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ABSTRACT  14 

To describe the time dependent response of a variety of viscoelastic materials, a one-
dimensional nonlinear rheological mathematical model with constant material parameters is 
developed by using the stress decomposition theory. The model represents, under relaxation 
of stress, the time versus deformation variation as a decay Gompertz-type function, which is 
able to reproduce the qualitative decay sigmoid shape of the experimental creep relaxation 
data of a variety of materials. Numerical applications performed shown that the model is very 
sensitive to material parameters variation, and particularly to the total deformation 
experienced by the material of interest under creep process. It is also found that the 
damping viscosity relative increase reduces significantly the magnitude of the 
maximum value of the rate of recovery.  
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In characterization of materials, the mechanical properties are described often as purely 19 
elastic, plastic or viscoelastic behavior, following that the time dependent effect is neglected 20 
or taken into consideration. But, it is well known that real materials are time and history-21 
dependent, to say, viscoelastic materials. These materials exhibit various responses to 22 
loading. Under a constant deformation, a viscoelastic material will relax and experience a 23 
decrease in stress with time. This is termed stress relaxation. On the other hand, if a 24 
viscoelastic material is subjected to a constant stress, the strain will then increase with time. 25 
This phenomenon is called viscoelastic creep. Creep response is a function of stress and 26 
time. It is usually studied in terms of strain-time curves (Alfrey and Doty, 1945; Schapery, 27 
2000; Thompson, 2009). Viscoelastic materials manifest also a delayed recovery of 28 
deformation after the stress is removed, consisting of an elastic deformation followed by 29 
gradual decrease deformation (Schapery, 2000; Morgounov, 2001; Haslach Jr, 2005; Xia et 30 
al., 2006; Thompson, 2009; Mustalahti et al, 2010). This is creep relaxation phenomenon 31 
(Morgounov, 2001;  Thompson, 2009; Mustalahti et al, 2010). If during unloading behavior 32 
the deformation is not completely recovered, the material displays then a viscoplastic 33 
response. Under cyclic loading, viscoelastic materials show a hysteresis phenomenon. This 34 
consists of a dissipation of energy through successive loading and unloading cycles. A large 35 
variety of experimental data have shown that several soft biological tissues, for example, 36 
under physiological conditions, exhibit a nonlinear sigmoidal hysteresis curve on loading and 37 
unloading (Fukushima and Homma, 1988; Thompson, 2009).Therefore, the unloading 38 



 

response may be used to differentiate purely elastic from viscoelastic or plastic materials. 39 
Several engineering and biomedical applications using viscoelastic materials require the 40 
formulation of time dependent deformation model. There are, in viscoelastic modeling, two 41 
categories of theory. The first is the classical linear viscoelastic theory, which is represented 42 
usually in the Boltzmann single integral form or in differential equation. This approach has 43 
been used by several investigators to describe linear viscoelastic response of materials. de 44 
Haan and Sluimer formulated a standard linear solid model including a mass for studying the 45 
dynamic behavior of building materials (de Haan and Sluimer, 2007). Chazal and Moutou 46 
Pitti (2010) using a discrete spectrum representation for the creep and relaxation differential 47 
approaches, and also a creep integral approach (2011), developed incremental constitutive 48 
relations for linear viscoelastic analysis. The well known established linear viscoelastic 49 
theory is, however, only valid for small deformations or low stresses (Xia et al., 2006). The 50 
second type of theory is the nonlinear viscoelastic theory which has not, contrary to the 51 
linear theory, a definitive constitutive formulation (Dealy, 2007; Ewoldt et al., 2008; 2009; 52 
Wineman, 2009). Since viscoelastic materials exhibit time dependent highly large 53 
deformations, the linear viscoelastic theory is inapplicable and then, nonlinear viscoelastic 54 
models are required. For example, it is well known in biomechanical studies that arterial 55 
tissue undergoes large deformations when it is subjected to physiological load. Thus its 56 
mechanical properties are essentially nonlinear and could not be represented on the basis of 57 
the classical linear viscoelasticity (Haslach Jr, 2005). Different theoretical formulations of 58 
varying complexities have been developed for investigating the nonlinear time dependent 59 
properties of viscoelastic materials. Thus, many publications on time dependent nonlinear 60 
behavior of materials based on non-equilibrium thermodynamics (Haslach Jr, 2005; Xia et 61 
al., 2006), visco-hyperelasticity using the decomposition of the deformation gradient into 62 
elastic and viscous components (Holzapfel et al., 2002; Laiarinandrasana et al., 2003; 63 
Marvalova, 2007) and computational modeling (Weiss et al., 1995; Weiss and Gardiner, 64 
2001) can be distinguished.  Integral and differential nonlinear rheological models are also 65 
developed for characterizing various types of materials (see, e.g., for a detailed review of 66 
articles, Xia et al., 2006; Chotard-Ghodsnia and Verdier, 2007; Drapaca et al., 2007; 67 
Wineman, 2009). Karra and Rajagopal (2010) derived a generalization of the standard linear 68 
solid model. The model has been based on a thermodynamic framework and has been 69 
successfully applied to predict the viscoelastic response of polymide resin. In mechanics, the 70 
use of rheological models consisting of a combination of spring and dashpot is proved useful 71 
to describe viscoelastic behavior of materials. These rheological models are interesting, 72 
since they represent the dynamic response of materials concerned in terms of differential 73 
equations that can be solved for various particular cases of consideration (Alfrey and Doty, 74 
1945). So much constitutive equations are derived from these combinations of spring and 75 
dashpot in order to predict and simulate material properties, and analyze experimental data. 76 
In this regard, to model materials nonlinear properties, the linear viscoelastic theory can be 77 
modified and extended to higher order stress or strain terms. A number of recent successful 78 
theoretical models have been developed on the basis of classical linear viscoelastic models 79 
extension to large deformations (Corr et al., 2001; Monsia, 2011a, 2011b, 2011c, 2011d). 80 
Corr et al. (2001) developed a nonlinear generalized Maxwell fluid model in terms of a 81 
Riccati differential equation that represents successfully the stiffening response of some 82 
viscoelastic materials. In Corr et al. (2001) and Monsia (2011a, 2011b, 2011c), only the 83 
elastic nonlinearity is taken into account by introducing a nonlinear spring force in the 84 
classical linear rheological models. Consequently, these models are insufficient to account 85 
for complete characterization of viscoelastic materials. The model (Monsia, 2011d), which is 86 
a nonlinear generalized Maxwell fluid model, taking into consideration both elastic and 87 
viscous nonlinearities, appeared useful for representing accurately the viscoelastic materials 88 
time-dependent behavior. However, these models fail to include the inertia of the mechanical 89 
system studied in the constitutive equations, in the perspective that viscoelastic materials 90 
are characterized simultaneously not just by elastic and viscous contributions, but also by an 91 



 

inertial function. Moreover, there are only a few theoretical models that are formulated with 92 
constant-value material coefficients so that, the material functions are considered as stress, 93 
strain or strain rate dependent. According to Haslach Jr (2005) and Xia et al. (2006) there 94 
exist only some constitutive nonlinear models capable for representing accurately the creep 95 
relaxation, to say, the unloading behavior of viscoelastic materials. The necessity to 96 
investigate the unloading behavior or creep relaxation of materials remains, even if the 97 
phenomenon is well known from many experimental data (Fukushima and Homma, 1988; 98 
Xia et al., 2006). In this regard, satisfactory nonlinear viscoelastic models are required.  Due 99 
to material nonlinearities, a consistent constitutive equation should take then into account all 100 
together the elastic, viscous and inertial nonlinearities and relate mathematically stress, 101 
strain and their higher time derivatives (Bauer et al., 1979; Bauer, 1984). In contrast to these 102 
preceding models, the model (Monsia, 2011e) has been constructed by taking into 103 
consideration the elastic, viscous and inertial nonlinearities simultaneously. The model 104 
(Monsia, 2011e) attempted successfully to represent mathematically a complete 105 
characterization of viscoelastic materials. This model (Monsia, 2011e) was founded on the 106 
stress decomposition theory developed previously by Bauer (1984) for a complete 107 
characterization of viscoelastic arterial walls. The Bauer’s theory (1984) allows, in effect, 108 
solving the mathematical complexities in rheological modeling and accounting 109 
simultaneously for high elastic, viscous and inertial nonlinearities characterizing viscoelastic 110 
materials. The Bauer’s theory (1984) is derived from the classical Kelvin-Voigt model (See 111 
Figure 1: The proposed nonlinear Kelvin-Voigt model). In this theory (Bauer, 1984), the total 112 
stress acting on the material is decomposed as the sum of three components, that is, the 113 
elastic, viscous and inertial stresses. The purely elastic stress is written as a power series of 114 
strain, the purely viscous stress as a first time derivative of a similar power series of strain, 115 
and the purely inertial stress as a second time derivative of a similar power series of strain. 116 
The Bauer’s stress decomposition method (1984) has been after used by many authors 117 
(Armentano et al., 1995; Gamero et al., 2001; Monsia et al., 2009) for the complete 118 
characterization of arterial behavior. In (Monsia et al., 2009), following the Bauer’s approach 119 
(1984), the elastic stress is expanded in power series of strain. Monsia (2011e), using the 120 
Bauer’s method (1984), developed a hyperlogistic equation that represents successfully the 121 
time-dependent mechanical properties of viscoelastic materials by expressing the elastic 122 
stress as an asymptotic expansions in powers of deformation. The viscous stress is 123 
formulated as a first time derivative of similar asymptotic expansions in powers of 124 
deformation. The inertial stress is given as a second time derivative of similar asymptotic 125 
expansions in powers of deformation. Recently, Monsia (2011f, 2012) formulated in a single 126 
differential equation the Bauer’s stress decomposition theory (1984) with an exciting stress 127 

term, depending on a nonlinear elastic spring force function )(εϕ , where the scalar function 128 

)(tε  represents the time dependent deformation of the mechanical system under study. In 129 

(Monsia, 2011f), the function )(εϕ is written as a hyperbolic function, which led, in the 130 

absence of exciting stress, the author to obtain, after an adequate mathematical 131 
manipulation, a useful hyper-exponential type function representing the time versus strain 132 
variation of the viscoelastic material considered. The same author (Monsia, 2012), 133 

considering also the hyperbolic elastic spring force law )(εϕ , with now the presence of a 134 

constant exciting stress, developed successfully, after consistent mathematical operations, a 135 
nonlinear mechanical model applicable for representing the nonlinear creep behavior of 136 
viscoelastic materials. More recently, in Monsia and Kpomahou (2012), the authors, by using 137 
the Bauer’s theory as formulated previously in Monsia (2011f, 2012), and expressing the 138 

nonlinear elastic spring force function )(εϕ  in a Newton’s binomial function, constructed 139 

successfully a four-parameter mechanical model to represent the dynamic response of 140 
viscoelastic materials. In Monsia and Kpomahou (2012), the binomial law exponent 141 
controlled the material model nonlinearity. Numerical applications performed by the authors 142 



 

(Monsia and Kpomahou, 2012), clearly showed the powerful predictive ability of the model to 143 
reproduce any S-shaped experimental data. These studies demonstrate the authoritative 144 
suitability of the Bauer’s stress decomposition theory (1984) as an advanced mathematical 145 
tool in rheological modeling. The use of the Bauer’s theory (1984) requires overcoming two 146 
major difficulties. The first consists of a suitable choice of the nonlinear elastic force function 147 

)(εϕ  that should tend towards the expected linear hookean behavior for small 148 

deformations. The second difficulty results in the fact that the application of the Bauer’s 149 
theory (1984) leads often to solve a Liénard second order nonlinear ordinary differential 150 
equation that is generally non-integrable. These considerations show that the use of the 151 
Bauer’s theory (1984) to model the material nonlinear time dependent properties is not a 152 
simple task. In this paper, we have considered also the Monsia formulation (2011f, 2012) of 153 
the Bauer’s approach (1984). From this approach, a one-dimensional nonlinear rheological 154 
model with constant material parameters that includes elastic, viscous and inertial 155 
nonlinearities simultaneously, is developed. The model permitted to describe accurately the 156 
unloading response of a viscoelastic material assumed to be primarily subjected to constant 157 
loading, by using a logarithmic elastic spring force law 158 
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where 0≠oε , is a material constant, and ln  denotes the natural logarithm. 160 

This function is defined if and only if εε >o . )(εϕ  has a vertical asymptote at 
2

oεε = , so 161 

)(εϕ is not defined after the value 
2

oε . Therefore, the current law )(εϕ  has the advantage, 162 

contrary to previous nonlinear elastic functions used in Monsia (2011f, 2012) and, Monsia 163 

and Kpomahou (2012), to limit the magnitude of the strain )(tε  by a scaling factor oε . The 164 

use of this law alloowed deriving the time dependent deformation relationship as a decaying 165 
Gompertz-type model that reproduces successfully the qualitative S-shaped curve of the 166 
experimental creep relaxation data mentioned in many publications (van Loon et al., 1977; 167 
Chien et al., 1978; Fukushima and Homma, 1988; Morgounov, 2001; Haslach Jr, 2005; Xia 168 
et al., 2006; Thompson, 2009; Mustalahti et al., 2010). Numerical studies performed allowed 169 
also investigating the effects of rheological coefficients variation on the model.     170 

 171 
Fig.1. The proposed nonlinear rheological model 172 
 173 

2. FORMULATION OF THE MECHANICAL MODEL 174 
 175 

2.1 Theoretical Considerations 176 
The present part is devoted to describe the governing equations of the theoretical model 177 
including the nonlinear elastic, viscous and inertial contributions characterizing viscoelastic 178 
materials. As pointed out previously in Monsia (2011f, 2012), the nonlinear ordinary 179 



 

differential equation resulting from the use of the Bauer’s theory (1984), by superposing the 180 

pure elastic, viscous and inertial stresses, for a nonlinear elastic spring force function )(εϕ , 181 

can be written in the form 182 
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The dot over a symbol denotes a differentiation with respect to time t . The inertial module 184 

c is different from zero and time independent. The parameters a and b are respectively the 185 

stiffness and viscosity coefficients. They are also time independent material parameters. tσ , 186 

which is a scalar function, means the total exciting stress acting on the mechanical system 187 
studied. It is required, in order to progress in the present modeling, to identify the nonlinear 188 

elastic force function )(εϕ
 
of interest. As stated earlier, the function )(εϕ  should obey to 189 

the basic principle governing the Bauer’s theory, that is to say, behave linearly as the 190 

classical hookean elastic spring force function, for small values of deformation )(tε . 191 

Following this principle, in the present study, the nonlinear elastic force function )(εϕ
 
is 192 

expressed in terms of a logarithmic function given by Equation (1). By using Equation (1), 193 
Equation (2) becomes  194 
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Equation (3) shows mathematically in the single differential form the constitutive relation 196 

between the total exciting stress tσ  and the resulting strain )(tε . Equation (3) represents a 197 

second order nonlinear ordinary differential equation in )(tε  for a given exciting stress tσ .  198 

 199 

2.2 Solution using an exciting stress 0=tσ   200 

2.2.1 Evolution Equation of Deformation )(tε   201 

In the absence of exciting stress ( 0=tσ ), to say, in the relaxation phase where the applied 202 

stress in the creep test is removed, the internal dynamics of the mechanical system under 203 
study is governed by the following nonlinear ordinary differential equation 204 
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Equation (4) represents analytically the nonlinear evolution equation of deformation )(tε
 
of 206 

the considered mechanical system under unloading.  207 
 208 
2.2.2 Solving Time-Deformation Equation 209 
 210 
For solving Equation (4), a change of variable is needed. Making the following suitable 211 
substitution  212 

 o
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Equation (4) transforms, after a few algebraic operations, in the form  

214 
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where 216 



 

c

b
=λ , and 

c

a
o =2ω .  217 

Equation (6) is the well-known second-order linear ordinary differential equation which 218 
describes a damped harmonic oscillator motion. The solution of Equation (6) depends on the 219 

relative magnitudes of 
2λ  and 

2

oω , that determine whether the roots of characteristic 220 

equation associated with Equation (6) are real or complex numbers. Therefore, three 221 
particular cases may be studied. 222 
 223 

2.2.2.1 Case A: oωλ 2>  224 

If the damping is relatively large, that is to say, oωλ 2> , the roots of the characteristic 225 

equation are real quantities, and the oscillator is said to be overdamped. Thus, the 226 
mechanical system dissipates the energy by the damping force and the motion will not be 227 
oscillatory. The amplitude of the vibration will decay exponentially with time. In this particular 228 

case, integration of Equation (6) yields for )(tx  the following solution 229 
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                                                        231 
where 232 

)1(
2

1 δ
λ

+−=r   233 

and   234 

)1(
2

2 δ
λ

−−=r  235 

are the two negative real roots of the characteristic equation 236 
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1A  and 2A  are two integration constants determined by the initial conditions. Thus, using 240 

the following suitable initial-boundary conditions that account for the past history of 241 
deformation  242 

 0≤t , it εε =)(  ;  0)(,0 =≤ tt ε&  243 

 
and 244 

Ktt =+∞→ )(,ε  245 

and also taking into consideration Equation (5), one can obtain the following explicit 246 
analytical solution  247 
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with ooK εε −= 2
 250 

The first order derivative with respect to time of Equation (8) can be written  251 
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                  254 
Equation (8) gives the strain versus time relationship of the viscoelastic material studied 255 
under unloading behavior. It predicts mathematically the time dependent deformation 256 

response of the material studied for some values of K  as a decaying Gompertz-type model 257 
that is useful for representing an asymmetric sigmoid curve.  258 
 259 

2.2.2.2 Case B:
 oωλ 2=  260 

For oωλ 2= , the oscillator is said to be critically damped and the amplitude of the vibration 261 

will decay without sinusoidal oscillations during the time. In this case, Equation (6) has the 262 
solution of the form 263 

)
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where  1B  and 2B  are two integration constants determined by the initial conditions. 265 

Therefore, for the loading program    266 

itt εε =≤ )(,0 ; 0)(,0 =≤ tt ε&  267 

and 268 

 Ktt =+∞→ )(,ε  269 

 270 

and considering also Equation (5), the desired solution )(tε
 
in the stress relaxation phase 271 

may be written in the following form  272 
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where ooK εε −= 2
                                                                             274 

Equation (11) describes also the strain time relationship for some values of K  as a 275 
decaying Gompertz-type function adequate to fit the asymmetric S-shaped experimental 276 
data. The time derivative of Equation (11) of first order is given by 277 
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 279 

2.2.2.3 Case C:
 oωλ 2<  280 

For a relatively small damping, to say, oωλ 2< , the roots of the characteristic equation are 281 

complex numbers, and the oscillator is said to be underdamped. The amplitude of the 282 
vibration decreases exponentially with time. In this particular case, integration of Equation 283 

(6) yields for )(tx  the following solution 284 
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and C and φ
 
are two integration constants determined by the initial conditions. Then, 288 

setting the suitable initial-boundary conditions taking into account the past history of 289 
deformation   290 

itt εε =≤ )(,0 ; 0)(,0 =≤ tt ε&  291 

and 292 

 Ktt =+∞→ )(,ε  293 

and taking also into consideration Equation (5), the following explicit analytical solution for 294 

the desired strain )(tε  in the stress relaxation phase can be obtained  295 
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where ooK εε −= 2
  297 

The exponentiated exponential Equation (14) is of the form of a Gompertz-type model in 298 

which the constant parameter )ln(
2
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 is modulated by the sinusoidal function 299 
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ω + ,  and appears very useful for the asymmetric S-shaped experimental 300 

data fitting. For some values of the asymptotic parameter K , the strain )(tε  will decay 301 

exponentially. The first order time derivative of deformation may be expressed as 302 
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3. NUMERICAL RESULTS AND DISCUSSION 305 

 306 
This section presents some numerical examples to investigate the predictive capability of the 307 
model to reproduce the mechanical response of the material considered under relaxation of 308 
stress. The dependence of strain versus time curve on the material parameters is also 309 

discussed. In the following, the material response is investigated at the fixed value 0=K , 310 

1=oε . Therefore, iε  must be less than 1. 311 

 312 

3.1 Case A: oωλ 2>  313 

Figure 2 illustrates the typical time dependent strain behavior of viscoelastic materials 314 

studied, resulting from Equation (8) with the fixed value of coefficients at 9.0=iε , 2=λ , 315 

5.0=oω . We note that the strain )(tε  decreases until the asymptotical value 0=K , that 316 

is, to the time-axis with increase time t , and the elastic spring force )(εϕ  becomes then 317 

equal to zero. The strain versus time curve is nonlinear, with a nonlinear beginning initial 318 
portion. Thus, Equation (8) reproduces the qualitative decay S-shape of the experimental 319 
unloading data mentioned by several authors for a variety of materials (van Loon et al., 320 
1977; Chien et al., 1978; Fukushima and Homma, 1988; Morgounov, 2001; Haslach Jr, 321 
2005; Xia et al., 2006; Thompson, 2009; Mustalahti et al., 2010). 322 
 323 



 

  324 

  325 
 326 
Fig.2. Typical strain versus time curve exhibiting a decay sigmoid behavior. 327 

Figure 3 shows the comparison of the curves of strain )()( ttq i εε −= , and its first order 328 

time derivative 
dt

tdq )(
, that is to say, the strain rate, obtained from equations (8) and (9). 329 

The strain rate, after reaching its peak value at the inflexion point of the strain curve, 330 
declines gradually to zero with time t , when the strain attains the strain value of the failure 331 

point. This behavior of the strain rate has been observed in (Morgounov, 2001). The strain 332 

curve )(tq  reproduces also the qualitative S-shaped curve derived from experiments by 333 

Lesecq et al. (1997). Recently, Mensah et al. (2009), in their theoretical work on the soft 334 
biological materials, have obtained the same S-shaped behavior of the time dependent 335 

deformation. The values of coefficients are 9.0=iε 2=λ , 5.0=oω . 336 

 337 
Fig.3. Comparison of time dependent curves of strain and strain rate derived from equations 338 
(8) and (9), respectively. 339 
 340 
Figure 4, 5 and 6, illustrates the effects of material coefficients on the strain versus time 341 
curve generated by Equation (8). The effects of the action of these coefficients are studied 342 
with the help of an own computer program by varying step by step one coefficient while the 343 
other two are kept constant.  344 
 345 



 

As shown in Figure 4, an increase of the viscosity coefficient λ , decreases the value of the 346 

strain on the time period considered. The slope also decreases with increase λ . The red 347 

line corresponds to 2=λ , the blue line to 3=λ , and the green line to 4=λ .  The other 348 

parameters are 9.0=iε  5.0=oω . 349 

 350 
Fig. 4. Comparison of strain versus time curves for three values of the viscosity coefficient 351 

λ . 352 

Figure 5 shows the effect of the natural frequency oω  variation on the strain-time response. 353 

An increase oω , increases the strain value on the time period considered, increases also the 354 

slope and the curves become more nonlinear. The red line corresponds to 05.0=oω , the 355 

blue line to 1.0=oω , and the green line to 5.0=oω .  The other parameters are 9.0=iε , 356 

2=λ . 357 

 358 
Fig. 5. Comparison of strain-time curves with three different values of the natural frequency 359 

oω . 360 

From Figure 6, we note that change of the coefficient iε  has a high effect on the peak 361 

asymptotical value of strain. We observe that an increase iε , increases significantly and fast 362 

the maximum asymptotical value of strain on the time period considered. The slope 363 



 

increases also with increase iε . The red line corresponds to 3.0=iε , the blue line to 364 

6.0=iε , and the green line to 9.0=iε . The other parameters are 2=λ , 5.0=oω .  365 

 366 

Fig. 6. Comparison of strain versus time curves showing the effect of the coefficient  iε . 367 

3.2 Case B: oωλ 2=  368 

Figure 7 illustrates the typical strain versus time curve derived from Equation (11), with the 369 

fixed value of coefficients at 9.0=iε , 1=λ . The curve exhibits the same limiting value of 370 

0=K . The curve also shows a nonlinear decay sigmoid behavior of materials of interest as 371 

in the preceding case A. 372 

 373 
Fig.7. Typical strain time curve showing decay S-shaped behavior derived from Equation 374 
(11). 375 

 Figure 8 illustrates the comparison of the curves of strain )()( ttq i εε −= , and the strain 376 

rate 
dt

tdq )(
 derived from equations (11) and (12). The strain rate, after attaining its maximum 377 

value at the inflexion point of the strain curve, reduces gradually to zero with time t , when 378 

the strain reaches the strain value of the failure point. These curves reproduce the qualitative 379 
behavior of the time dependent strain and strain rate derived by Morgounov (2001) under 380 

relaxation of stress. The current strain curve )(tq  reproduces also the qualitative S-shaped 381 



 

curve derived from experiments by Lesecq et al. (1997). The values of coefficients are 382 

9.0=iε , 1=λ . 383 

 384 

 385 
Fig.8. Comparison of time dependent curves of strain and strain rate derived from equations 386 
(11) and (12), respectively. 387 

3.3 Case C: oωλ 2<  388 

Figure 9 demonstrates the typical strain versus time curves derived from Equation (14), with 389 

the fixed value of coefficients at 5.0=iε , 1=λ , 1=oω   The curve exhibits the same 390 

limiting value of 0=K , and shows a nonlinear decay exponential behavior of materials of 391 

interest on the time period considered. 392 

 393 
Fig.9. Typical strain time curve showing a decay exponential behavior derived from Equation 394 
(14). 395 
 396 

Figure 10  shows the comparison of the curves of strain )()( ttq i εε −= , and the strain rate 397 

dt

tdq )(
 derived from equations (14) and (15). As noticed previously, the strain rate, after 398 

reaching its maximum value at the inflexion point of the strain curve, decreases gradually to 399 
zero with time t , when the strain reaches the strain value of the failure point. These curves 400 

reproduce also the qualitative behavior of the time dependent strain and strain rate derived 401 



 

by Morgounov (2001) under relaxation of stress. The current strain curve )(tq  reproduces 402 

likewise the qualitative S-shaped curve derived from experiments by Lesecq et al. (1997 ) 403 

and obtained theoretically by Mensah et al. (2009). The values of coefficients are 5.0=iε , 404 

1=λ , 1=oω . 405 

 406 
Fig.10. Comparison of time dependent curves of strain and strain rate derived from 407 
equations (14) and (15), respectively. 408 
 409 
The preceding numerical examples demonstrated that the model is well-suited to represent 410 
the S-shaped deformation response of viscoelastic materials under unloading. The model is 411 
based on the Bauer’s theory (1984) consisting to superpose the elastic, viscous and inertial 412 
nonlinear contributions for obtaining the total stress acting on the material. This method 413 
permitted to perform a complete characterization of the viscoelastic material under study. In 414 
this model, the nonlinear elastic force function is assumed to be a logarithmic law, which 415 
allowed taking into account elastic, viscous and inertial nonlinearities simultaneously, and 416 
deriving successfully the time dependent response of the material studied as a Gompertz-417 
type function that is well known useful for reproducing an asymmetric sigmoid curve. It is 418 
also interesting to note that the Gompertz model is an asymmetric function widely used to 419 
represent increases in several growth phenomena exhibiting a sigmoid pattern, for example, 420 
in physics, biology and biomedical science. The empirical choice of the nonlinear logarithmic 421 

elastic force function )(εϕ  is inspired by the work (Covács et al., 2001) and also justified by 422 

the fact that for oεε <<  , the function )(εϕ  can be developed in power series of 423 

deformation ε . In this regard, the choice of function )(εϕ  agrees very well with the 424 

polynomial function of deformation utilized by Bauer (1984) so that, for small values of 425 

deformation, )(εϕ  behaves linearly as expected. It is worth noting that the effects of 426 

variation of the natural frequency oω   and the viscosity λ  on the current model are in 427 

opposite direction. The damping viscosity relative increase decreases appreciably the 428 
magnitude of the maximum value of the rate of recovery process. Moreover, 429 

choosing 0=K , means that there were almost no residual deformations even at large 430 

stress levels. This involves then almost complete recovery and, the material of interest 431 

behaves viscoelastically. In contrast to this, the coefficient K  can be chosen different from 432 
zero and then, the material will behave viscoplastically. The present model can therefore, 433 

following the value of K , describes successfully the viscoelastic or viscoplastic behavior of 434 
some materials.  435 
    436 



 

4. CONCLUSION 437 

 438 
A mathematical rheological model has been developed by using the stress decomposition 439 
theory. The nonlinear elastic, viscous and inertial contributions characterizing viscoelastic 440 
materials are simultaneously taking into consideration through the use of a logarithm law for 441 
the nonlinear elastic spring force function in the present model. The time dependent 442 
deformation of a variety of materials has been investigated under creep relaxation. It has 443 
been found that the strain reduces gradually following a decay sigmoid behavior, in 444 
concordance with the experimental creep relaxation data existing in the literature. It has 445 
been found also that the total deformation under creep process has a high effect on the 446 
value of the deformation under unloading and, the natural frequency and the viscosity 447 
coefficients effect acting on the material of interest are in opposite direction. The viscous 448 
characteristic relative increase reduces considerably the magnitude of the peak value 449 
of the rate of recovery response. It is even observed that the increase values of material 450 
parameters, to say, of the natural frequency, the viscosity coefficient and the initial 451 
deformation, increases the nonlinear viscoelastic sensitivity. It is worth mentioning that the 452 
present model offers the ability to describe the viscoelastic behavior of the material under 453 
study as well as its viscoplastic response.  454 
 455 
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