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ABSTRACT

To describe the time dependent of a variety of viscoelastic materials, a one-dimensional
nonlinear rheological mathematical model with constant material parameters is developed by using the
stress decomposition theory. , the time versus
deformation variation as a Gompertz-type function,

Keywords: Gompertz-type model, logarithmic elastic force, mathematical modeling,
viscoelasticity.

In characterization of materials, the mechanical properties are described as purely elastic, or viscoelastic
behavior, following that the time dependent effect is neglected or taken into consideration. But, it is well known that real
materials are time and history-dependent, to say, viscoelastic materials.

Several engineering and
biomedical applications using viscoelastic materials require the formulation of time dependent deformation model. There
are, in viscoelastic modeling, two categories of theory. The first is the classical linear viscoelastic theory, which is
represented usually in the Boltzmann single integral form or in differential equation.
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well known established theory is, however, only valid for small deformations or low
stresses . The second is the nonlinear viscoelastic theory which has not, contrary to the
linear theory, a definitive formulation ( ). Since
viscoelastic materials exhibit time dependent highly large deformations, the linear viscoelastic theory is inapplicable and
then, nonlinear viscoelastic models are required. For example, it is well known in biomechanical studies that arterial tissue
undergoes large deformations when it is subjected to physiological load. Thus its mechanical properties are essentially
nonlinear and could not be represented on the basis of the classical linear viscoelasticity ( ). Different
theoretical formulations of varying complexities have been developed for investigating the nonlinear time dependent
properties of viscoelastic materials.

(see,
e.g., for a detailed review of articles, Xia et al., 2006; Chotard-Ghodsnia and Verdier, 2007;
. Karra and Rajagopal (2010

. In mechanics, the use of rheological models consisting of a combination of spring and dashpot is proved
useful to describe viscoelastic behavior of materials. These rheological models are interesting, since they represent the
dynamic response of materials concerned in terms of differential equations that can be solved for various particular cases
of consideration ( ). So much constitutive equations are derived from these combinations of spring
and dashpot in order to predict and simulate material properties, and analyze experimental data. In this regard, to model
materials nonlinear properties, the linear viscoelastic theory can be modified and extended to higher order stress or strain
terms. A number of recent successful theoretical models have been developed on the basis of classical linear viscoelastic
models extension to large deformations ( ; Monsia, 2011a, 2011b, 2011c, 2011d).

Monsia (2011a, 2011b,
2011c), only the elastic nonlinearity is taken into account by introducing a nonlinear spring force in the classical linear
rheological models. Consequently, these models are insufficient to account for complete characterization of viscoelastic
materials. The model (Monsia, 2011d), which is a nonlinear generalized Maxwell fluid model, taking into consideration
both elastic and viscous nonlinearities, appeared useful for representing accurately the viscoelastic materials time-
dependent behavior. However, these models fail to include the inertia of the mechanical system studied in the constitutive
equations, in the perspective that viscoelastic materials are characterized simultaneously not just by elastic and viscous
contributions, but also by an inertial function. Moreover, there are only a few theoretical models that are formulated with
constant-value material coefficients so that, the material functions are considered as stress, strain or strain rate
dependent.

Due to material nonlinearities, a consistent constitutive equation should take
then into account all together the elastic, viscous and inertial nonlinearities and relate mathematically stress, strain and
their higher time derivatives (Bauer et al., 1979; Bauer, 1984). In contrast to these models, the model (Monsia,
2011e) has been constructed by taking into consideration the elastic, viscous and inertial nonlinearities simultaneously.
The model (Monsia, 2011le) attempted successfully to represent mathematically a complete characterization of
viscoelastic materials. This model (Monsia, 2011e) was founded on the stress decomposition theory developed previously
by Bauer (1984) for a complete characterization of viscoelastic arterial walls. The Bauer’s theory (1984) allows, in effect,
solving the mathematical complexities in rheological modeling and accounting simultaneously for high elastic, viscous and
inertial nonlinearities characterizing viscoelastic materials. The Bauer’s theory (1984) is derived from the classical

model . In this theory (Bauer, 1984), the total stress
acting on the material is decomposed as the sum of three components, that is, the elastic, viscous and inertial stresses.
The purely elastic stress is written as a power series of strain, the purely viscous stress as a first time derivative of a
similar power series of strain, and the purely inertial stress as a second time derivative of a similar power series of strain.
The Bauer’s stress decomposition method (1984) has been after used by many authors (Armentano et al., 1995; Gamero
et al., 2001; Monsia et al., 2009) for the complete characterization of arterial behavior. In (Monsia et al., 2009), following
the Bauer’s approach (1984), the elastic stress is expanded in power series of strain. Monsia (2011e), using the Bauer’s
method (1984), developed a hyperlogistic equation that represents successfully the time-dependent mechanical
properties of viscoelastic materials by expressing the elastic stress as an asymptotic expansions in powers of
deformation. viscous stress as a first time derivative of similar asymptotic expansions in powers of
deformation. inertial stress as a second time derivative of similar asymptotic expansions in powers of
deformation. Recently, Monsia (2011f, 2012) formulated in a single differential equation the Bauer’s stress decomposition

theory (1984) with an exciting stress term, depending on a nonlinear elastic spring force function @(&), where the scalar
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function £(t) represents the time dependent deformation of the mechanical system under study. In (Monsia, 2011f), the

function @(&) is written as a hyperbolic function, which led, in the absence of exciting stress, the author to obtain, after an

adequate mathematical manipulation, a useful hyper-exponential type function representing the time versus strain
variation of the viscoelastic material considered. The same author (Monsia, 2012), considering also the hyperbolic elastic

spring force law ¢@(€), with now the presence of a constant exciting stress, developed successfully, after consistent

mathematical operations, a nonlinear mechanical model applicable for representing the nonlinear creep behavior of
viscoelastic materials. More recently, in Monsia and Kpomahou (2012), the authors, by using the Bauer’'s theory as

formulated previously in Monsia (2011f, 2012), and expressing the nonlinear elastic spring force function @(&) in a

Newton’s binomial function, constructed successfully a four-parameter mechanical model to represent the dynamic
response of viscoelastic materials. In Monsia and Kpomahou (2012), the binomial law exponent controlled the material
model nonlinearity. Numerical applications performed by the authors (Monsia and Kpomahou, 2012), clearly showed the
powerful predictive ability of the model to reproduce any S-shaped experimental data. These studies demonstrate the
authoritative suitability of the Bauer’s stress decomposition theory (1984) as an advanced mathematical tool in rheological
modeling. The use of the Bauer’s theory (1984) requires overcoming two major difficulties. The first consists of a suitable
choice of the nonlinear elastic force function @(&) that should tend towards the expected linear hookean behavior for

small deformations. The second difficulty results in the fact that the application of the Bauer's theory (1984) leads often to
solve a Liénard second order nonlinear ordinary differential equation that is generally non-integrable. These
considerations show that the use of the Bauer’'s theory (1984) to model the material nonlinear time dependent properties
is not a simple task. In this paper, considered also the Monsia formulation (2011f, 2012) of the Bauer’s approach
(1984). , a one-dimensional nonlinear rheological model with constant material parameters that
includes elastic, viscous and inertial nonlinearities simultaneously, is developed.

, by
using a logarithmic elastic spring force law
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2. FORMULATION OF THE MECHANICAL MODEL

2.1 Theoretical Considerations

The present part is devoted to describe the governing equations of the theoretical model including the nonlinear elastic,
viscous and inertial contributions characterizing viscoelastic materials. As pointed out previously in Monsia (2011f, 2012),
the nonlinear ordinary differential equation resulting from the use of the Bauer’s theory (1984), by superposing the pure

elastic, viscous and inertial stresses, for a nonlinear elastic spring force function @(&), can be written in the form
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The dot over a symbol denotes a differentiation with respect to time t. The inertial module cis different from zero and
time independent. The parameters a and b are respectively the stiffness and viscosity coefficients. They are also time
independent material parameters. O, , which is a scalar function, means the total exciting stress acting on the mechanical

system studied. It is required, in order to progress in the present modeling, to identify the nonlinear elastic force function
@(&) of interest. As stated earlier, the function ¢(&) should obey to the basic principle governing the Bauer’s theory, that

is to say, behave linearly as the classical hookean elastic spring force function, for small values of deformation £(t) .

Following this principle, in the present study, the nonlinear elastic force function @(€) is expressed in terms of a
logarithmic function given
E(gl-e)+&* | ¢

£
—_ 3
(62 -¢)° b£2_£+a|n(go £ ) ®

(0] (0]
Equation (3) shows mathematically in the single differential form the constitutive relation between the total exciting stress

0, and the resulting strain £(t) . Equation (3) represents a second order nonlinear ordinary differential equation in £(t)

0, =—C

for a given exciting stress 0, .

2.2 Solution using an exciting stress g, =0
2.2.1 Evolution Equation of Deformation &(t)

In the absence of exciting stress (g, = 0),

, the internal dynamics of the mechanical system under study is governed by the following nonlinear ordinary
differential equation

2 _
CE(E2 - £) + £(cé +b(€2 - £)) - a(e? — &) |n(%) =0 @)

o

Equation (4) represents analytically the nonlinear evolution equation of deformation £(t) of the considered mechanical
system

2.2.2 Solving Time-Deformation Equation

For solving Equation (4), a change of variable is needed. Making the following suitable substitution

2
exp(x) = £ —¢ (5)
[0}
Equation (4) transforms, after a few algebraic operations, in the form
X+ AX+afx=0 (6)
where
A= E and &f =2
C C

Equation (6) is the well-known second-order linear ordinary differential equation which describes a damped harmonic
oscillator motion. The solution of Equation (6) depends on the relative magnitudes of A? and (uj that determine whether

the roots of characteristic equation associated with Equation (6) are real or complex numbers. Therefore, three particular
cases may be studied.

2.2.2.1Case A: A >2a,

If the damping is relatively large, that is to say, A > 2a,, the roots of the characteristic equation are real quantities, and
the oscillator is said to be overdamped. Thus, the mechanical system dissipates the energy by the damping force and the
motion will not be oscillatory. The amplitude of the vibration will decay exponentially with time. In this particular case,
integration of Equation (6) yields for X(t) the following solution

X(t) = A exp(rt) + A, exp(ryt) (7)

where
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and
A
r,=——(@1-
, ==51-9)

are the two negative real roots of the characteristic equation
r’+Ar+af =0
with

of
0o=,/1- 4/]—2

A and A, are two integration constants determined by the initial conditions. Thus, using the following suitable

t<0, g(t)=¢ ; t<0,&(t)=0

and

t - +0°,£(t) =K

and also taking into consideration Equation (5), one can obtain the following explicit analytical solution

£(t) = K+e[ p{ln( °€€')(Q p(—%(l—am—%exp(—%(lw)t»ﬂ

with K =& - ¢,

{0 =oA )m(fo i )exp(——t)smh(—t)exp{ln(g" d )[ﬁexp(——(l 5)t)——exp(——(1+5)t>ﬂ
£ &o 20 )
Equation gives the strain versus time relationship of the viscoelastic material Lt

predicts mathematically the time dependent deformation response of the material studied for some values of K as a
Gompertz-type model that is useful for representing an asymmetric sigmoid curve.
22.2.2CaseB: A =2a,

For A = 2, , the oscillator is said to be critically damped and the amplitude of the vibration will decay without sinusoidal
oscillations during the time. In this case, Equation (6) has the solution of the form

x(t) = (Bt +B,) exp(—%t) 10)

where B, and B, are two integration constants determined by the initial conditions.
t<0,&(t)=¢;1t<0,&(t)=0

and

t - +o0,£(t) =K

and considering also Equation (5), the desired solution £(t) may be written in the following
form

gt)=K +£o|:1—exp{ln( £ =4 ')(—t+1)exp(——t)ﬂ

O
where K = &2 -¢,

Equation describes also the strain time relationship K Gompertz-type function
adequate to fit the asymmetric S-shaped experimental data.
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2.2.2.3Case C: A <2,

For a relatively small damping, to say, A < 2, the roots of the characteristic equation are complex numbers, and the

oscillator is said to be underdamped. The amplitude of the vibration decreases exponentially with time. In this particular
case, integration of Equation (6) yields for X(t) the following solution

KO =Cop-S0csat-0) ()

where

w= wf—)l—z
\ 4

and Cand ¢ are two integration constants determined by the initial conditions. Then, setting the suitable
of deformation
t<0,e(t)=¢;1t<0,é(t)=0
and
t - +00,e(t) =K
and taking also into consideration Equation (5), the following explicit analytical solution for the desired strain £(t)
can be obtained

£2
- A
E(t)=K+¢&,|1-exp In(—=—— £ ')(cos(a1)+—sm(a1))exp(——t)
£, 2w
where K =& - &,
The exponentiated exponential Equation (14) is of the form of a Gompertz-type model in which the constant parameter
£2
- A
In(—=—— % ') is modulated by the sinusoidal function coS(cut) +2—sm(a1) and appears very useful for the asymmetric
(4

(o]

S-shaped experimental data fitting. K ()

)In( d )sn(ca)exp(——t)exp In(————— £ 4 )(cos(at) +is n(at)) exp(——t)

&(t) = g1+ wz - -

3. NUMERICAL RESULTS AND DISCUSSION

This section presents some numerical examples to investigate the predictive capability of the model to reproduce the
mechanical response of the material considered . The dependence of strain versus time curve
on the material parameters is also discussed.

K=0 ¢g=1 , & must be less than 1.

3.1 Case A: 1>2w,

=09 A1=2 «,=05 £(t)
K=0 t #(£)
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279 , illustrates the effects of material coefficients on the strain versus time curve generated by Equation (8).
280  The effects of the action of these coefficients are studied with the help of an own computer program by varying step by
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The preceding numerical examples demonstrated that the model is well-suited to represent the S-shaped deformation
response of viscoelastic materials . The model is based on the Bauer's theory (1984) consisting to
superpose the elastic, viscous and inertial nonlinear contributions for obtaining the total stress acting on the material. This
method permitted to perform a complete characterization of the viscoelastic material under study. In this model, the
nonlinear elastic force function is assumed to be a logarithmic law, which allowed taking into account elastic, viscous and
inertial nonlinearities simultaneously, and deriving successfully the time dependent response of the material studied as a
Gompertz-type function that is well known useful for reproducing an asymmetric sigmoid curve. It is also interesting to
note that the Gompertz model is an asymmetric function widely used to represent increases in several growth phenomena
exhibiting a sigmoid pattern, for example, in physics, biology and biomedical science. The empirical choice of the

nonlinear logarithmic elastic force function @(¢&) is inspired by the work (Covécs et al., 2001) and also justified by the fact
that for £ <<g&, , the function @(€) can be developed in power series of deformation & . In this regard, the choice of
function @(&) agrees very well with the polynomial function of deformation utilized by Bauer (1984) so that, for small
values of deformation, @(£) behaves linearly as expected.

w A K=0

(o]

4. CONCLUSION

has been developed by using the stress decomposition theory. The nonlinear elastic,
viscous and inertial contributions characterizing viscoelastic materials are simultaneously taking into consideration
through the use of a logarithm law for the nonlinear elastic spring force function in the present model.
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