

1

Short Research Article

2

Computational Study of *n*-Acetylglutamate Hydrolysis Under Acidic and Basic Conditions

3

4

5

6

7

ABSTRACT

Aims: To study N-acetylglutamate hydrolysis under acidic and basic conditions, using molecular modeling techniques.

Study design: Hydrolysis of N-acetylglutamate was studied under acidic and basic conditions to establish the differences in chemical properties and conditions of favorability; this was performed using the Mulliken charges and the geometric parameters as descriptors, as well as proton affinity, Gibbs free energy, and equilibrium constants.

Place and Duration of Study: Grupo de Investigación Max Planck, Facultad de Química y Farmacia, Universidad del Atlántico, between February 2014 and March 2015.

Methodology: Structures of the hydrolysis reaction under acidic and basic conditions were optimized using molecular mechanics prior to calculating various molecular descriptors. The Hartree–Fock (HF) method was used with the 3-21G and 6-31G* basis sets. Some useful parameters for analyzing the reactions are proton affinity, Frontier Molecular Orbitals, Gibbs free energy, and equilibrium constants.

Results: In general, reaction profiles demonstrated that the two reactions are favorable; however, in agreement with our preliminary equilibrium constant findings, a greater favorability for basic hydrolysis was shown.

Conclusion: The calculated equilibrium constants are in agreement with the favorability of hydrolysis under basic conditions, which is consistent with the biochemical process.

8

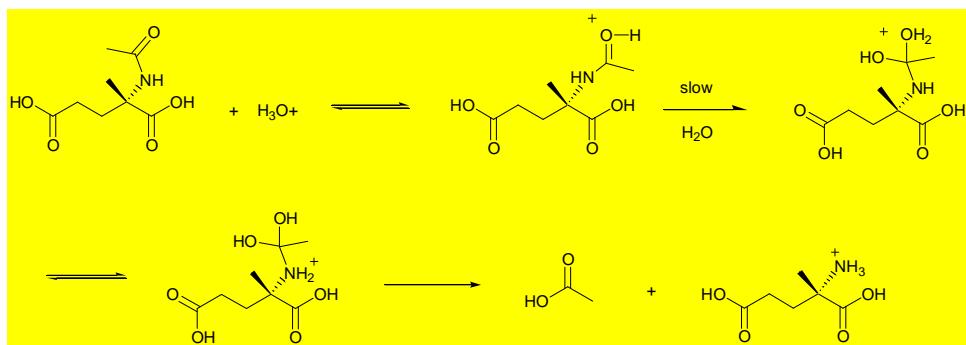
9 *Keywords:* Hydrolysis conditions, *N*-Acetylglutamate hydrolysis, Hartree Fock calculations.

10

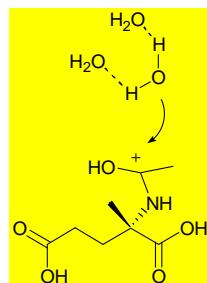
11

1. INTRODUCTION

12


13 N-acetylglutamate (NAG) is the first intermediate in the arginine biosynthetic pathway in prokaryotes, eukaryotes, and lower plants [1, 2]. The acetylated form of 14 glutamate, which is amidic [3], is deacetylated to glutamate to undergo hydrolysis. 15 Glutamate is a physiologically important neurotransmitter, and is responsible for 16 brain signalling. This signalling acts on glutamate receptors, which are localized on 17 the cell surface [4].

18


19 The hydrolysis of amides is very important in biochemistry as a model for bond 20 cleavage in living systems and has been studied experimentally and in theory [5-8].

21

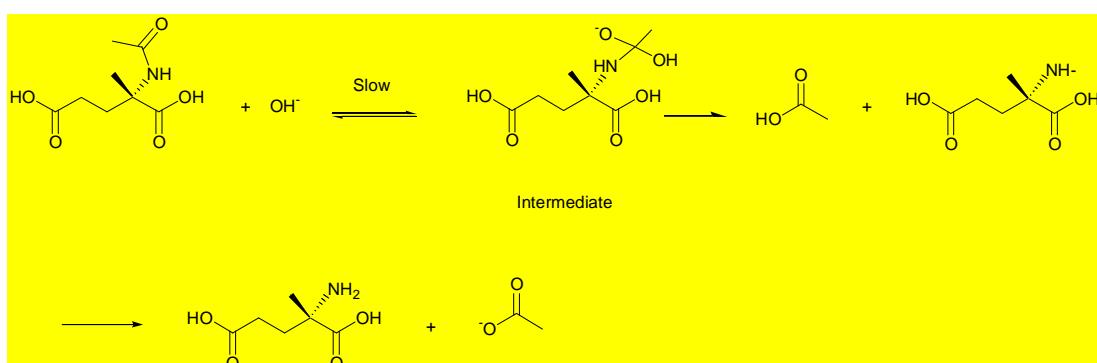

22 The hydrolysis of amides under basic and acidic conditions has received much 23 attention in theoretical studies because of their role in several biological processes 24 [3]. The degradation of amides by this route produces a carboxylic acid and an 25 amine. Heating is often required even with acidic or basic conditions, so water is not 26 sufficient to hydrolyze most amides. Under acidic conditions, protonation of the 27 oxygen atom occurs Fig.1.

Fig. 1. Acid hydrolysis of N-acetylglutamate

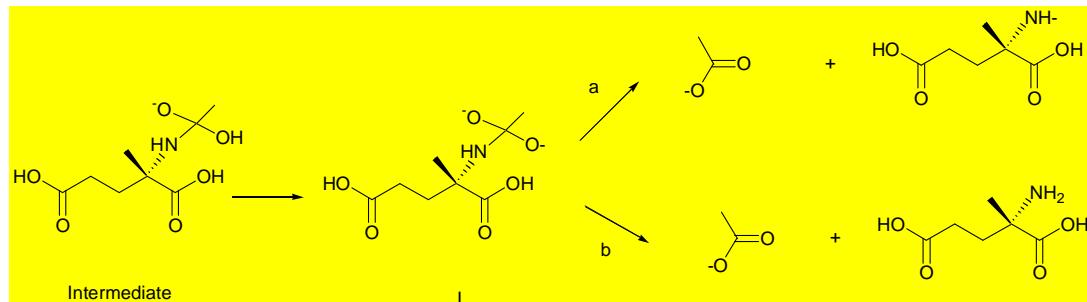

In the base-catalyzed pathway, the hydroxyl ion acts as a nucleophile on the amidic carbonyl carbon atom, producing a tetrahedral intermediate Fig. 2.

Fig. 2. Basic hydrolysis of *N*-acetylglutamate

49 Studies on the mechanism of amides hydrolysis based on MO have been conducted
50 [10]. Also, kinetic studies have shown the reaction as a second order in OH-, so the
51 intermediate is converted to structure I as follows:
52

53
54

55 Structure I can cleave through path a or path b. The rate determining step is the
56 formation of the intermediate at high base concentration. At lower concentration of
57 base, the cleavage of the intermediate or structure I is rate determining [11].
58

59 In this work we wish to focus on the acid and base catalyzed hydrolysis of N-
60 acetylglutamate in gas phase with no water medium included in the quantum
61 treatment as solvent. To the best of our knowledge only a few theoretical
62 calculations have been devoted to the study of the amide hydrolysis mechanism.
63 The key role played by this reaction in many biochemical processes is frequently
64 highlighted, however its mechanism has not been completely elucidated.

65
66
67

2. COMPUTATIONAL METHODS

68 Structures of the hydrolysis reaction under acidic and basic conditions were
69 optimized using molecular mechanics prior to calculating various molecular
70 descriptors.
71

72 The Hartree–Fock (HF)[12,13] method was used with the 3-21G and 6-31G* basis
73 sets. Table 1 provides the calculated electrostatic and Mulliken charges for atoms
74 comprising NAG; the molecular structure and numbering are indicated in Fig. 3.
75 Table 1 showed the most negative Mulliken charges for N1 and O3 (-0.89 and
76 -0.697, respectively) calculated at the HF 3-21G level. The highest positive charge
77 (0.889) was located on C5, the carbon atom susceptible to nucleophilic attack.
78

79 Some useful parameters for analyzing the reactions are proton affinity, Gibbs free
80 energy, and equilibrium constants. Computational chemical models were
81 constructed to examine differences between hydrolyses under acidic and basic
82 conditions and its favorability.

83

84 **Fig. 3.** Molecular structure of N-acetylglutamate with atomic numbering

85

86 **Table 1. Calculated electrostatic and Mulliken charges for N-acetylglutamate**

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102


3.GEOMETRIC PARAMETERS

103 The geometry of the main structures involved in the acid- and base-catalysed
 104 hydrolysis of NAG are shown in Table 2. The highest difference in the C–N bond
 105 distances at the carbonyl site in NAG where hydrolysis occurs under acidic
 106 conditions was calculated as C4–N1 = 1.469 Å, while the acid intermediary showed
 107 a value of 1.517 Å and amine (product) 1.504 Å (Figs.4 and 5). However, the
 108 molecular angles generally tended to reduce, with angles of 108.24°, 106.66°, and
 109 104.08° for H7–C4–N1 of NAG, intermediary, and amine product, respectively.

110 Bond distances and angles in the basic hydrolysis reaction exhibited smaller
 111 differences between the intermediates and the product in comparison with acidic
 112 hydrolysis. By taking into account the prior example (C4–N1 and H7–C4–N1), it was
 113 found that the basic intermediate and the product (glutamic acid) had a C4–N1
 114 distance of 1.483 Å and 1.459 Å, respectively. The angles were decreased; the
 115 intermediary and glutamic acid had H7–C4–N1 angles of 113.46° and 109.98°,
 116 respectively. The glutamate product is neutral, adopting the more stable
 117 configuration compared with the acid hydrolysis product. The bond lengths and
 118 angles vary, depending on the bonds broken and formed in each structure, i.e.

119 based on the differences that develop because of the different attack modes on
120 NAG.

121



122

Fig. 4. Acid intermediary of *N*-acetylglutamate hydrolysis

123

124

125

Fig. 5. Glutamic acid originated from *N*-acetylglutamate hydrolysis

126

127 The attacks on NAG under each hydrolysis condition generate two intermediates,
128 where only one present H12 Fig. 4. which create an attraction in O3 at the same
129 time it moves away from C5; therefore, it reduces the angle O3–C5–C6. Regarding
130 the final products, the glutamic acid (Fig. 5) and protonated glutamic acid Fig. 6.
131 differ in H10, which increases the distances of N1–H8 and reduces the angle H9–
132 C4–N1.

133

134
135
136
137
138
139
140
141
142
143

Fig. 6 Protonated Glutamic acid

Table 2 Geometric parameters of N-acetylglutamate, acid and basic intermediates, amine and glutamic acid

Distance and angle	<i>N</i> -acetylglutamate	Acid Intermediary	Basic Intermediary	Amine	Glutamic Acid
C4-N1	1.469 Å	1.517 Å	1.483 Å	1.504 Å	1.459 Å
N1-H9	1.018 Å	1.034 Å	1.014 Å	1.018 Å	1.006 Å
N1-C5	1.369 Å	1.457 Å	1.430 Å	-	-
C5-O3	1.229 Å	1.397 Å	1.299 Å	-	-
C5-C6	1.504 Å	1.529 Å	1.526 Å	-	-
N1-H8	-	-	-	1.040 Å	1.004 Å
C4-H7	-	-	-	1.096 Å	1.078 Å
C4-C1	-	-	-	1.537 Å	1.545 Å
C7-C4-N1	109.16°	111.53°	108.05°	111.31°	111.34°
H7-C4-N1	108.24°	106.66°	113.46°	104.08°	109.98°
C4-N1-H9	114.82°	108.43°	110.80°	108.95°	112.31°
N1-C5-O3	122.75°	110.93°	108.97°	-	-
O3-C5-C6	122.36°	107.46°	110.79°	-	-
N1-C4-C1	-	-	-	110.95°	110.77°
C4-H7	-	-	-	1.096 Å	1.078 Å
C4-C1	-	-	-	1.537 Å	1.545 Å
C7-C4-N1	109.16°	111.53°	108.05°	111.31°	111.34°
H7-C4-N1	108.24°	106.66°	113.46°	104.08°	109.98°
C4-N1-H9	114.82°	108.43°	110.80°	108.95°	112.31°
N1-C5-O3	122.75°	110.93°	108.97°	-	-
O3-C5-C6	122.36°	107.46°	110.79°	-	-
N1-C4-C1	-	-	-	110.95°	110.77°

144
145
146

Table 3 Proton affinity for acidic hydrolysis of *N*-acetylglutamate

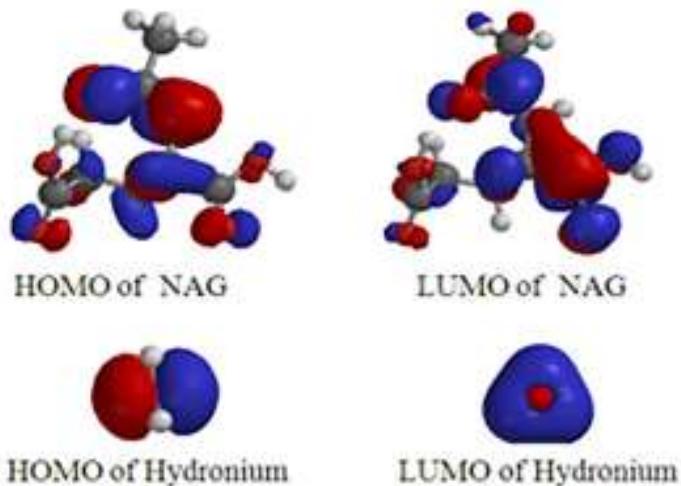
Method	Protonation (Kcal/mol)	N1	Protonation (Kcal/mol)	O3
HF 3-21	24524.7		24543.2	
HF 6-31G*	24660.9		24678.9	

147
148
149
150
151

152 The proton affinity was calculated for acid hydrolysis; the initial protonation occurs
153 on O3 rather than on N1. The highest proton affinity values (24543.2 and 24678.9
154 kcal/mol) calculated by HF methods corresponded to that of O3 Table 3.

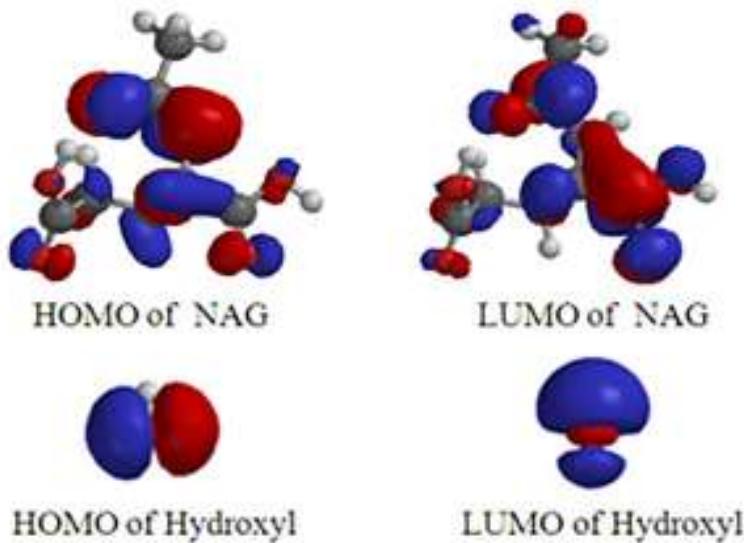
155
156

157 **4.THERMODYNAMIC PROPERTIES**


158 The Gibbs free energy was calculated as shown in Table 4. The lowest Gibbs free
159 energy was found to be -278.04 kJ/mol by the HF 3-21G method, suggesting that
160 hydrolysis under basic conditions is more favourable.

161
162

Table 4 Gibbs free energy of acid and basic hydrolysis of *N*-acetylglutamate


163
164
165
166
167
168

Method	Acidic hydrolysis (kJ/mol)	Basic hydrolysis (kJ/mol)
HF 3-21G	-225.96	-278.04
HF 6-31G*	-267.25	-268.25

169
170
171

Fig. 7. HOMO and LUMO orbitals acid hydrolysis reaction

Fig. 8. HOMO and LUMO orbitals in basic hydrolysis reaction

174 The equilibrium constant was calculated Table 5 from the Gibbs free energy, using the
175 following equation:

$$K_{eq} = e^{-\frac{\Delta G}{RT}}$$

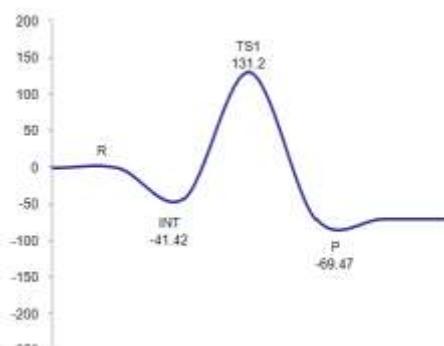
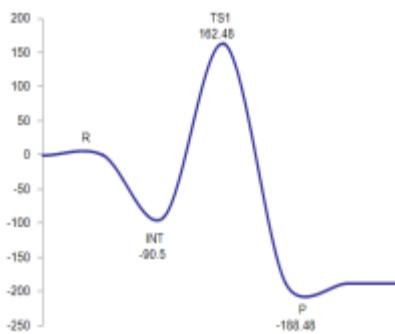
176

177 The obtained results confirm the favorability of basic hydrolysis, which shows higher
178 equilibrium constant values.

Table 5 Equilibrium constants calculated for acidic/basic hydrolysis of *N*-acetylglutamate.

Method	Acid hydrolysis	Basic hydrolysis
HF 3-21G*	$4.048159071 \times 10^{39}$	$5.384308964 \times 10^{43}$
HF 6-31G*	$7.017182065 \times 10^{46}$	$1.038150503 \times 10^{47}$

187 Within the molecular descriptors, the HOMO and LUMO Fig. 7 and Fig. 8 variation
188 energies were obtained to calculate Δ (Frontier Molecular Orbital Theory), which
189 provides an indication where the reaction is taking place under acidic and basic
190 conditions Table 6.



191 An energy profile is a tool to analyze and compare the relation between the
192 reactions and their favourabilities. Graphics 1 and 2 show the energy profiles of the
193 acidic and basic hydrolysis reactions, respectively, which include the reagents,
194 intermediates, transition states, and products under acidic and basic hydrolyses.

195

197

198 **Table 6 Values of Δ between LUMO and HOMO energies for acidic and basic hydrolyses**

	Method	Molecule	HOMO (eV)	LUMO (eV)	Δ (eV)
ACID	HF	NAG	H1: -10.95	L2: 3.85	$\Delta 1: 8.61$
	3-21G	Hydronium	H2: -25.12	L1: -2.34	$\Delta 2: 28.97$
	HF	NAG	H1: -11.33	L2: 3.84	$\Delta 1: 8.12$
	6-31G*	Hydronium	H2: -25.18	L1: -3.21	$\Delta 2: 29.02$
	HF	NAG	H1: -10.95	L2: 3.85	$\Delta 1: 29.01$
	3-21G	Hydroxyl	H2: 0.52	L1: 18.06	$\Delta 2: 3.33$
BASIC	HF	NAG	H1: -11.33	L2: 3.84	$\Delta 1: 26.65$
	6-31G*	Hydroxyl	H2: -1.03	L1: 15.32	$\Delta 2: 4.87$

213
214215 **Graphic 1.** Energy profile of acidic hydrolysis of *N*-acetylglutamate.216
217218 **Graphic 2.** Energy profile of basic hydrolysis of *N*-acetylglutamate.

219 In general, these profiles demonstrated that the two reactions are favorable;
 220 however, Graphic 2 is in agreement with our preliminary equilibrium constant
 221 findings, showing a greater favorability for basic hydrolysis.
 222

223

224 **5. CONCLUSIONS**

225 From the Mulliken charges calculated for the hydrolysis of NAG under acidic
226 conditions, it is clear that N1 and O3 are the most negatively charged atoms, and
227 therefore, more susceptible to electrophilic attack. Under basic conditions, the
228 highest positively charged atom is C5, rendering this site susceptible to nucleophilic
229 attack.
230
231 Based on the difference between the HOMO and LUMO energies, the lowest Δ
232 value indicates which orbitals are involved in the reaction. Under acidic conditions,
233 the HOMO of NAG and LUMO of hydronium are the reacting orbitals. Under basic
234 conditions, the hydroxyl HOMO and NAG LUMO are the reacting orbitals. Table 6.
235
236 Furthermore, by analyzing the calculated values for the Gibbs free energy, it was
237 observed that the NAG hydrolysis under basic conditions is more favorable. The
238 calculated equilibrium constants are in agreement with the favorability of hydrolysis
239 under basic conditions, which is consistent with the biochemical process. Proton
240 affinity reveals that under acidic conditions, the more susceptible atom for
241 protonation is O3.

242 **REFERENCES**

243 [1] Thoden J, Miran S, Philips J, Howard A, Raushel M, Holden H. Biochemistry; 1998.

244 [2] Shi D, Sagar V, Jin Z, Yu X, Caldovic L, Morizono H, Allewell N, Tuchman M;The crystal
245 structure of N-acetyl-L-glutamate Synthase from Neisseria gonorrhoeae Provides Insights
246 into Mechanisms of catalysis and regulation. J. Biol. Chem. 2008 ;283(11):7176-7184

247 [3] Antonczak S, Ruiz M, Louis R.The hydrolysis mechanism of formamide revisited;
248 comparison between ab initio semiempirical and DFT results. J. Mol Model; 1997;3: 434.)

249 [4] Bednárová L, Malon P, Bour P. Spectroscopy properties of the nonpolar amide group A
250 computational study. Chirality; 2007.,19:775

251 [5] Zahn D. Car-Parrinello molecular dynamics simulations of base-catalyzed amide
252 hydrolysis in aqueous solution. Chemical Physics Letters; 2004; (383):134-137

253 [6] Zahn D. On the role of water in amide hydrolysis. Eur. J. Org. Chem. 2004; 4020-4023.

254 [7] Stanton R. V, Peräkylä, Bakowies D, Kollman P.A. Combined ab initio and Free Energy
255 Calculations To Study Reactions in Enzymes and Solution: Amide Hydrolysis in Trypsin and
256 Aqueous Solution. J. Am. Chem.Soc. 1998; (120);3448-3457

257 [8] Bakowies D, Kollman P.A. Theoretical Study of Base-Catalyzed Amide Hydrolysis: Gas-
258 and Aqueous-Phase Hydrolysis of Formamide. J. Am. Chem.Soc. 1999, (121) 5712-5726.

259 [9] Yates K, Stevens J. B. The ionization behavior of amides in concentrated sulfuric acids: ii.
260 Applications of the ha function to rates and equilibria. Canadian Journal of Chemistry, 1965,
261 43(3): 529-537

262 [10] Hori K, Kamimura A, Ando K, Mizumura M, Ihara Y. Ab initio molecular orbital study on
263 the mechanism of amide hydrolysis dependent on leaving groups. *Tetrahedron*, 1997, 53,
264 4317-4330

265 [11] Smith M.B, March J. *March's Advanced organic Chemistry*. Seventh edition. 2013

266 [12], Beltran Juan A. *J. Química Teórica y Computacional.*; 2000.

267 [13]Spartan '08 for Windows. *Tutorial and User's Guide*

268