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structure of solitons on the different physical parameters is investigated. 22 
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1. INTRODUCTION  27 

 28 
We deliver here some main ideas and deductions of the generalized Boltzmann 29 

physical kinetics and non-local physics developed by B. Alexeev (see for example [1 – 10]). 30 
For simplicity, the fundamental methodic aspects are considered from the qualitative 31 
standpoint of view avoiding excessively cumbersome formulas. A rigorous description can 32 
be found, for example, in the monograph [6].  33 

In 1872 L Boltzmann [11, 12] published his kinetic equation for the one-particle 34 

distribution function (DF) (((( ))))tf ,, vr . He expressed the equation in the form 35 

                                                 (((( ))))fJDtDf B==== ,                                              (1.1) 36 
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(particle) derivative, v  and r  being the velocity and radius vector of the particle, 38 

respectively. Boltzmann equation (1.1) governs the transport processes in a one-component 39 
gas, which is sufficiently rarefied that only binary collisions between particles are of 40 
importance and valid only for two character scales, connected with the hydrodynamic time-41 
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scale and the time-scale between particle collisions. While we are not concerned here with 42 
the explicit form of the collision integral, note that it should satisfy conservation laws of point-43 
like particles in binary collisions. Integrals of the distribution function (i.e. its moments) 44 
determine the macroscopic hydrodynamic characteristics of the system, in particular the 45 

number density of particles n  and the temperature T . The Boltzmann equation (BE) is not 46 

of course as simple as its symbolic form above might suggest, and it is in only a few special 47 
cases that it is amenable to a solution. One example is that of a maxwellian distribution in a 48 
locally, thermodynamically equilibrium gas in the event when no external forces are present. 49 

In this case the equality 0====BJ  and 0ff ====  is met, giving the maxwellian distribution 50 

function 0f . A weak point of the classical Boltzmann kinetic theory is the way it treats the 51 

dynamic properties of interacting particles. On the one hand, as the so-called “physical” 52 
derivation of the BE suggests, Boltzmann particles are treated as material points; on the 53 
other hand, the collision integral in the BE brings into existence the cross sections for 54 
collisions between particles. A rigorous approach to the derivation of the kinetic equation for 55 

f  (noted in following as fKE ) is based on the hierarchy of the Bogolyubov-Born-Green-56 

Kirkwood-Yvon (BBGKY) [1, 6, 13, 14] equations.  57 

A fKE  obtained by the multi-scale method turns into the BE if one ignores the 58 

change of the distribution function (DF) over a time of the order of the collision time (or, 59 
equivalently, over a length of the order of the particle interaction radius). It is important to 60 
note [1 - 6] that accounting for the third of the scales mentioned above leads (prior to 61 
introducing any approximation destined to break the Bogolyubov chain) to additional terms, 62 
generally of the same order of magnitude, appear in the BE. If the correlation functions is 63 

used to derive fKE  from the BBGKY equations, then the passage to the BE means the 64 

neglect of non-local effects.  65 
Given the above difficulties of the Boltzmann kinetic theory, the following clearly inter 66 

related questions arise. First, what is a physically infinitesimal volume and how does its 67 
introduction (and, as the consequence, the unavoidable smoothing out of the DF) affect the 68 
kinetic equation? This question can be formulated in (from the first glance) the paradox form 69 
– what is the size of the point in the physical system? Second, how does a systematic 70 

account for the proper diameter of the particle in the derivation of the fKE  affect the 71 

Boltzmann equation? In the theory developed by B. Alexeev, we refer to the corresponding 72 

fKE  as Generalized Boltzmann Equation (GBE). The derivation of the GBE and the 73 

applications of GBE are presented, in particular, in monograph [6]. Accordingly, our purpose 74 
is first to explain the essence of the physical generalization of the BE. 75 

Let a particle of finite radius be characterized, as before, by the position vector r  76 
and velocity v  of its center of mass at some instant of time t . Let us introduce physically 77 

small volume (PhSV) as element of measurement of macroscopic characteristics of physical 78 
system for a point containing in this PhSV. We should hope that PhSV contains sufficient 79 

particles phN  for statistical description of the system. In other words, a net of physically 80 

small volumes covers the whole investigated physical system. 81 
Every PhSV contains entire quantity of point-like Boltzmann particles, and the same 82 

DF f  is prescribed for whole PhSV in Boltzmann physical kinetics. Therefore, Boltzmann 83 

particles are fully “packed” in the reference volume. Let us consider two adjoining physically 84 

small volumes 1PhSV  and 2PhSV . We have in principle another situation for the particles 85 

of finite size moving in physical small volumes, which are open thermodynamic systems. 86 
Then, the situation is possible where, at some instant of time t, the particle is located 87 

on the interface between two volumes. In so doing, the lead effect is possible (say, for 88 
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2PhSV ), when the center of mass of particle moving to the neighboring volume 2PhSV  is 89 

still in 1PhSV . However, the delay effect takes place as well, when the center of mass of 90 

particle moving to the neighboring volume (say, 2PhSV ) is already located in 2PhSV  but a 91 

part of the particle still belongs to 1PhSV .  92 

Moreover, even the point-like particles (starting after the last collision near the 93 
boundary between two mentioned volumes) can change the distribution functions in the 94 
neighboring volume. The adjusting of the particles dynamic characteristics for translational 95 
degrees of freedom takes several collisions. As result, we have in the definite sense “the 96 
Knudsen layer” between these volumes. This fact unavoidably leads to fluctuations in mass 97 
and hence in other hydrodynamic quantities. Existence of such “Knudsen layers” is not 98 
connected with the choice of space nets and fully defined by the reduced description for 99 
ensemble of particles of finite diameters in the conceptual frame of open physically small 100 
volumes, therefore – with the chosen method of measurement. 101 

This entire complex of effects defines non-local effects in space and time. The 102 
corresponding situation is typical for the theoretical physics – we could remind about the role 103 
of probe charge in electrostatics or probe circuit in the physics of magnetic effects. 104 

Suppose that DF f  corresponds to 1PhSV  and DF ff ∆∆∆∆−  is connected with 105 

2PhSV  for Boltzmann particles. In the boundary area in the first approximation, fluctuations 106 

will be proportional to the mean free path (or, equivalently, to the mean time between the 107 
collisions). Then for PhSV the correction for DF should be introduced as  108 

                                                  DtDfff
a τ−=                                            (1.2) 109 

in the left hand side of classical BE describing the translation of DF in phase space. As the 110 
result  111 

                                                      
Ba

JDtDf = ,                                              (1.3) 112 

where 
B

J  is the Boltzmann local collision integral.  113 

Important to notice that it is only qualitative explanation of GBE derivation obtained 114 
earlier (see for example [6]) by different strict methods from the BBGKY – chain of kinetic 115 

equations. The structure of the fKE  is generally as follows 116 

                                                             
nonlocalB JJ

Dt

Df
+= ,                                      (1.4) 117 

where 
nonlocal

J  is the non-local integral term incorporating the non-local time and space 118 

effects. The generalized Boltzmann physical kinetics, in essence, involves a local 119 
approximation 120 

                                                           







====

Dt
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J nonlocal τ                                       (1.5) 121 

for the second collision integral, here τ  being the mean time between the particle collisions. 122 

We can draw here an analogy with the Bhatnagar - Gross - Krook (BGK) approximation for 123 
B

J , 124 

                                                              
τ

ff
J

B −−−−
==== 0

,                                                   (1.6) 125 

which popularity as a means to represent the Boltzmann collision integral is due to the huge 126 
simplifications it offers. In other words – the local Boltzmann collision integral admits 127 
approximation via the BGK algebraic expression, but more complicated non-local integral 128 
can be expressed as differential form (1.5). The ratio of the second to the first term on the 129 
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right-hand side of Eq. (1.4) is given to an order of magnitude as )Kn( 2
OJJ

Bnonlocal ≈  130 

and at large Knudsen numbers (Kn defining as ratio of mean free path of particles to the 131 
character hydrodynamic length) these terms become of the same order of magnitude. It 132 
would seem that at small Knudsen numbers answering to hydrodynamic description the 133 
contribution from the second term on the right-hand side of Eq. (1.4) is negligible.  134 

This is not the case, however. When one goes over to the hydrodynamic 135 
approximation (by multiplying the kinetic equation by collision invariants and then integrating 136 
over velocities), the Boltzmann integral part vanishes, and the second term on the right-hand 137 
side of Eq. (1.4) gives a single-order contribution in the generalized Navier - Stokes 138 
description. Mathematically, we cannot neglect a term with a small parameter in front of the 139 
higher derivative. Physically, the appearing additional terms are due to viscosity and they 140 

correspond to the small-scale Kolmogorov turbulence [6]. The integral term 
nonlocal

J  turns 141 

out to be important both at small and large Knudsen numbers in the theory of transport 142 

processes. Thus, DtDfτ  is the distribution function fluctuation, and writing Eq. (1.3) 143 

without taking into account Eq. (1.2) makes the BE non-closed. From viewpoint of the 144 

fluctuation theory, Boltzmann employed the simplest possible closure procedure ff a = .  145 

Then, the additional GBE terms (as compared to the BE) are significant for any Kn, 146 
and the order of magnitude of the difference between the BE and GBE solutions is 147 
impossible to tell beforehand. For GBE the generalized H-theorem is proven [3, 6]. 148 
 It means that the local Boltzmann equation does not belong even to the class of 149 
minimal physical models and corresponds so to speak to “the likelihood models”. This 150 
remark refers also to all consequences of the Boltzmann kinetic theory including “classical” 151 
hydrodynamics. 152 
 Obviously the generalized hydrodynamic equations (GHE) will explicitly involve 153 
fluctuations proportional to τ . In the hydrodynamic approximation, the mean time τ  154 

between the collisions is related to the dynamic viscosity µ  by  155 

                                                                       µτ Π=p ,                                                 (1.7) 156 

[13, 14]. For example, the continuity equation changes its form and will contain terms 157 
proportional to viscosity. On the other hand, if the reference volume extends over the whole 158 
cavity with the hard walls, then the classical conservation laws should be obeyed, and this is 159 
exactly what the monograph [6] proves. Now several remarks of principal significance: 160 
 1. All fluctuations are found from the strict kinetic considerations and tabulated [6]. 161 
The appearing additional terms in GHE are due to viscosity and they correspond to the 162 
small-scale Kolmogorov turbulence. The neglect of formally small terms is equivalent, in 163 
particular, to dropping the (small-scale) Kolmogorov turbulence from consideration and is the 164 
origin of all principal difficulties in usual turbulent theory. Fluctuations on the wall are equal to 165 
zero, from the physical point of view this fact corresponds to the laminar sub-layer. 166 
Mathematically it leads to additional boundary conditions for GHE. Major difficulties arose 167 
when the question of existence and uniqueness of solutions of the Navier - Stokes equations 168 
was addressed.  169 

O. A. Ladyzhenskaya has shown for three-dimensional flows that under smooth 170 
initial conditions a unique solution is only possible over a finite time interval. Ladyzhenskaya 171 
even introduced a “correction” into the Navier - Stokes equations in order that its unique 172 
solvability could be proved; GHE do not lead to these difficulties.  173 
 2. It would appear that in continuum mechanics the idea of discreteness can be 174 
abandoned altogether and the medium under study be considered as a continuum in the 175 
literal sense of the word. Such an approach is of course possible and indeed leads to the 176 
Euler equations in hydrodynamics. However, when the viscosity and thermal conductivity 177 
effects are to be included, a totally different situation arises. As is well known, the dynamical 178 
viscosity is proportional to the mean time τ  between the particle collisions, and a continuum 179 
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medium in the Euler model with 0=τ  implies that neither viscosity nor thermal conductivity 180 

is possible. 181 
3. The non-local kinetic effects listed above will always be relevant to a kinetic theory 182 

using one particle description – including, in particular, applications to liquids or plasmas, 183 
where self-consistent forces with appropriately cut-off radius of their action are introduced to 184 
expand the capability of GBE [5, 6]. Fluctuation effects occur in any open thermodynamic 185 
system bounded by a control surface transparent to particles. GBE (1.3) leads to generalized 186 
hydrodynamic equations [6] as the local approximation of non local effects, for example, to 187 
the continuity equation 188 

                                                            ( ) 00 =⋅
∂

∂
+

∂

∂ a
a

t
v

r
ρ

ρ
,                                       (1.8) 189 

where 
aρ , 

a

0v , ( )a

0vρ  are calculated in view of non-locality effect in terms of gas density 190 

ρ , hydrodynamic velocity of flow 0v , and density of momentum flux 0vρ ; for locally 191 

Maxwellian distribution, 
aρ , ( )a

0vρ  are defined by the relations 192 
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                                                                                                                                          (1.9) 194 

where I
t

 is a unit tensor, and a  is the acceleration due to the effect of mass forces.  195 

In the general case, the parameter τ � is the non-locality parameter; in quantum 196 

hydrodynamics, the “time-energy” uncertainty relation defines its magnitude. Obviously the 197 
mentioned non-local effects can be discussed from viewpoint of breaking of the Bell’s 198 

inequalities [15] because in the non-local theory the measurement (realized in 1PhSV ) has 199 

influence on the measurement realized in the adjoining space-time point in 2PhSV  and 200 

verse versa. 201 
The violation of Bell’s inequalities [15] is found for local statistical theories, and the 202 

transition to non-local description is inevitable.  203 
Notice that the application of the above principles also leads to the modification of 204 

the system of Maxwell equations. While the traditional formulation of this system does not 205 
involve the continuity equation, its derivation explicitly employs the equation 206 

                                                                0=⋅
∂

∂
+

∂

∂ a
a

t
j

r

ρ
,                                          (1.10) 207 

where 
aρ  is the charge per unit volume, and 

aj  is the current density, both calculated 208 

without accounting for the fluctuations. As a result, the system of Maxwell equations written 209 
in the standard notation, namely 210 

                            0=⋅
∂

∂
B

r
, 

aρ=⋅
∂

∂
D

r
, 

t∂

∂
−=×

∂

∂ B
E

r
, 

t

a

∂

∂
+=×

∂

∂ D
jH

r
        (1.11) 211 

contains  212 

                                                         
fla ρρρ −= , 

fla jjj −= .                                  (1.12) 213 

The 
flρ , 

flj  fluctuations calculated using the generalized Boltzmann equation are given, for 214 

example, in Ref. [2, 4, 6].  215 
Now we can turn our attention to the quantum hydrodynamic description of individual 216 

particles. The abstract of the classical Madelung’s paper [16] contains only one phrase: “It is 217 
shown that the Schrödinger equation for one-electron problems can be transformed into the 218 
form of hydrodynamic equations”. 219 
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The following conclusion of principal significance can be done from the generalized 220 
quantum consideration [7, 8]: 221 

1. Madelung’s quantum hydrodynamics is equivalent to the Schrödinger equation (SE) 222 
and leads to description of the quantum particle evolution in the form of Euler 223 
equation and continuity equation. 224 

2. SE is consequence of the Liouville equation as result of the local approximation of 225 
non-local equations. 226 

3. Generalized Boltzmann physical kinetics defines the strict approximation of non-227 
local effects in space and time and after transmission to the local approximation 228 
leads to parameter τ , which on the quantum level corresponds to the uncertainty 229 

principle “time-energy”. 230 
4. GHE lead to SE as a deep particular case of the generalized Boltzmann physical 231 

kinetics and therefore of non-local hydrodynamics. 232 
In principal GHE needn’t in using of the “time-energy” uncertainty relation for estimation of 233 
the value of the non-locality parameter τ . Moreover, the “time-energy” uncertainty relation 234 

does not lead to the exact relations and from position of non-local physics is only the 235 
simplest estimation of the non-local effects.  236 

 Really, let us consider two neighboring physically infinitely small volumes 1PhSV  237 

and 2PhSV  in a non-equilibrium system. Obviously the time τ  should tend to diminish with 238 

increasing of the velocities u  of particles invading in the nearest neighboring physically 239 

infinitely small volume ( 1PhSV  or 2PhSV ): 240 

                                                                      
n

uH=τ .                                               (1.13) 241 

However, the value τ  cannot depend on the velocity direction and naturally to tie τ  with the 242 

particle kinetic energy, then  243 

                                                                      2mu
H=τ ,                                             (1.14) 244 

where H  is a coefficient of proportionality, which reflects the state of physical system. In the 245 

simplest case H  is equal to Plank constant h  and relation (1.14) becomes compatible with 246 
the Heisenberg relation.  247 

It is known that Ehrenfest adiabatic theorem is one of the most important and widely 248 
studied theorems in Schrödinger quantum mechanics. It states that if we have a slowly 249 
changing Hamiltonian that depends on time, and the system is prepared in one of the 250 
instantaneous eigenstates of the Hamiltonian then the state of the system at any time is 251 
given by an the instantaneous eigenfunction of the Hamiltonian up to multiplicative phase 252 
factors [17 - 21]. Since the establishment of this theorem many fundamental results have 253 
been obtained, such as Landau – Zener transition [17, 18], the Gell-Mann-Low theorem [19], 254 
Berry phase [20] and holonomy [21].  255 
 The adiabatic theory can be naturally incorporated in generalized quantum 256 
hydrodynamics based on local approximations of non-local terms. In the simplest case if 257 

Q∆  is the elementary heat quantity delivered for a system executing the transfer from one 258 

state (the corresponding time moment is int ) to the next one (the time moment et ) then  259 

                                                            ( )τδ
τ

TQ 2
1

=∆ ,                                                (1.15) 260 

where ine tt −=τ  and T  is the average kinetic energy. For adiabatic case Ehrenfest 261 

supposes that 262 

                                                            ,...,2 21 ΩΩ=τT                                                (1.16) 263 
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where ,..., 21 ΩΩ  are adiabatic invariants. Obviously for Plank’s oscillator (compare with 264 

(1.14)) 265 

                                                              nhT =τ2 .                                                        (1.17) 266 

Conclusion: adiabatic theorem and consequences of this theory deliver the general 267 
quantization conditions for non-local quantum hydrodynamics. 268 
 Non-local physics demonstrates its high efficiency in many fields – from the atom 269 
structure problems to cosmology [9, 10]. 270 

The possibility of the non local physics application in the theory of superconductivity 271 
is investigated in [22 - 24]. It is shown that by the superconducting conditions the relay 272 
(“estafette”) motion of the soliton’ system (“lattice ion – electron”) is realizing without creation 273 
of the additional chemical bonds. From the position of the quantum hydrodynamics the 274 
problem of creation of the high temperature superconductors leads to finding of materials 275 
which lattices could realize the soliton’ motion without the soliton destruction. These 276 
materials should be created using the technology of quantum dots. 277 

This paper is directed on investigation of possible applications of the non-local 278 
quantum hydrodynamics in the theory of transport processes in graphene including the 279 
effects of the charge density waves (CDW). Is known that graphene, a single-atom-thick 280 
sheet of graphite, is a new material which combines aspects of semiconductors and metals. 281 
For example the mobility, a measure of how well a material conducts electricity, is higher 282 
than for other known material at room temperature. In graphene, a resistivity is of about 1.0 283 
microOhm-cm (resistivity defined as a specific measure of resistance; the resistance of a 284 
piece material is its resistivity times its length and divided by its cross-sectional area). This is 285 
about 35 percent less than the resistivity of copper, the lowest resistivity material known at 286 
room temperature.  287 

Measurements lead to conclusion that the influence of thermal vibrations on the 288 
conduction of electrons in graphene is extraordinarily small. From the other side the typical 289 
reasoning exists: 290 

“In any material, the energy associated with the temperature of the material causes 291 
the atoms of the material to vibrate in place. As electrons travel through the material, they 292 
can bounce off these vibrating atoms, giving rise to electrical resistance. This electrical 293 
resistance is "intrinsic" to the material: it cannot be eliminated unless the material is cooled 294 
to absolute zero temperature, and hence sets the upper limit to how well a material can 295 
conduct electricity.”  296 

Obviously this point of view leads to the principal elimination of effects of the high 297 
temperature superconductivity. From the mentioned point of view the restrictions in mobilities 298 
of known semiconductors can be explained as the influence of the thermal vibration of the 299 

atoms. The limit to mobility of electrons in graphene is about 200,000 ( ))/2 sVcm ⋅  at room 300 

temperature, compared to about 1,400 ( ))/2 sVcm ⋅  in silicon, and 77,000 ( ))/2 sVcm ⋅  in 301 

indium antimonide, the highest mobility conventional semiconductor known. The opinion of a 302 
part of investigators can be formulated as follows: "Other extrinsic sources in today's fairly 303 
dirty graphene samples add some extra resistivity to graphene," (see for example [25]) "so 304 
the overall resistivity isn't quite as low as copper's at room temperature yet. However, 305 
graphene has far fewer electrons than copper, so in graphene the electrical current is carried 306 
by only a few electrons moving much faster than the electrons in copper." Mobility 307 
determines the speed at which an electronic device (for instance, a field-effect transistor, 308 
which forms the basis of modern computer chips) can turn on and off. The very high mobility 309 
makes graphene promising for applications in which transistors much switch extremely fast, 310 
such as in processing extremely high frequency signals. The low resistivity and extremely 311 
thin nature of graphene also promises applications in thin, mechanically tough, electrically 312 
conducting, transparent films. Such films are sorely needed in a variety of electronics 313 
applications from touch screens to photovoltaic cells. 314 
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In the last years the direct observation of the atomic structures of superconducting 315 
materials (as usual superconducting materials in the cuprate family like YBa2Cu3O6.67 316 
(Tc = 67 K)) was realized with the scanning tunneling microscope (STM) and other 317 
instruments, STMs scan a surface in steps smaller than an atom. 318 

Superconductivity, in which an electric current flows with zero resistance, was first 319 
discovered in metals cooled very close to absolute zero. New materials called cuprates - 320 
copper oxides "doped" with other atoms -- superconduct as "high" as minus 123 Celsius. 321 
Some conclusions from direct observations [26, 27]: 322 

1. Observations of high-temperature superconductors show an "energy gap" where 323 
electronic states are missing. Sometimes this energy gap appears but the material still does 324 
not superconduct - a so-called "pseudogap" phase. The pseudogap appears at higher 325 
temperatures than any superconductivity, offering the promise of someday developing 326 
materials that would superconduct at or near room temperature.  327 

2. STM image of a partially doped cuprate superconductor shows regions with an 328 
electronic "pseudogap". As doping increases, pseudogap regions spread and connect, 329 
making the whole sample a superconductor. 330 

3. High temperature superconductivity in layered cuprates can develop from an 331 
electronically ordered state called a charge density wave (CDW). The results of observation 332 
can be interpreted as the creation of the "checkerboard pattern" due to the modulation of the 333 

atomic positions in the 2CuO  layers of x632 OCuYBa +  caused by the charge density wave. 334 

4. Application of the method of high-energy X-ray diffraction shows that a CDW 335 
develop at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). Below 336 
Tc the application of a magnetic field suppresses superconductivity and enhances the CDW. 337 
It means that the high-Tc superconductivity forms from a pre-existing CDW environment.  338 
Important conclusion: high temperature superconductors demonstrate new type of electronic 339 
order and modulation of atomic positions. As it was shown in [22, 24] the mentioned above 340 
graphene properties can be explained only in the frame of the self-consistent non-local 341 
quantum theory (see for example [7, 8]) which leads to appearance of the soliton waves 342 
moving in graphene. 343 

 344 

2. GENERALIZED QUANTUM HYDRODYNAMIC EQUATIONS 345 

 346 
Strict consideration leads to the following system of the generalized quantum 347 

hydrodynamic equations (GHE) [6] written in the dimensional generalized Euler form: 348 
Continuity equation for speciesα : 349 

( ) ( ) ( )

,I 0

)1(

00000

αα

α

α
αα

α

ααααα
α

αα

ρρ
∂

∂

ρ
∂

∂
ρ

∂

∂
τρ

∂

∂
ρ

∂

∂

∂

∂ρ
τρ

∂

∂

R
m

qp

ttt

=







×−−⋅

+







⋅+−⋅+















⋅+−

BvF
r

vv
r

vv
r

v
r

t
350 

                                                                                                                                         (2.1) 351 

and continuity equation for mixture 352 
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Momentum equation for species 354 
 355 
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Energy equation for component 364 
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and after summation the generalized energy equation for mixture 368 
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                                                                                                                                          (2.6) 371 

Here 
( )1
αF  are the forces of the non-magnetic origin, B  - magnetic induction, I

t
 - unit 372 

tensor, αq  - charge of the α -component particle, αp  - static pressure for α -component, 373 

αε  - internal energy for the particles of α - component, 0v  - hydrodynamic velocity for 374 

mixture. For calculations in the self-consistent electro-magnetic field the system of non-local 375 
Maxwell equations should be added (see (1.11), (1.12)). 376 
 It is well known that basic Schrödinger equation (SE) of quantum mechanics firstly 377 
was introduced as a quantum mechanical postulate. The obvious next step should be done 378 
and was realized by E. Madelung in 1927 – the derivation of special hydrodynamic form of 379 

SE after introduction wave function Ψ  as  380 

                                            ( ) ( ) ( )tzyxi
etzyxtzyx

,,,,,,,,, βα=Ψ .                                 (2.7) 381 

Using (2.7) and separating the real and imagine parts of SE one obtains 382 
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and Eq. (2.8) immediately transforms in continuity equation if the identifications in the 384 
Madelung’s notations for density ρ  and velocity v  385 

                                                                ∗ΨΨ== 2αρ ,                                            (2.9) 386 
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v
∂
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introduce in Eq. (2.8). Identification for velocity (2.10) is obvious because for 1D flow 388 
 389 
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where φv  is phase velocity. The existence of the condition (2.10) means that the 391 

corresponding flow has potential 392 

                                                                m/hβ=Φ .                                                   (2.12) 393 

As result two effective hydrodynamic equations take place: 394 
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and the relation (2.15) transforms (2.14) in particular case of the Euler motion equation 399 
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where introduced the efficient potential 401 
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Additive quantum part of potential can be written in the so called Bohm form 403 
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Some remarks: 407 
a) SE transforms in hydrodynamic form without additional assumptions. But numerical 408 

methods of hydrodynamics are very good developed. As result at the end of seventieth 409 
of the last century we realized the systematic calculations of quantum problems using 410 
quantum hydrodynamics (see for example [1, 28].  411 

b) SE reduces to the system of continuity equation and particular case of the Euler 412 

equation with the additional potential proportional to 
2

h . The physical sense and the 413 
origin of the Bohm potential are established later in [7, 8, 29]. 414 

c) SE (obtained in the frame of the theory of classical complex variables) cannot contain 415 
the energy equation in principle. As result in many cases the palliative approach is used 416 
when for solution of dissipative quantum problems the classical hydrodynamics is used 417 
with insertion of additional Bohm potential in the system of hydrodynamic equations. 418 

d) The system of the generalized quantum hydrodynamic equations contains energy 419 
equation written for unknown dependent value which can be specified as quantum 420 

pressure αp  of non-local origin.  421 
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The transport properties in graphene can be described at low energies by a 422 
massless Dirac-fermion model with chiral quasiparticles [30, 31]. The Boltzmann and 423 
Schrödinger approaches are used also [32], [33]. Applications of these approaches are 424 
directed on the calculation of kinetic coefficients. The non-local kinetic equations also are 425 
used by the authors of this article for calculation of graphene electrical conductivity [34]. 426 
Here we intend to investigate the possibilities of non-local quantum hydrodynamics for 427 
modeling of the charge density waves in grafene. In non-local quantum hydrodynamics the 428 
many particles correlations manifest itself in equations in the terms proportional to non-429 
locality parameter τ .  430 

The influence of spin and magnetic moment of particles can be taken into account 431 
by the natural elegant way via the internal energy of particles. Really for example electron 432 
has the internal energy ε  433 

                                              melspel ,, εεε += ,                                                  (2.20) 434 

containing the spin and magnetic parts, namely  435 
 436 

                                                2/, ωε h=spel , Bpm ⋅−=mel ,ε ;                                   (2.21) 437 

mp  - electron magnetic moment, B  - magnetic induction. But 
cm

e
p

e

m
2

h
−= , then 438 

effel ωε
2

h
= . Relation (2.20) can be written as 439 

                                                       







±= B

cm

e

e

ωε
2

h
,                                                (2.22) 440 

if B  is directed along the spin direction. On this stage of investigations we omit the influence 441 
of the internal energy of particles, therefore spin waves will be investigated separately. 442 
 443 
 444 

3. GENERALIZED QUANTUM HYDRODYNAMIC EQUATIONS DESCRIBING THE 445 

SOLITON MOVEMENT IN THE CRYSTAL LATTICE 446 
 447 
 Let us consider the charge density waves which are periodic modulation of 448 
conduction electron density. From direct observations of charge density waves follow that 449 
CDW develop at zero external fields. For our aims is sufficient in the following to suppose 450 
that the effective charge movement was created in graphene lattice as result of an initial 451 
fluctuation.  452 

The movement of the soliton waves at the presence of the external electrical 453 
potential difference will be considered also in this article. 454 

The effective charge is created due to interference of the induced electron waves 455 
and correlating potentials as result of the polarized modulation of atomic positions. Therefore 456 

in this approach the conduction in graphene convoys the transfer of the positive (+е, pm ) 457 

and negative (-е, em ) charges. Let us formulate the problem in detail. The non-stationary 1D 458 

motion of the combined soliton is considered under influence of the self-consistent electric 459 
forces of the potential and non-potential origin. It was shown [22 - 24] that mentioned soliton 460 
can exist without a chemical bond formation. First of all for better understanding of the 461 
situation let us investigate the situation for the case when the external forces are absent. 462 

Introduce the coordinate system ( Ctx −=ξ ) moving along the positive direction of the x  463 

axis with the velocity 
0

uC = , which is equal to the phase velocity of this quantum object. 464 
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Let us find the soliton type solutions for the system of the generalized quantum 465 
equations for two species mixture. The graphene crystal lattice is 2D flat structure which is 466 

considered in the moving coordinate system ( tux 0−=ξ , y ). In the following we intend 467 

(without taking into account the component’s internal energy) to apply generalized non-local 468 
quantum hydrodynamic equations (2.1) – (2.6) to the investigation of the charge density 469 
waves (CDW) in the frame of two species model which lied to the following dimensional 470 
equations [6, 8]: 471 
Poisson equation for the self-consistent electric field: 472 
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Continuity equation for the positive particles: 474 
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Continuity equation for electrons: 476 
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Momentum equation for the х direction: 478 
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 482 
 483 
Energy equation for the positive particles: 484 
 485 
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 488 
Energy equation for electrons: 489 
                                                                                        490 
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                                                                                                                                          (3.6) 492 

Here u  - hydrodynamic velocity; ϕ  - self-consistent electric potential; eρ  , pρ  - densities 493 

for the electron and positive species; ep , pp  - quantum electron pressure and the pressure 494 

of positive species; eF , pF - the forces acting on the mass unit of electrons and the positive 495 

particles. 496 
The right hand sides of the energy equations are written in the relaxation forms 497 

following from BGK kinetic approximation 498 
 Non-local parameters can be written in the form (see (1.14)) 499 
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where RN  - integer. 501 

  502 
Acting forces are the sum of three terms: the self-consistent potential force (scalar 503 

potential ϕ ), connected with the displacement of positive and negative charges, potential 504 

forces originated by the graphene crystal lattice (potential U ) and the external electrical field 505 

creating the intensity Е. As result the following relations are valid  506 
 507 
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Let write down these equations in the dimensionless form, where dimensionless 511 
symbols are marked by tildes; introduce the scales: 512 
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where  0u , 0x , 0ϕ , 0ρ  - scales for velocity, distance, potential and density. Let there be 514 
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Let us introduce also the following dimensionless parameters  520 
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 Taking into account the introduced values the following system of dimensionless 522 
non-local hydrodynamic equations for the 2D soliton description can be written: 523 
Poisson equation for the self-consistent electric field: 524 
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                                                                                                                                        (3.10) 526 
Continuity equation for the positive particles: 527 
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Continuity equation for electrons: 529 
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 532 
Momentum equation for the х direction: 533 
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 539 
Energy equation for the positive particles: 540 
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Energy equation for electrons: 543 
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We have the following dimensionless relations for forces:  546 

                                       ξ
ξξ

ϕ
E

U ~
~

~

~

~
F
~

pξ +
∂

∂
−

∂

∂
−= ,   ξ

ξξ

ϕ
E

U ~
~

~

~

~
F
~

eξ −
∂

∂
+

∂

∂
= , 547 

                                       y
E

y

U

y

~
~

~

~

~
F
~

py +
∂

∂
−

∂

∂
−=

ϕ
,     y

E
y

U

y

~
~

~

~

~
F
~

ey −
∂

∂
+

∂

∂
=

ϕ
.              (3.16) 548 

 549 
Graphene is a single layer of carbon atoms densely packed in a honeycomb lattice. Figure 1 550 
reflects the structure of graphene as the 2D hexagonal carbon crystal, the distance a  551 

between the nearest atoms is equal to nma 142.0= . 552 

 553 
Figure 1. Crystal graphene lattice. 554 

 555 
Elementary cell contains two atoms (for example A and B, figure 1) and the primitive 556 

lattice vectors are given by  557 

                                                 ( )3;3
2

1

a
=a , ( )3;3

2
2 −=

a
a .  558 

Coordinates of the nearest atoms to the given atom define by vectors 559 

                                        ( )3;1
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a
=δ , ( )3;1

2
2 −=

a
δ , ( )0;13 a−=δ .  560 

Six neighboring atoms of the second order are placed in knots defined by vectors  561 

                                               11 aδ ±=′ , 22 aδ ±=′ , ( )123 aaδ −±=′ .  562 

Let us take the first atom of the elementary cell in the origin of the coordinate system 563 

(figure 1) and compose the radii-vector of the second atom with respect to the basis 1a  и 564 

2a : 565 
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Let us find u и v, taking into account that 567 
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Equalizing (3.17) и (3.18), we have 
3

2
=u , 

3

1
−=v , then 569 
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Assume that ( )r1V  is the periodical potential created by one sublattice. Then 571 

potential of crystal is 572 
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Atoms in crystal form the periodic structure and as the consequence the corresponding 574 
potential is periodic function 575 

                                                                   ( ) ( )mVV arr += 11 ,  576 

where for 2D structure 577 

                                                                     2211 aaa mmm += ,  578 

and 1m  и 2m  are arbitrary entire numbers. Expanding ( )r1V  in the Fourier series one 579 

obtains 580 
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In our case the both basis atoms (п=0,1) are the same. Here  582 

                                                               2211 bbb gg += ,  583 

1b  и 2b  are the translational vectors of the reciprocal lattice. For graphene 584 
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where bb

rb

bb SVeVV
n

i n ⋅=⋅= ∑ ⋅−
11 . The structure factor bS  for graphene: 589 
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 593 

For the approximate calculation we use the terms of the series with 21 ≤g , 22 ≤g . 594 

Therefore 595 
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Using the vectors 1b  and 2b  of the reciprocal lattice from (3.22) and coordinates х and у 602 

one obtains from (3.26): 603 
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We need the derivatives for the forces components in dimensionless form 608 
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where the notations are introduced:  615 
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                                                                                                                                        (3.30) 618 
 619 

Consider as the approximation the acting forces by 0
~

=t , when x~
~

=ξ . After substitution 620 

of (3.28) and (3.29) in (3.16), one obtains the expressions for the dimensionless forces 621 
acting on the unit of mass of particles: 622 
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Analogically 625 
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The forces (3.31)-(3.33) should be introduced in the system of the hydrodynamic equations 627 
(3.10)-(3.15). 628 

Suppose that the external field intensity Е is equal to zero. The effective 629 

hydrodynamic velocity is directed along x  axis. This fact can be used by averaging over y~  630 

of the obtained system of quantum hydrodynamic equations. The averaging will be realized 631 
in the limit of one hexagonal crystal cell. Carry out the integration of the left and right hand 632 

sides of the hydrodynamic equations calculating the integral ∫
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 (see figure 1) and 633 
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taking into account that 0~
~~3

1

~

2

3

~

2

3

=
∂

∂
∫

−

yd
ya

a

a

ψ
 because of system symmetry for arbitrary 634 

function Ψ, characterizing the state of the physical system. We suppose also that by 635 
averaging all physical values (characterizing the state of the physical system) do not depend 636 

on y~ . 637 

As result we have the following system of equations: 638 

Dimensionless Poisson equation for the self-consistent potential ϕ~ of the electric field: 639 
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 641 
Continuity equation for the positive particles: 642 
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Continuity equation for electrons: 645 
 646 
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Momentum equation for the movement along the х direction: 648 
 649 
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 655 
Energy equation for the positive particles: 656 
 657 
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 663 
Energy equation for electrons: 664 
 665 
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 672 

4. ESTIMATIONS OF THE NUMERICAL PARAMETERS 673 
  674 

We need estimations for the numerical values of dimensionless parameters for 675 
solutions of the hydrodynamic equations (3.34) - (3.39). In its turn these parameters depend 676 
on choosing of the independent scales of physical values. Analyze the independent scales 677 
for the physical problem under consideration. It should be stressed that we choose just 678 
scales but not real physical values which may differ significantly from scale values. Real 679 
physical values will be obtained as a result of numerical self-consistent calculations. 680 

 Assume that the surface electron density in graphene is about 
21010 −≈ смnе

(
 (such 681 

value is typical for many experiments (see [35-37]), the thickness of the graphene layer is 682 

equal to ~ 1 nm. Then the electron concentration consists 
31710 −≈ cmne , and the density 683 

for the electron species 
31010 cmgnm eee

−≈=ρ  which leads to the scale 684 

310

0 10 cmg−=ρ . For numerical solutions of the hydrodynamic equations (3.34)-(3.39) we 685 

need Cauchy conditions, obviously in the typical for graphene conditions the estimation 686 

eρ~ ~1 is valid which can be used as the condition by 0
~

=ξ .  687 

The process of the carbon atoms polarization leads to displacement of the atoms 688 
from the regular chain and to the creation of the ”effective” positive particles which 689 

concentration ep nn ≈ . Masses of these particles is about the mass of the carbon atom 690 

гmp

23
102

−⋅≈ . Тhen, 
5105 −⋅≈=

p

e

m

m

T

L
; 

36
102 cmgnm ppp

−⋅≈=ρ  and by the 691 

choosed scale for the density 0ρ  we have pρ~ ~
4102 ⋅ . 692 

Going to the scales for thermal velocities for electrons and the positive particles we 693 
have by Т=300°К: 694 

                     eV0 ~ ссм
m

Tk

e

B 6104.6 ⋅≈ , take the scale scmV e /105 6

0 ⋅= ; 695 

                     рV0 ~ ссм
m

Tk

р

B 4105.4 ⋅≈ , take the scale scmV р /105
4

0 ⋅= . 696 

The theoretical mobility in graphene reaches up to sVcm ⋅2610  [38]. Let us use the scale 697 

                                scmи /105 6

0 ⋅= . Тhen 1
2

0

2

0 ==
u

V
N e

,  
4

2

0

2

0
10−==

u

V
P

p
. 698 

Let us estimate the parameters Е and R. For this estimation we need the scale 0ϕ . 699 

Admit 
a

e
δϕ ≈0

, where δ is a “shielding coefficient”. Naturally to take nmax 142.00 ==  700 
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(see figure 1) as the length scale, then 1~ =a . In the situation of a uncertainty in 0ϕ  701 

choosing let us consider two limit cases: 702 
1) δ~1. 703 

Then 
2

0

0

um

e
E

e

ϕ
= ~1000,  

0

2

00

ϕ

ρ

em

xe
R = ~ 

7103 −⋅ . 704 

2) δ=0.0001. 705 

Then 
2

0

0

um

e
E

e

ϕ
= ~0.1,  

0

2

00

ϕ

ρ

em

xe
R = ~ 

3103 −⋅ . 706 

Consider the terms describing the lattice influence. We should estimate the 707 

coefficients (3.30) using 0ϕ  as the scale for the potential V, VV
~

0ϕ= . Three possible 708 

cases under consideration: 709 

1) V ~ 0ϕ   710 

We choose 10

~
UU ′= ~10, 

11

~
UF ′= ~10, 20

~
UJ ′= ~±5, 

12

~
UB ′= ~±2,5, 

22

~
UG ′= ~±5. 711 

In this case the coefficients of “the second order” are less than the coefficients of “the first 712 
order.” 713 

2) 0ϕppV  (The small influence of the lattice), 714 

We choose 10

~
UU ′= ~0.1, 

11

~
UF ′= ~0.1, 20

~
UJ ′= ~0.05, 

12

~
UB ′= ~0.025, 

22

~
UG ′= ~0.05. 715 

3) 0ϕffV  (The great influence of the lattice), 716 

We choose 10

~
UU ′= ~1000, 

11

~
UF ′= ~1000, 20

~
UJ ′= ~500, 

12

~
UB ′= ~250, 

22

~
UG ′= ~500. 717 

 Estimate parameter 

00uxm

N
H

e

Rh=  for two limit cases: 718 

1) 1=RN , then Н~15. 719 

2) 100=RN , then Н~1500. 720 

Initial conditions demand also the estimations for the quantum electron pressure and 721 

the pressure for the positive species. For the electron pressure we have eee pVp ~2

00ρ=  and 722 

using for the scale estimation Tknp Bee =  ~
22

oeeoeee VVmn ρ=  ~
2

0 oeVρ , one obtains ep~ ~1. 723 

Analogically for the positive particles ppp pVp ~2

00ρ= , and using 724 

Tknp Bpp = ~
2

0

2

ppoppp VVmn ρ= , we have pp ~
2

00

4102 pVρ⋅ , pp~ ~
4102 ⋅ . 725 

Tables 1, 2 contain the initial conditions and parameters which were not varied by 726 
the numerical modeling. 727 

 728 
Table 1. Initial conditions. 729 

 730 

( )0~
eρ

 

( )0~
pρ

 

( )0~ϕ
 

( )0~
ep

 

( )0~
pp

 
( )0~

~

ξ

ρ

∂

∂ e

 

( )0~

~

ξ

ρ

∂

∂ p

 

( )0~

~

ξ

ϕ

∂

∂

 

( )0~

~

ξ∂

∂ ep

 

( )0~

~

ξ∂

∂ pp

 

1 4102 ⋅
 

1 1 4102 ⋅
 

0 0 0 0 0 

                                   731 



 

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. 
E-mail address: xyz@abc.com. 

                                   Table 2. Constant parameters. 732 
 733 

a~  L T N P 

1 1 4102 ⋅  1 410 −
 

 734 
Table 3 contains parameters (for the six different cases) which were varied by the numerical 735 
modeling. 736 

Тable 3. Varied parameters. 737 
 738 

Variant №  Е R H U F J B G 

1 0.1 0.003 15 10 10 5 2.5 5 

2 0.1 0.003 15 0.1 0.1 0.05 0.025 0.05 

3 0.1 0.003 15 10 10 -5 -2.5 -5 

4 1000 7103 −⋅  15 10 10 5 2.5 5 

5 0.1 0.003 1500 10 10 5 2.5 5 

6 0.1 0.003 15 1000 1000 500 250 500 

 739 
In the present time there no the foolproof methods of the calculations of the potential 740 

lattice forces in graphene. In the following mathematical modeling the strategy is taken 741 
consisting in the vast variation of the parameters defining the evolution of the physical 742 
system. 743 
 744 

5. RESULTS OF THE MATHEMATICAL MODELING WITHOUT THE EXTERNAL 745 

ELECTRIC FIELD 746 

 747 

 The calculations are realized on the basement of equations (3.34)-(3.39) by the 748 
initial conditions and parameters containing in the Tables 1 – 3. Now we are ready to display 749 
the results of the mathematical modeling realized with the help of Maple (the versions Maple 750 
9 or more can be used). The system of generalized hydrodynamic equations (3.34) – (3.39) 751 
have the great possibilities of mathematical modeling as result of changing of Cauchy 752 
conditions and parameters describing the character features of initial perturbations which 753 
lead to the soliton formation.  754 

The mathematical software Maple (beginning with the version 9) is applicable; the 755 

following Maple notations on figures are used: r- density pρ~ , s - density eρ~ , u- velocity u~ , 756 

p - pressure pp~ , q – pressure ep~   and v - self consistent potential ϕ~ . Explanations placed 757 

under all following figures, Maple program contains Maple’s notations – for example, the 758 

expression 0)0)(( =uD  means in the usual notations 0)0(~

~
=

∂

∂

ξ

u
, independent variable t  759 

responds to ξ
~

.  760 

Important to underline that no special boundary conditions were used for all following 761 
cases. The aim of the numerical investigation consists in the discovery of the soliton waves 762 
as a product of the self-organization of matter in graphene. It means that the solution should 763 
exist only in the restricted domain of the 1D space and the obtained object in the moving 764 

coordinate system ( tx
~~~

−=ξ ) has the constant velocity 1~ =u  for all parts of the object. In 765 

this case the domain of the solution existence defines the character soliton size. The 766 
following numerical results demonstrate the realization of mentioned principles. 767 
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 Figures 2 - 9 reflect the result of calculations for Variant 1 (Table 3) in the first and 768 

the second approximations. In the first approximation the terms of series (3.25) with 11 ≤g , 769 

12 ≤g  (then coefficients U and F) were taken into account. The second approximation 770 

contains all terms of the series (3.25) with 21 ≤g , 22 ≤g  (then coefficients U, F, J, B 771 

and G). 772 

   773 

Figure 2. s – the electron density eρ~ ,                    Figure 3. r – the positive particles density, 774 

u – velocity u~  (solid line).                                  (solid line); p – the positive particles pressure  775 

(first approximation, Variant 1).                                        (first approximation, Variant 1) 776 
 777 

   778 
Figure 4. v – potential ϕ~  (solid line).                           Figure 5. q – electron pressure. 779 

and derivative D(v)(t) .                                                 (first approximation, Variant 1). 780 

(first approximation, Variant 1).   781 
 782 
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        783 

Figure 6. s – electron density eρ~ ,           Figure 7. r – the positive particles density (solid line) 784 

u – velocity u~  (solid line),                                         p – the positive particles pressure, 785 

(the second approximation, Variant 1).                    (the second approximation, Variant 1). 786 
 787 

       788 
Figure 8. v – potential ϕ~  (solid line),                             Figure 9. q – electron pressure. 789 

and derivative D(v)(t) .                                             (the second approximation, Variant 1). 790 

(the second approximation, Variant 1). 791 
 792 
From figures 2 - 9 follow that the size of the created soliton is about 0.5 a , where 793 

a =0.142 nm . The domain size occupied by the polarized positive charge is about 0.025 a  794 

(see figures 3, 7). The negative charge distributes over the entire soliton domain (figures 2, 795 
6), but the negative charge density increases to the edges of the soliton. Therefore the 796 
soliton structure reminds the 1D atom with the positive nuclei and the negative shell. 797 

The self-consistent potential ϕ~  is practically constant in the soliton boundaries, 798 

(figures 4, 8). The small grows of the positive particles pressure exists in the x  direction. 799 
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This effect can be connected with the hydrodynamic movement along х and “the 800 
reconstruction” of the polarized particles in the soliton front. 801 

Comparing the figures 2 – 5 and 6 – 9 we conclude that the calculation results in the 802 
first and the second approximation do not vary significantly. Seemingly significant difference 803 
of figures 2 and 6 on the edges of the domain has not the physical sense because 804 
corresponds to the regions where constu ≠ . Then the restriction of two successive 805 

approximations is justified. Along with it the question about the convergence of the series 806 
lives open because the first and the second approximations include only the restricted 807 
quantity of terms of the infinite series with the coefficients known with the small accuracy.  808 

Figures 10 - 15 show the results of calculations responding to Variant 3 (Table 3). In 809 

the first approximation Variant 3 is identical to Variant 1 (coefficients 0=== GBJ ) and 810 

only the results of the second approximation are delivered. These calculations are more 811 
complicated in the numerical realization and all curves are imaged separately, (Figures 10 – 812 
15). 813 

    814 

               Figure 10. u – velocity u~ .                            Figure 11. s – electron density eρ~ ,  815 

(the second approximation, Variant 3).                     (the second approximation, Variant 3).  816 

     817 
Figure 12. r – the positive particles density.    Figure 13. p – the positive particles pressure, 818 
(the second approximation, Variant 3).                 (the second approximation, Variant 3).  819 
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 820 

             821 
         Figure 14. v – potential ϕ~ .                                   Figure 15. q – electron pressure. 822 

    (the second approximation, Variant 3).                (the second approximation, Variant 3).  823 
 824 
 In the comparison with Variant 1 the calculations in Variant 3 are realized for the 825 
case with opposite signs in front of the coefficients of second order. In this case the 826 

distortion of the left side of soliton is observed because by 0
~

<ξ  the velocity u~  is not 827 

constant. Then this kind of potential for lattice is not favorable for creation of the super-828 
conducting structures. 829 
 Variant 2 (Table 3) correspond to diminishing of the lattice potential in 100 times by 830 
the same practically self-consistent potential, (see figures 16 – 23). 831 
 832 

   833 

Figure 16. s – electron density eρ~ ,,                  Figure 17. r – the positive particles density, 834 

u – velocity u~  (solid line).                                 (solid line); p – the positive particles pressure 835 

(the first approximation, Variant 2).                         (the first approximation, Variant 2). 836 
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       837 
 838 

Figure 18. v – potential ϕ~  (solid line),                          Figure 19. q – electron pressure. 839 

D(v)(t) ,(the first approximation, Variant 2).                 (the first approximation, Variant 2).  840 

 841 

      842 

Figure 20. s – electron density eρ~ ,                     Figure 21. r – the positive particles density, 843 

u – velocity u~  (solid line).                                 (solid line); p – the positive particles pressure 844 

(the second approximation, Variant 2).                     (the second approximation, Variant 2). 845 
 846 
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       847 
Figure 22. v – potential ϕ~  (solid line),                         Figure 23. q – electron pressure. 848 

D(v)(t) .                                                                   (the second approximation, Variant 2). 849 

(the second approximation, Variant 2). 850 
 851 

From comparison of figures 2 - 9 and 16 - 23 follow that numerical diminishing of the 852 
lattice potential (by the practically the same value of the self-consistent potential) does not 853 
influence on soliton size. But at the same time the solitons gain the more symmetrical forms. 854 
Therefore namely the self-consistent potential plays the basic role in the soliton formation. 855 
 Let us analyze now the influence of Н - parameter, practically the influence of the 856 
non-locality parameter. Figures 24 – 31 (Variant 5) correspond to increasing of the 857 

parameter H  in 100 times in comparison with Variant 1. 858 
 859 

    860 

Figure 24. s – electron density eρ~ ,                     Figure 25. r – the positive particles density, 861 

u – velocity u~  (solid line).                                  (solid line); p – the positive particles pressure 862 

(the first approximation, Variant 5).                            (dashed line), D(p)(t) - dotted line.  863 

                                                                                   (the first approximation, Variant 5). 864 
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 865 

    866 
Figure 26. v – potential ϕ~  (solid line);                             Figure 27. q – electron pressure. 867 

D(v)(t) , (the first approximation, Variant 5).                              (solid line), D(q)(t) ,  868 

                                                                                           (the first approximation, Variant 5) 869 

    870 

Figure 28. s – electron density eρ~ ,                      Figure 29. r – the positive particles density,  871 

      u – velocity u~  (solid line).                            (solid line); p – the positive particles pressure 872 

(the second approximation, Variant 5)                     (the second approximation, Variant 5). 873 
 874 
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    875 
 876 

Figure 30. v – potential ϕ~  (solid line);                          Figure 31. q – electron pressure 877 

D(v)(t) , (the second approximation, Variant 5).         (solid line), D(q)(t) , (the second  878 

                                                                                            approximation, Variant 5).  879 
 880 
 881 
 The comparison of figures 2 - 5 and 24 - 27 indicates that in the first approximation 882 
the very significant increasing of the H value in 100 times leads to increasing of the soliton 883 
size only in two times without significant changing of the soliton structure. The comparison of 884 
calculations (see figures 6 and 28) in the second approximation leads to conclusion that the 885 

region (where the velocity u~  is constant) has practically the same size. 886 

 Consider now the calculations responding to Variant 4 (Table 3). Increasing in 
410  887 

times of the scale 0ϕ  denotes increasing the self consistent potential and the lattice 888 

potential introduced in the process of the mathematical modeling. This case leads to the 889 
drastic diminishing of the soliton size. Figures 32 - 35 demonstrate that in the calculations of 890 

the first approximation the soliton size is cma 124 1042.110~ −− ⋅=  and exceeds the nuclei 891 

size only in several times. The positive kernel of the soliton decreasing in the less degree 892 
and occupies now the half of the soliton size. It is no surprise because the low boundary of 893 
this kernel size is the character size of the nuclei. Application of the second approximation 894 
for the lattice potential function in the mathematical modeling leads to the significant soliton 895 
deformation but the same soliton size (see figures 36-39). 896 
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    897 

Figure 32. s – electron density eρ~ ,                    Figure 33. r – the positive particles density, 898 

u – velocity u~  (solid line).                                 (solid line); p – the positive particles pressure 899 

(the first approximation, Variant 4).                         (the first approximation, Variant 4). 900 
 901 

    902 

Figure 34. v – potential ϕ~  (solid line).                      Figure 35. q – electron pressure. 903 

(the first approximation, Variant 4).                           (the first approximation, Variant 4).  904 

 905 
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     906 

Figure 36. s – electron density eρ~ ,                      Figure 37. r – the positive particles density, 907 

u – velocity u~  (solid line).                                  (solid line); p – the positive particles pressure 908 

(the second approximation, Variant 4).                         (the second approximation, Variant 4) 909 
 910 

    911 

Figure 38. v – potential ϕ~  (solid line).                        Figure 39. q – electron pressure. 912 

(the second approximation, Variant 4)                     (the second approximation, Variant 4) 913 
 914 
 The drastic increasing of the periodic potential of the crystal lattice (in hundred 915 
times, see figures 40 – 48) in comparison with the self-consistent potential also leads to 916 
diminishing of the soliton size. For the case Variant 6, Table 3 this size consists only 917 

a210~ −
. But this increasing does not lead to the relative increasing of the soliton kernel 918 

and to the mentioned above the soliton deformation in the second approximation (see 919 
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figures 45 – 48). Figure 41 demonstrates the extremely high accuracy of the soliton stability, 920 

the velocity fluctuation inside the soliton is only u~10~ 16−
. 921 

     922 

Figure 40. s – electron density eρ~ ,                              Figure 41. u – velocity u~ .  923 

(the first approximation, Variant 6).                         (the first approximation, Variant 6).  924 
 925 

       926 
Figure 42. r – the positive particles density,                           Figure 43. v – potential ϕ~ . 927 

(solid line); p – the positive particles pressure                  (the first approximation, Variant 6). 928 
(the first approximation, Variant 6). 929 



 

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. 
E-mail address: xyz@abc.com. 

      930 

Figure 44. q – electron pressure.                                 Figure 45. s – electron density eρ~ , 931 

(the first approximation, Variant 6).                                       u – velocity u~  (solid line). 932 

                                                                                    (the second approximation, Variant 6). 933 
 934 
 935 

    936 
Figure 46. r – the positive particles density.                        Figure 47. v – potential ϕ~ . 937 

(solid line); p – the positive particles                            (the second approximation, Variant 6). 938 
pressure, (the second approximation, Variant 6). 939 
 940 
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 941 
Figure 48. q – electron pressure. 942 

(the second approximation, Variant 6). 943 
 944 

6. RESULTS OF THE MATHEMATICAL MODELING WITH THE EXTERNAL 945 

ELECTRIC FIELD 946 

 947 
 Let us consider now the results of the mathematical modeling with taking into 948 
account the intensity of the external electric field which does not depend on y . In this case 949 

the solution of the hydrodynamic system (3.10) – (3.15) should be found. After averaging 950 
and in the moving coordinate system it leads to the following equations written in the first 951 
approximation (compare with the system (3.34) – (3.39)): 952 

 953 
Poisson equation for the self-consistent electric field: 954 
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Continuity equation for the positive particles: 956 
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Continuity equation for electrons: 958 
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Momentum equation for the х direction: 960 
 961 
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 967 
Energy equation for the positive particles: 968 

 969 
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Energy equation for electrons: 975 
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Two classes of parameters were used by the mathematical modeling – parameters 980 
and scales which were not changed during calculations and varied parameters indicated in 981 
Table 4. 982 

Parameters, scales and Cauchy conditions which are common for modeling with the 983 
external field: 984 

5105 −⋅=
p

e

m

m
, the scales 

310

0 10 cmg−=ρ , scmи /105 6

0 ⋅= , scmV e /105 6

0 ⋅= , 985 

scmV р

4

0 105 ⋅= , nmax 142.00 == , ϕϕ CGSE
a

e 64

0 104.310 −− ⋅== . 986 

Dimensionless parameters R =
3103 −⋅ , Е=0.1, Н =15 (by RN =1). Admit that for the lattice 987 

U~ )10(,1V ~ )11(,1V ~ 0ϕ  and choose 10
~

10 =′U , 10
~

11 =′U . 988 

Cauchy conditions ( )0~
eρ =1, ( ) 41020~ ⋅=pρ , ( ) 10~ =ep , ( ) 41020~ ⋅=pp , ( ) 10~ =ϕ , 989 

( ) 00~

~
=

∂

∂

ξ

ρ e
, ( ) 00~

~

=
∂

∂

ξ

ρ p
.  990 

Тable 4. Varied parameters in calculations with the external electric field. 991 
 992 

Variant №  
0

~
E  ( )0~

~

ξ

ϕ

∂

∂
 ( )0~

~

ξ∂

∂ pp
 ( )0~

~

ξ∂

∂ ep
 

1 0 0 0 0 

7.0 10 10 0 0 

7.1 10 10 10 -1 

8.0 100 100 0 0 

8.1  100 100 10 0 

9.0 10000 10000 0 0 

9.1 10000 10000 10 -1 

 993 
The external intensity of the electric field is written as 994 

0

6

002

4

0

0

0

0

~
1014.7

~
238

~
10

~
E

m

V
ECGSEE

a

e
E

x
E Е ⋅==== −ϕ

. It means that even by 995 

1
~

0 =E  we are dealing with the rather strong fields. But namely strong external fields can 996 

exert the influence on the soliton structures compared with the Coulomb forces in the lattice. 997 
For example in [39] the influence of the external electric field in graphene up to 998 
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mV /1010 87 −  is considered. The values 0

~
E  are indicated in Table 4, variants 9.0 and 999 

9.1 respond to the extremely strong external field. 1000 
Table 4 contains in the first line the reminder about the first variant of calculations 1001 

reflected on figures 2 – 5. These data (in the absence of the external field, 0
~

0 =E ) are 1002 

convenient for the following result comparison. The variants of calculations in Table 4 are 1003 

grouped on principle of the 0

~
E  increasing. In more details: figures 49 – 58 correspond to 1004 

10
~

0 =E , figures 59 – 68 correspond to 100
~

0 =E , figures 69 – 80 correspond to 1005 

10000
~

0 =E . 1006 

 1007 

    1008 
Figure 49. r – the positive particles density,             Figure 50. u – velocity u~ . (Variant 7.0). 1009 

(solid line); p – the positive particles pressure. 1010 
(Variant 7.0). 1011 

    1012 

Figure 51. q–electron pressure (Variant 7.0). Figure 52. s–electron density eρ~  (Variant 7.0). 1013 
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 1014 

 1015 
Figure 53. v – potential ϕ~  (solid line); 1016 

D(v)(t) , (Variant 7.0). 1017 

 1018 
 1019 

         1020 
Figure 54. r – the positive particles density,           Figure 55. u – velocity u~ . (Variant7.1). 1021 

(solid line); p – the positive particles pressure. 1022 
(Variant 7.1). 1023 

 1024 
 1025 
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    1026 

Figure 56. q – electron pressure.                                   Figure 57. s – electron density eρ~ ,  1027 

                     (Variant 7.1).                                                        (Variant 7.1). 1028 
 1029 

 1030 
 1031 

 1032 
Figure 58. v – potential ϕ~  (solid line); 1033 

D(v)(t) , (Variant 7.1). 1034 

 1035 
 1036 
 1037 
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           1038 
Figure 59. r – the positive particles density,             Figure 60. u – velocity u~ . (Variant 8.0). 1039 

(solid line); p – the positive particles pressure. 1040 
(Variant 8.0). 1041 
 1042 

 1043 

Figure 61. q – electron pressure.                                 Figure 62. s – electron density eρ~ ,  1044 

                (Variant 8.0).                                                                   (Variant 8.0). 1045 
 1046 
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 1047 
Figure 63. v – potential ϕ~  (solid line); 1048 

D(v)(t) , (Variant 8.0). 1049 

 1050 

      1051 
Figure 64. r – the positive particles density,           Figure 65. u – velocity u~ . (Variant 8.1). 1052 

(solid line); p – the positive particles pressure. 1053 
(Variant 8.1). 1054 
 1055 

 1056 



 

* Tel.: +xx xx 265xxxxx; fax: +xx aa 462xxxxx. 
E-mail address: xyz@abc.com. 

    1057 

Figure 66. q – electron pressure.                           Figure 67. s – electron density eρ~ ,  1058 

                 (Variant 8.1).                                                          (Variant 8.1). 1059 
 1060 
 1061 

 1062 
Figure 68. v – potential ϕ~  (solid line); 1063 

D(v)(t) , (Variant 8.1). 1064 

 1065 
 1066 

 1067 
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   1068 
Figure 69. r – the positive particles density,             Figure 70. u – velocity u~ . (Variant 9.0). 1069 

(solid line); p – the positive particles pressure. 1070 
(Variant 9.0). 1071 
 1072 

 1073 
 1074 

    1075 

Figure 71. q – electron pressure.                                 Figure 72. s – electron density eρ~ , 1076 

                 (Variant 9.0).                                                                (Variant 9.0). 1077 
 1078 
 1079 
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 1080 
Figure 73. v – potential ϕ~  (solid line); 1081 

D(v)(t) , (Variant 9.0). 1082 

 1083 
 1084 

     1085 
Figure 74. p – the positive particles pressure.    Figure 75. p – the positive particles pressure. 1086 
                       (Variant 9.1).                                                             (Variant 9.1). 1087 
 1088 

 1089 
 1090 
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    1091 
 1092 
 1093 

Figure 76. r – the positive particles density,          Figure 77. u – velocity u~ . (Variant 9.1). 1094 

(Variant 9.1). 1095 
 1096 

    1097 

Figure 78. q – electron pressure.                                 Figure 79. s – electron density eρ~ ,  1098 

                  (Variant 9.1).                                                             (Variant 9.1). 1099 
 1100 
 1101 
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 1102 
Figure 80. v – potential ϕ~  (solid line); 1103 

D(v)(t) , (Variant 9.1). 1104 

 1105 
 Consider now the character features of the soliton evolution and the change of the 1106 
charge distribution in solitons with growing of the external field intensity: 1107 

1. The character soliton size is defined by the area where 1~ =u . It means that all part 1108 

of the soliton wave are moving without destruction. The size of this area is practically 1109 
independent on choosing of the numerical method of calculations. 1110 

2. Figures 75 – 77 demonstrate the typical situation when the area of possible 1111 

numerical calculations for a physical variable does not coincide with area 1~ =u  1112 

where the soliton regime exists. 1113 

3. In the area of the soliton existence the condition 1~ =u  is fulfilled with the high 1114 

accuracy defined practically by accuracy of the choosed numerical method (see 1115 
figures 50, 55, 60, 65, 70, 77). 1116 

4. As a rule for the choosed topology of the electric field the size of the soliton 1117 
existence is growing with increasing of the electric field intensity. 1118 

5. Under the influence of the external electric field the captured electron cloud is 1119 

displacing in the opposite direction (of the negative variable ξ
~

). The soliton kernel 1120 

is loosing its symmetry.  1121 
6. The redistribution of the self-consistent effective charge creates the self-consistence 1122 

field with the opposite (to the external field) direction, (see figures 53, 58, 63, 68, 73, 1123 
80).  1124 

7. The quantum pressure of the positive particle is growing with the ξ
~

 increase. On 1125 

the whole the specific features of the qp ~,~  pressures are defined by the process of 1126 

the soliton formation. 1127 
 1128 

7. CONCLUSION 1129 
 1130 
 1131 

The origin of the charge density waves (CDW) is a long-standing problem relevant to 1132 
a number of important issues in condensed matter physics. Mathematical modeling of the 1133 
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CDW expansion as well as the problem of the high temperature superconduction can be 1134 
solved only on the basement of the nonlocal quantum hydrodynamics in particular on the 1135 
basement of the Alexeev non-local quantum hydrodynamics. It is known that the 1136 
Schrödinger – Madelung quantum physics leads to the destruction of the wave packets and 1137 
can not be used for the solution of this kind of problems. The appearance of the soliton 1138 
solutions in mathematics is the rare and remarkable effect. As we see the soliton’s 1139 
appearance in the generalized hydrodynamics created by Alexeev is an “ordinary” oft-1140 
recurring fact. The realized here mathematical modeling CDW expansion support 1141 
established in [22, 24] mechanism of the relay (“estafette”) motion of the soliton’ system 1142 
(“lattice ion – electron”) which is realizing without creation of additional chemical bonds. 1143 
Important to underline that the soliton mechanism of CDW expansion in graphene (and other 1144 

substances like 2NbSe ) takes place in the extremely large diapason of physical 1145 

parameters. But CDW existence belongs to effects convoying the high temperature 1146 
superconductivity. It means that the high temperature superconductivity can be explained in 1147 
the frame of the non-local soliton quantum hydrodynamics.  1148 

Important to underline that the problem of existing and propagation of solitons in 1149 
graphene and in the perspective high superconducting materials belong to the class of 1150 
significantly non-local non-linear problems which can be sold only in the frame of vast 1151 
numerical modeling.  1152 
 1153 
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