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ABSTRACT  14 

 15 

This work shows that the stochastic generalization of the quantum hydrodynamic analogy 
(QHA) has its corresponding stochastic Schrödinger equation (SSE) as similarly happens for 
the deterministic limit. The SSE owns an imaginary random noise that has a finite correlation 
distance, so that when the physical length of the problem is much smaller than it, the SSE 
converges to the standard Schrödinger equation comprehending it. The model shows that in 
non-linear (weakly bounded) systems, the term responsible of the non-local interaction in the 
SSE may have a finite range of efficacy maintaining its non-local effect on a finite distance. A 
non-linear SSE that describes the related large-scale classical dynamics is derived. The work 
also shows that at the edge between the quantum and the classical regime the SSE can lead to 
the semi-empirical Gross-Pitaevskii equation. 
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1. INTRODUCTION  24 

 25 
By using the stochastic generalization of the quantum hydrodynamic analogy (QHA) [1-2] 26 
that describes how fluctuations influence the quantum non-locality and possibly lead to the 27 
large-scale classical evolution, we derive here the corresponding stochastic Schrödinger 28 
equation (SSE) able to describe the classical to quantum transition and to lead to the 29 
classical evolution.  30 
The motivation of using the QHA approach to derive the SSE relies in the fact that it owns a 31 
classical-like structure that allows the achievement of a comprehensive understanding of 32 
quantum and classical phenomena. The QHA well applies to problems whose scale is larger 33 
than that one of small atoms, which are dynamically submitted to environmental fluctuations. 34 
This is confirmed by its success in the description of chromophore-protein complexes and 35 
semi-conducting polymers, dispersive effects in semiconductors, multiple tunneling, 36 
mesocopic and quantum Brownian oscillators, critical phenomena, stochastic Bose-Einstain 37 
condensation and in the theoretical regularization procedure of quantum field [3-13]. The 38 
QHA has resulted useful in the numerical solution of the time-dependent Schrödinger 39 



 

equation [14] and has led to a number of papers and textbooks bringing original 40 
contributions to the comprehension of quantum dynamics [15-18]. Compared to others 41 
classical-like approaches (e.g., the stochastic quantization procedure of Nelson [19] and the 42 
mechanics given by Bohm [20]) the QHA owns a well defined correspondence with the 43 
Schrödinger equation and is free from problems such as the undefined variables of the 44 
Bohmian mechanics [21] or the unclear relation between the statistical and the quantum 45 
fluctuations as in the Nelson theory.  46 
The present work brings the unitary description of the stochastic quantum hydrodynamic 47 
analogy (SQHA) into the Schrödinger approach. The derived SSE owns a theoretical 48 
connection with the classical non-linear Schrödinger equation and the Gross-Pitaevskii one 49 
showing to be usefully applicable to the problems of quantum-to-classical transition [13], 50 
quantum de-coherence [22-26] and quantum treatment of chaos and irreversibility [22].  51 
 52 

2. THEORY: THE SQHA EQUATION OF MOTION  53 
 54 
When the noise is a stochastic function of the space, in the SQHA the motion equation is 55 
described by the stochastic partial differential equation (SPDE) for the spatial density of 56 
number of particles n (i.e., the wave function modulus squared (WFMS)), that reads [2] 57 
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where Θ is the amplitude of the spatially distributed noise η , )q(V  represents the 63 

Hamiltonian potential and )(quV n  is the so-called (non-local) quantum potential [15] that 64 

reads 65 
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Moreover, )(G λ  is the dimensionless shape of the correlation function of the noise η . 67 

The condition that the fluctuations of the quantum potential )(quV n  do not diverge, as Θ 68 

goes to zero (so that the deterministic limit can be warranted) leads to a )(G λ owing the 69 

form [2] 70 
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This result is a direct consequence of the quantum potential form that owns a membrane 72 
elastic-like energy where a higher curvature of the WFMS leads to higher energy. White 73 
fluctuations of the WFMS that bring to a zero curvature wrinkles of the WFMS (and hence to 74 
an infinite quantum potential energy) are not allowed. The fact that, in order to maintain the 75 
system energy finite, independent fluctuations on smaller and smaller distance are 76 
progressively suppressed, leads (in the small noise limit) to the existence of a correlation 77 

distance (let’s name it cλ ) for the noise.  78 

Thence, (2) reads [2] 79 
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and where µ is the WFMS mobility form factor that depends by the specificity of the 83 
considered system [2]. 84 

 85 

2.2 Schrödinger equation from the SQHA 86 
 87 

For Θ = 0 equations (1-5), with the identities 88 
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can be derived [27] by the system of two coupled differential equations that read 94 
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that for the complex variable 97 
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are equivalent to set to zero the real and imaginary part of the Schrödinger equation  99 
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For Θ ≠ 0 the stochastic equations (1-5) can be obtained by the following system of 101 
differential equations  102 
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which for the complex variable (15) are equivalent to the SSE  105 
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2.3 Large-scale local non-linear Schrödinger equation 107 
 108 
In addition to the noise correlation function (7), in the large-distance limit, it is also important 109 

to know the behavior of the quantum force quqqu Vp −∇=
•

. 110 

The relevance of the force generated by the quantum potential at large distance can be 111 
evaluated by the convergence of the integral [2] 112 
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 118 
can evaluate the quantum potential range of interaction.  119 
Faster the Hamiltonian potential grows, more localized is the WFMS and hence stronger is 120 
the quantum potential. For the linear interaction, the Gaussian-type eigenstates leads to a 121 
quadratic quantum potential and, hence, to a linear quantum force, so that 122 

ttancons|Vq|lim quq
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1
 and Lλ diverges. Therefore, in order to have Lλ  finite (so that 123 

the large-scale classical limit can be achieved) we have to deal with a system of particles 124 
interacting by a weaker than the linear interaction.  125 

In the following, we derive local limiting dynamics for the SSE with cλ ∪ Lλ << L∆ . 126 

Given the condition Lλ << L∆ so that it holds  127 
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and cλ << L∆ , by which (11) reads [2] 131 
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where, δp is a small fluctuation of the momentum, since  134 
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from (22) it follows that (18-19) read  138 
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For the wave function (q,t)ψ  the classically stochastic equations of motion (25-26) can be 143 

cast in a non-linear Schrödinger equation (NLSE) that reads: 144 
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2.4 Semi-empirical non-linear Schrödinger equation for quantum-to-classical 146 

transition  147 
 148 
Actually, the exact equation is given by (19) while the former one (28) is just a limiting one 149 
and the formal transformation between them is intrinsic.  150 



 

Alternatively to (19), in order to describe phenomena at the edge between the classical and 151 
the quantum behavior, a semi-empirical equation for passing from (19) to (28) could be more 152 
manageable.  153 

By considering that the when the physical length of the system L∆ is much smaller than the 154 

quantum non-locality length Lλ , the system is quantum, while when Lλ  is very small 155 

compared to L∆ is classic, it is possible to write 156 
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where α  (a dimensionless quantum-to-classical parameter) at first order in a series 158 

expansion as a function of the ratio 
L∆
Lλ

, reads 159 
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In the case when (29) is used to describe a system at the boundary between the quantum 161 

and the classical dynamics (i.e., 1≈
∆L

Lλ
) we have 
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It is interesting to note that Equation (29) for pseudo-Gaussian states that have the large-163 
distance hyperbolic behavior  164 
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such as in the 4He dimer [28], equation (29) acquires the stochastic form of the Gross-168 
Pitaevskii one [29]   169 
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3. DISCUSSION AND CONCLUSIONS 171 

 172 

Being ),t,q( Θα
η a random process with a finite correlation distance cλ , when the physical 173 

length of the problem is much smaller than it, (19) converges to the standard Schrödinger 174 
equation comprehending it. 175 
The stochastic generalization (19) is able to describe the classical states since, in non-linear 176 

(weakly bounded) systems, the term ||
||

q ψ
ψ

ψ 2∇  (that brings the non-local quantum 177 

interaction) may become negligibly small in problems whose scale is much larger than its 178 



 

interaction distance Lλ . The following large-scale limiting classical dynamics is described by 179 

the NLSE (28).  180 
The approximated NLSE describing dynamics near the quantum-to-classical transition (29), 181 
where the non-local quantum interaction term is progressively subtracted (by the factor α ) 182 

for hyperbolic large-distance wave function, such as that one of the 4He dimer, leads to the 183 
Gross-Pitaevskii equation that is well experimentally verified. 184 
From the general point of view the SSE (19) can be helpful in describing at larger extent 185 
open quantum systems where the environmental fluctuations and the classical effects start 186 
to be relevant. 187 
 188 
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NOMENCLATURE 258 
 259 

n : squared wave function modulus     l-3 260 

S : action of the system       m-1 l-2 t 261 
m : mass of structureless particles     m 262 

h  : Plank’s constant       m l2 t-1 263 

c : light speed        l t-1 264 

k : Boltzmann’s constant      m l2 t-2/°K 265 

Θ : Noise amplitude       °K 266 

H : Hamiltonian of the system      m l2 t-2 267 

V : potential energy       m l2 t-2  268 

Vqu : quantum potential energy      m l2 t-2  269 

η : Gaussian noise of WFMS      l-3 t-1  270 

λc : correlation length of squared wave function modulus fluctuations  l 271 

λL : range of interaction of  non-local quantum interaction   l  272 

G(λ) : dimensionless correlation function (shape) of WFMS fluctuations pure number  273 

µ : WFMS mobility form factor      m-1 t  l-6 274 

µ = WFMS mobility constant      m-1 t 275 
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