat treated at 400°C for 4hrs**


102 Fig 3 shows the XRD patterns obtained for mixtures of $\text{MnCl}_2 + \text{Na}_2\text{WO}_4$ and $\text{CoCl}_2 + \text{Na}_2\text{WO}_4$
103 ground for 2hrs and heated at 400°C for 4hrs followed by washing to remove NaCl. The
104 observed XRD patterns are in good agreement with the reported data for MnWO_4 and
105 CoWO_4 of JCPDS files 80-0134 and 72-0479 respectively.
106

107
108 **Fig. 3. XRD patterns of stoichiometric mixture of a) $\text{MnCl}_2 + \text{Na}_2\text{WO}_4$ ground for 2hrs**
109 **and heat treated at 400°C for 4hrs, washed and dried. b) $\text{CoCl}_2 + \text{Na}_2\text{WO}_4$ ground for**
110 **2hrs, heat treated at 400°C at 4hrs, washed and dried.**


111
112 Fig 4 shows the XRD patterns obtained for mixture of $\text{FeCl}_2 + \text{Na}_2\text{WO}_4$ ground for 2hrs and
113 heat treated at 400°C for 2hrs and at 600°C for 3hrs and washed free from NaCl byproduct.
114 Though the formation of FeWO_4 is evident at 400°C , for unambiguous indexing of
115 peak positions, the sample is subjected to heat treatment at 600°C for 3hrs to render it more
116 crystalline. All peaks for the resultant sample could be indexed in accordance with JCPDS
117 file no. 71-2391.
118

119 Synthesis of MWO_4 powders was reported by solution based metathesis reaction using
120 equimolar solutions of metal nitrates and sodium tungstate, with subsequent heating of the
121 precipitate to 800°C for 15hr [19]. Parhi et al [24] reported synthesis of ZnWO_4 , NiWO_4 and
122 MnWO_4 by microwave assisted solid-state metathesis using 2.45 GHz microwave frequency
123 and a power of 1100 W for 10 minutes duration. Though crystalline ZnWO_4 was obtained at
124 room temperature by this process, crystalline MnWO_4 and NiWO_4 were obtained only after
125 heat treatment at 500°C for 6hrs. Angana sen et al [8] reported the synthesis of Co, Ni, Cu
126 and Zn metal tungstates from the complete evaporation of polymer based metal-complex
127 precursor solution subjected to heat treatment. Rajagopal [25] reported the hydrothermal
128 synthesis of FeWO_4 and CoWO_4 using sodium tungstate with ferrous ammonium sulphate
129 and cobalt chloride solutions as precursors respectively. Recently Garcia-Perez et al [7]
130 reported the synthesis of Co, Cu, Mn and Ni tungstates by co-precipitation method at 400°C .
131 Tiziano Montini et al reported the synthesis of transition metal tungstates M^{II}WO_4 ($\text{M} = \text{Co}^{II}$,
132 Ni^{II} , Cu^{II} , Zn^{II}) by reaction of transition metal nitrates with sodium tungstate and then
133 subjected to heat treatment at 500°C . The SSM synthesis reported in the present study is
134 the lowest synthesis temperature reported for solid-state synthesis. It is less cumbersome
135 and could be performed at ambient pressure.
136


137
138 **Fig. 4. XRD patterns of stoichiometric mixture of $\text{FeCl}_2 + \text{Na}_2\text{WO}_4$ ground for 2hrs and**
139 **heat treated at a) 400°C for 4hrs b) 600°C for 3hrs and washed free of chloride.**

140
141 Fig 5 shows Raman spectra of MnWO_4 , FeWO_4 , CoWO_4 , NiWO_4 and ZnWO_4 In terms of
142 group theoretical analysis, wolframite structure belonging to $\text{P}2/\text{c}$ ($z = 2$) monoclinic structure
143 is expected to give 18 ($8\text{A}_g + 10\text{B}_g$) out of 36 possible lattice
144 modes. Raman spectra for all samples revealed peaks due to 8A_g (breathing of tungstate
145 tetrahedra) vibrations while some peaks due to 10B_g were not resolved. The most intense
146 band in ZnWO_4 was ascribed to antisymmetric bridging mode associated with the tungsten
147 chain [13]. In MnO_4 the band at 127 cm^{-1} accompanied by two weak bands in the range 160
148 and 180 were due to interchain deformation and torsion modes [14]. All spectra were in good
149 agreement with literature data.

150
151 **Fig. 5. Raman spectra of MnWO_4 , CoWO_4 , NiWO_4 and ZnWO_4 heat treated at 400°C**
152 **and FeWO_4 heat treated at 600°C .**

153 SEM micrograph of a representative sample FeWO_4 powder heat treated at 600°C is shown
154 in fig. 6 which shows particles of different sizes due to aggregation. Elemental analysis of
155 the sample confirms the presence of Fe, W and O, with no extra lines due to any
156 contamination.

157
158 **Fig. 6. a) SEM image of FeWO_4 powder and b) EDS of the FeWO_4 powder under SEM
159 investigation.**
160

161 **4. CONCLUSION**

162 A simple low temperature solid state metathetic synthesis is reported for the preparation of
163 MWO_4 ($\text{M} = \text{Fe, Mn, Co, Ni and Zn}$) powders using respective metal chlorides and sodium
164 tungstate as precursors. XRD patterns of respective powders obtained by mixing
165 stoichiometric quantities of the reactants, ground for two hours followed by heat treatment at
166 400°C for 4hrs, and washed free of chloride indicated formation of respective phase pure
167 metal tungstates. Reaction temperatures reported for the synthesis of transition metal
168 tungstates are less compared to these solid-state method. The process is costeffective and
169 simple. Microstructural investigation indicated particle aggregation.
170

171 **ACKNOWLEDGEMENTS** 172

173 One of the authors (sujana kumari) gratefully acknowledges the research supervisor prof.
174 A.V.Prasada Rao for the constant encouragement throughout research work.
175

176 **177 REFERENCES**

- 181 1. Bhattacharya AK, Biswas RG, Hartridge A. Environment sensitive impedance
182 spectroscopy and DC conductivity measurements on NiWO_4 . *J. Mater. Sci.*
183 1997;32(2):353-356.
- 184 2. Huang G, Zhu Y. Synthesis and photocatalytic performance of ZnWO_4 catalyst.
185 *Mater Sci. Eng.B*. 2007;139(2/3):201-208.
- 186 3. Kuzmin A, Purans J, Kalendarev R, Pailharey D, Mathey Y. XAS, XRD, AFM, and
187 Raman studies of nickel tungstate electrochromic thin films. *Electrochim. Acta*
188 2001;46:2233-2236.

189 4. Pandey PK, Bhave NS, Kharat RB. Structural, Optical, electrical and photovoltaic
190 electrochemical characterization of spray deposited NiWO_4 thin films. *Electrochim. Acta*.
191 2006;51(22):4659-4664.

192 5. Bhaskar Kumar G, Sivaiah K, Buddhudu S. Synthesis and characterization of
193 ZnWO_4 ceramic powder. *Ceram. Inter.* 2010; 36:199-202.

194 6. Tiziano Montini, Valentina Gombac, Abdul Hameed, Laura Felisari, Gianpiero
195 Adami, Paolo Fornasiero. Synthesis, Characterization and photocatalytic performance
196 of transition metal tungstates. *Chem. Phys. Lett.* 2010;498:113-119.

197 7. Garcia Perez UM, Martinez-de la Cruz A, Peral J. Transition metal tungstates
198 synthesized by co-precipitation method: Basic photocatalytic properties. *Electrochim.
199 Acta*, 2012; 81:227-232.

200 8. Angana Sen, Panchanan Pramanik. A chemical synthetic route for the preparation
201 of fine-grained metal tungstate powder (M= Ca, Co, Ni, Cu, Zn). *J. Eur. Ceram. Soc.*
202 2001;21:745-750.

203 9. Kalinko A, Kuzmin A. Raman and Photoluminescence spectroscopy of
204 Zinctungstate powders. *J. Lumin.* 2009;129:1144-1147.

205 10. Aleksandr Kalinko, Alexey Kotlov, Alexei Kuzmin, Vladimir Pankratov, Anatoli I.
206 Popov, Liana Shirmana. Electronic excitations in ZnWO_4 and $\text{Zn}_x\text{Ni}_{1-x}\text{WO}_4$ ($x=0.1-0.9$)
207 using VUV synchrotron radiation. *Cent. Eur. J. Phys.* 2011; 9(2):432-437.

208 11. Fu-Shan Wen, Xu Zhao, Hua Huo, Jie-Sheng Chen, E. Shu-Lin, Jia- Hua Zhang.
209 Hydrothermal Synthesis and photoluminescent properties of ZnWO_4 and Eu^{3+} -doped
210 ZnWO_4 . *Mater. Lett.* 2002;55:152-157.

211 12. Qiang Wang, Mingming Sun, Chunhong Li. Hydrothermal synthesis and
212 photoluminescent properties of zinc tungstate Nano/Micro structures. *Adv. Mater. Res.*
213 2011;328-330:1580-1584

214 13. Hongbo Fu, Chengsi Pan, Liwu Zhang, Yongfa Zhu. Synthesis, Characterization
215 and photocatalytic properties of nanosized Bi_2WO_6 , PbWO_4 and ZnWO_4 catalysts.
216 *Mater. Res. Bull.* 2007;42:696-706.

217 14. Theo Kloprogge J, Matt L. Weier, Loc V. Duong, Roy L. Frost. Microwave-assisted
218 synthesis and characterisation of divalent metal tungstates nano crystalline minerals:
219 ferberite, hubnerite, sanmartinitite, scheelite and stolzite. *Mater. Chem. and Phys.*
220 2004;88:438-443.

221 15. Tiaotiao Dong, Zhaohui Li, Zhengxin Ding, Ling Wu, Xuxu Wang, Xianzhi Fu.
222 Characterizations and properties of Eu^{3+} -doped ZnWO_4 prepared via a facile self-
223 propagating combustion method. *Mater. Res. Bull.* 2008;43:1694-1701.

224 16. Hongjun Zhou, Yuen Yiu, Aronson MC, Stanislaus S. Wong. Ambient template
225 synthesis of multiferroic MnWO_4 nanowires and nanowires arrays. *J. Solid State Chem.*
226 2008;181:1539-1545.

227 17. Larisa Gigorjeva, Donats Millers, Janis Grabis, Dzidra Jankovica.
228 Photoluminecence and photocatalytic activity of zinc tungstate powders. *Cent. Eur. J.
229 Phys.* 2011;9 (2):510-514.

230 18. Yakubovskaya AG, Katrunov KA, Tupitsyna IA, Starzhinskiy NG, Nagornaya LL,
231 Zhukov AV, Zenya IM, Baumer VN, Vovk OM. Nanocrystalline Zinc and cadmium
232 tungstates: morphology, luminescent and scintillation properties. *Funct. Mater.* 2011;18
233 (4):446-451.

234 19. Sagrario M. Montemayor, Antonio F. Fuentes. Electrochemical characteristics of
235 lithium insertion in several 3D metal tungstates (MWO_4 , M= Mn, Co, Ni and Cu)
236 prepared by aqueous reaction. *Ceram. Int.* 2004;30:393-400.

237 20. Radha Velchuri, Vijaya kumar B, Rama Devi V, Prasad G, Vithal M. Solid State
238 Metathesis of BaTiO_3 , PbTiO_3 , $\text{K}_{0.5}\text{Bi}_{0.5}\text{TiO}_3$ and $\text{Na}_{0.5}\text{Bi}_{0.5}\text{TiO}_3$. *Ceram. Int.* 2010;36:
239 1485-1489.

240 21. Siva Kumar T, Lofland SE, Ramanujachary KV, Ramesha K, Subbanna GN,
241 Gopalakrishnan J. Transforming n=1 members of the Ruddlesden-Popper phases to a

242 n=3 member through metathesis: synthesis of a layered perovskite, $\text{Ca}_2\text{La}_2\text{CuTi}_2\text{O}_{10}$. *J.*
243 *Solid State Chem.* 2004;177:2635-2638.

244 22. Andrew L. Hector, Ivan P. Parkin. Room temperature-initiated routes to titanium
245 and vanadium pnictides. *Inorg. Chem.* 1994;33:1727-1728.

246 23. Thangadurai V, Knittlmayer C, Weppner W. Metathetic room temperature
247 preparation and characterization of scheelite-type ABO_4 (A=Ca, Sr, Ba, Pb; B=Mo, W)
248 powders. *Mater. Sci. and Eng. B* 2004;106:228-233.

249 24. Purnendu Parhi, Karthik TN, Manivannan V. Synthesis and characterization of
250 metal tungstates by novel solid-state metathetic approach. *J. Alloys and Compd.*
251 2008;465:380-386.

252 25. Rajagopal S, Nataraj D, Khyzhun O Yu, Yahia Djaoued, Robichaud J, Mangalaraj
253 D. Hydrothermal synthesis and electronic properties of FeWO_4 and CoWO_4
254 nanostructures. *J. Alloys and Compd.* 2010;493 (1-2): 340-345.

255 26. Kisla P. F. Siqueira, Anderson Dias. Incipient crystallization of transition-metal
256 tungstates under microwaves probed by Raman scattering and transmission electron
257 microscopy. *J. Nanopart. Res.* 2011;13:5927-5933.

258

259

260