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ABSTRACT  14 

 15 

The quantum hydrodynamic analogy (QHA) is derived as the deterministic limit of its 
stochastic version. On large scale, the stochastic quantum hydrodynamic analogy (SQHA) 
shows dynamics that may acquire the classic behavior. The SQHA shows that in presence of 
spatially distributed noise the quantum behavior is maintained on a distance shorter than the 

correlation length (λc) of fluctuations of the modulus of the wave function. The quantum 

mechanics is achieved in the deterministic limit when λc tends to infinity with respect to the 

scale of the problem. Moreover, when, the physical length of the problem is of order or larger 

than λc, the model shows that the quantum potential may have a finite range of efficacy 

maintaining its non-local effect on a finite distance λL (“quantum non-locality length”). The 

paper also unveils that the SQHA has the corresponding stochastic Schrödinger equation as 
happens for the deterministic limit. In the case when the classical limit is approached, the model 
shows that the dynamics can be described by a non-linear stochastic Schrödinger equation at 
the glance with the current theoretical outputs. In particular, the work shows that the semi-
empirical Gross-Pitaevskii equation can be derived by the SQHA. 
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1. INTRODUCTION  24 

 25 
The emergence of classical behavior from a quantum system is a problem of interest in 26 
many branches of physics. The incompatibility between the quantum and classical 27 
mechanics comes mainly from the non local character of the quantum mechanics. From the 28 
empirical point of view, it is widely accepted that fluctuations may destroy quantum 29 
coherence and elicit the emergence of the classical behavior. By using the alternative 30 
approach of the quantum hydrodynamic analogy (QHA) [1] in this paper we investigate how 31 
the fluctuations influence the quantum non locality and possibly lead to the large-scale 32 
classical evolution.  33 



 

The motivation of using the unpopular QHA relies in the fact that it owns a classical-like 34 
structure that makes it suitable for the achievement of a comprehensive understanding of 35 
quantum and classical phenomena. The suitability of the classical-like theories in explaining 36 
open quantum phenomena is a matter of fact and is confirmed by their success in the 37 
description of the dispersive effects in semiconductors, multiple tunneling, mesocopic and 38 
quantum Brownian oscillators, critical phenomena, stochastic Bose-Einstain condensation 39 
and in the theoretical regularization procedure of quantum field [2-12]. The interest for the 40 
QHA had never interrupted, resulting useful in the numerical solution of the time-dependent 41 
Schrödinger equation [13], and had led to a number of papers and textbooks bringing 42 
original contributions to the comprehension of quantum dynamics [14-16] in problem whose 43 
scale is larger that one of small atoms such as chromophore-protein complexes and semi-44 
conducting polymers that are dynamically submitted to environmental fluctuations. 45 
Compared to others classical-like approaches (e.g., the stochastic quantization procedure of 46 
Nelson [17] and the mechanics given by Bohm [18]) the QHA has the precious property to 47 
be exactly equivalent to the Schrödinger equation and to be free from problems such as the 48 
undefined variables of the Bohmian mechanics or the unclear relation between the statistical 49 
and the quantum fluctuations as in the Nelson theory. Concerning the last point, as clearly 50 
shown by Tsekov [19], it must be noted that the QHA has not to be confused with the 51 
Bohmian mechanics that is more like a mean-field limit of quantum mechanics.  52 
Among the researches to which the present work has useful connections there are: The 53 
clarification of the hierarchy between the classical and quantum mechanics [17-19]; the 54 
description of mesoscopic system showing quantum-to classical transition [12]; the interplay 55 
between the fluctuations and the quantum coherence [20-24], The achievement of a 56 
consistent theory of quantum gravity [10]; The quantum treatment of chaos and irreversibility 57 
[20].  58 
 59 

2. THEORY: THE SQHA EQUATION OF MOTION  60 
 61 
When the noise is a stochastic function of the space, in the quantum hydrodynamic analogy 62 
the motion equation is described by the stochastic partial differential equation (SPDE) for the 63 
spatial density of number of particles n (i.e., the wave function modulus squared (WFMS)), 64 
that  reads [25] 65 
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where Θ is the amplitude of the spatially distributed noise η whose covariance matrix reads 71 
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where )(G λ  is the dimensionless shape of the correlation function of the noise. Moreover,   73 

)q(V  represents the Hamiltonian potential and )(quV n , the so called (non-local) quantum 74 

potential [14], that reads 75 
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 78 
Close to the quantum deterministic limit the WFMS can be developed in a series of 79 

approximation n ≅ n
0
 + ∆n

1
+ ∆n

2
+….+ ∆n

n 
, where n

0
 is the solution of the deterministic 80 

limit [25]. The condition that the fluctuations of the quantum potential )(quV n  do not diverge, 81 

as Θ goes to zero (so that the deterministic limit can be warranted) is implemented by 82 
operating on the system of the discrete version of the SPDE (1) whose variable reads 83 
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where the space hyper-cell ∆i =[(q(i−1), (q(i) )] (with q(i) - q(i−1)= λ) is taken  around the 85 

discrete point q(i) .  86 

In the limit of small Θ, the quantum potential fluctuations can be derived as a function of the 87 

fluctuations of the WFMS at the smallest order n
0
 + ∆n

1
 . The results show that, in order to 88 

have the quantum potential energy finite in the fluctuating state, i.e.,  limλ→0 <<<<Vqu,Vqu> finite, 89 

the following conditions must be fulfilled 90 
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Relations (7-9) can be easily understood observing that the quantum potential owns a 94 
membrane elastic-like behavior where a higher curvature of the WFMS leads to higher 95 
energy. The fact that white fluctuations of the WFMS brings to a zero curvature wrinkles of 96 
the WFMS (and hence an infinite quantum potential energy) does not allow the realization of 97 
such a condition. The fact that independent fluctuations on smaller and smaller distance are 98 

progressively suppressed, means that exists a characteristic distance (let’s name cλ ) above 99 

which  the WFMS fluctuations are restrained  in order to maintain the system energy finite.  100 

Developing G(λ) in series expansion (for small Θ) as a function of λ/λc, where λc is 101 

analytically defined further on,   such as 102 
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  104 
it follows that (7-9) are verified if a0 = 1, a1= 0, and a3 = 0, while no condition applies to the 105 

coefficients a2 and an with  n ≥ 4 that are unable to produce the divergence of (7-9) and 106 

remain undefined. Therefore, G(λ) reads  107 
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where without a leaking of generality we can put 12 +=a  by a re-definition of the spatial cell 109 

side λ such as λλ 21
2
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In order to obtain a model holding also for a large-scale approach, we investigate in detail 111 

the model with 12 −=a  ( 12 =a  does not warrant the ergodicity) with the shape of the 112 

correlation function that reads 113 
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where [25] 117 
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and where µ is the WFMS mobility form factor that depends by specificity of the considered 119 
system [25]. 120 
 121 

2.1 Quantum non-locality length λλλλL  122 
 123 
In addition to the noise correlation function (12), to obtain the large-scale form of equations 124 

(15-23) we need to investigate the importance of the quantum force quqqu Vp −∇=
•

in (2) in 125 

the large-distance limit. 126 
As shown in reference [25] the relevance of the force generated by the quantum potential 127 

(i.e., |V| quq∇ )  at large distance can be evaluated by the convergence of the integral 128 
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It is worth noting that for Gaussian-type states (as for linear systems) owing a quadratic 134 
quantum potential, so that it holds  135 
 136 
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λL results infinite. In this case, the quantum non-local behavior is also effective on the large 139 

scale dynamics.  140 
 141 

2.2 Schrödinger equation from the SQHA 142 
 143 

For Θ = 0 equation (1-3) with the identities 144 
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can be derived [26] by the system of two coupled differential equations that read 154 
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that for the complex variable 160 
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is equivalent to set to zero the real and imaginary part of the Schrödinger equation  164 
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For Θ ≠ 0 the stochastic equations (1-3) can be obtained by the following system of 168 
differential equations  169 
 170 
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 174 
that for the complex variable (22) are equivalent to the stochastic Schrödinger equation  175 
 176 
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2.3 Limiting dynamics 179 

 180 

Generally speaking, given a problem with a physical length ∆L, depending by the two lengths 181 

λc and λL , built-in into the SQHA, various  limiting dynamics follow: 182 

1) Non-local deterministic dynamics (i.e., the standard quantum mechanics) with ∆L << λc  ∪ 183 

λL (e.g., Θ → 0). In this case it follows that 184 
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2) Non-local stochastic dynamics, with λc  << ∆L << λL  191 
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In this case the stochastic Schrödinger equation (26) reads 194 
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3) Local stochastic dynamics, with  λc  ∪ λL <<∆L. 200 

Given the condition λL <<∆L so that it holds  201 
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the SPDE of motion acquires the form 205 
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where δp is a small fluctuation of the momentum and  210 
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In this case, by using the identities (17-19) we can write  212 
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Clearly, it is not possible to obtain the Schrödinger equation by (37-38) since S given by (35) 218 

converges to the classical value clS   219 
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Nevertheless, for the wave function (q,t)ψ  the classical stochastic equation of motion (37-223 

38) can be cast in a non-linear Schrödinger equation that reads: 224 
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 227 

The former differential equation describes the evolution of a particle spatial density |ψ| owing 228 

a classical action clS . Actually, the exact equation is given by (26) while the former one (40) 229 

is just a limiting one and the formal transformation between them is just intrinsic.  230 



 

Alternatively, in order to describe phenomena at the edge between the classical and the 231 
quantum behavior, a semi-empirical equation for passing from (26) to (40) could be more 232 
manageable.  233 

By considering that the when the physical length of the system ∆L is much smaller than the 234 

quantum non-locality length Lλ , the system is quantum, while when Lλ  is very small 235 

compared to ∆L is classic, it is possible to write 236 
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where α  at first order in a series expansion as a function of the dimensionless parameter 240 
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In the case when (41) is used to describe a system at the edge between the quantum and 245 

classical dynamics (i.e., 1
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It is interesting to note that Equation (41) for pseudo-Gaussian states that have the large-247 
distance hyperbolic behavior  248 
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such as in the 4He dimer [27], equation (41) acquires the stochastic form of the Gross-257 
Pitaevskii one [28]   258 
 259 
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3. DISCUSSION 264 

 265 

The existence of λ L finite allows fluctuations, as small as we like, to overcome the quantum 266 
force on large distance so that the quantum non-locality can only be maintained on a finite 267 

distance of order of λ L �. Since λ L finite can steam out from a large number of real non-268 
linear potentials, while the case of an infinite quantum non-locality length (such as in the 269 
linear case) actually seems to be an exception, the classical mechanics realizes itself on the 270 
scale of  macroscopic physics. Generally speaking, it must be observed that even thought 271 

fluctuations are present, in the case of an infinite λ L, they are not sufficient to break the 272 
quantum mechanics and to lead to the classical one. Under this light, the macro-scale 273 
description is not sufficient to obtain the classical behavior if not coupled to a finite quantum 274 
non-locality. With this respect, the WKB approximation is an illuminating example being the 275 
non-local large-scale description but the classical limit.  276 

Fluctuations may break quantum non-locality in non-linear systems (λ L finite) when, in this 277 
case, the quantum pseudo-potential decreases with distance and, beyond the non-locality 278 

length λ L, it becomes much smaller than its fluctuations and can be neglected. It must be 279 

mentioned that, only in the stochastic approach the quantum potential can be correctly 280 
neglected while it cannot be taken off by the deterministic equation (1-3) because in such a 281 
case this operation will change the structure of the equation [25] destroying the quantum 282 
stationary states (i.e., eigenstates) and deeply changing the evolution of the system in a 283 
sufficiently short interval of time. 284 

 285 

4. CONCLUSION 286 

 287 
The SQHA shows that the quantum potential in presence of spatial noise modifies the shape 288 
of the fluctuations of the WFMS suppressing them on a distance much shorter than a 289 

characteristic length (of quantum coherence)
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consequence of that,  the quantum mechanics is achieved when the physical scale of the 291 

problem is much smaller than λc (e.g., the deterministic limit of null noise amplitude Θ = 0). 292 

The correlation function of the WFMS fluctuations (and its characteristic distance λc) for 293 

small noise amplitude Θ , has been derived by imposing that the system energy in the 294 
fluctuating state does not diverge but remains finite. The model highlights that in the 295 

stochastic case, beyond the quantum coherence length λc,  the non-local quantum potential 296 

may have a finite range of interaction maintaining the quantum non-local behavior on a 297 

distance of order of “quantum non-locality length” λL . The value of λL depends both by the 298 

fluctuations amplitude and by the inter-particle law of interaction: systems interacting by 299 
linear or stronger forces have an infinite range of quantum potential interaction; system with 300 

weaker a potential, such as the  Lennard-Jones one can have a finite λL . For non-linear 301 

interactions, the noise may produce quantum non-locality breaking when the force of the 302 

quantum potential decreases and becomes vanishing at large distance (beyond λL finite) 303 

becoming negligible with respect to the fluctuations. For h  ≠ 0 the classical stochastic 304 

behavior is achieved when λc
  
as well as λL are negligibly small with respect to the physical 305 

length of the problem, while for the (unphysical) case of h  = 0 the deterministic classical 306 
mechanics is realized. The SQHA model furnishes a unified approach for the quantum and 307 
the classical behavior. The quantum mechanics is deterministic (at glance with satisfying 308 
philosophical requirements of the quantum mechanics) while the classical one is achieved 309 



 

when, beyond λL, fluctuations overcome and disrupt the quantum potential force in building 310 

up the quantum eigenstates.  311 
Finally, the SQHA is able to give a theoretical support to the formulation of the semi-312 
empirical Gross-Pitaevskii equation needed to describe the open quantum mechanics where 313 
the environmental fluctuations and the classical effects start to be relevant. 314 
 315 
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 382 

NOMENCLATURE 383 
 384 

n : squared wave function modulus     l-3 385 

S : action of the system       m-1 l-2 t 386 
m : mass of structureless particles     m 387 

h  : Plank’s constant       m l2 t-1 388 

c : light speed        l t-1 389 

k : Boltzmann’s constant      m l2 t-2/°K 390 

Θ : Noise amplitude       °K 391 

H : Hamiltonian of the system      m l2 t-2 392 

V : potential energy       m l2 t-2  393 

Vqu : quantum potential energy      m l2 t-2  394 

η : Gaussian noise of particle density     l-3 t-1  395 

λc : correlation length of squared wave function modulus fluctuations  l 396 

λL : range of interaction of  non-local quantum interaction   l  397 

G(λ) : dimensionless correlation function (shape) of WFMS fluctuations pure number  398 

µ : WFMS mobility form factor      m-1 t  l-6 399 

µ = WFMS mobility constant      m-1 t 400 
 401 

 402 


