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Abstract

The hydrodynamic instability of unmagnetized quantum plasma layer

supported by magnetized vacuum layer is investigated. The plasma is

considered as incompressible, inviscid and has exponentially varying density.

The relation between square normalized growth rate and square normalized

wave number is obtained and analyzed. The results are shown that, the

interface is more stability in the presence of quantum effect beside the

magnetic field effect.
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1.……………..Introduction

The field of quantum plasmas has been introduced since long ago.

Klimontovich and Silin [1] derived a general kinetic equation for quantum

plasmas and studied the dispersion properties of electromagnetic waves.

Some other developments of that time include the equilibrium theory of

quantum plasmas using a procedure similar to Feynman's methods in field

theory [2], dielectric formulation of quantum statistics in random phase

approximation [3]; and the self-consistent field approach to many-electron

problem [4]. For non-equilibrium homogenous systems, kinetic equations

have been derived by Balescu [5]. Guernsey [6] used an approach originally

developed by Bogoliubov to present a unified theory of equilibrium and non-

equilibrium quantum plasmas. Pines [7] studied the dynamics of quantum

plasmas with particular attention to the relationship between individual particle

and collective behavior. A general theory of electromagnetic properties of the

electron gas in a quantizing magnetic field was also developed treating the

electrons quantum mechanically [8-9].

It is well known, the pure classical plasmas has many application in compact

astrophysical objects such as in white dwarfs and the atmosphere of neutron

stars [10] or in the next generation intense laser-solid density plasma

interaction experiments [11]. But, many-body charged particle systems cannot

be treated by pure classical physics when the characteristic dimensions

become comparable to the de Broglie wavelength. This is the case for

quantum semiconductor devices, like high-electron-mobility transistors,
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resonant tunneling diodes or super-lattices. The operation of these ultra-small

devices relies on quantum tunneling of charge carriers through potential

barriers. So, quantum effects in plasma become important in like these

environments.

. In magnetic fusion research interface problem arise naturally the form the

requirement that thermonuclear plasma be confined and isolated from the

outside world by a vacuum magnetic field. The plasma-vacuum interface

problem in magneto-hydrodynamics was presented by Goedbloed [12]. The

Rayleigh-Taylor instability (RTI) of plasma-vacuum boundary with the aid of

an ideal one-fluid Hall model corresponding to the limit of a large ion Larmor

radius was studied Velikovich [13]. The stability of gravitational compressible

surface modes of a plasma-vacuum interface is studied by Grattojn et al. [14]

and by Alejandro et al. [15].

. In the last years, the hydrodynamic instability on the interface between a

vacuum and quantum plasma has attracted much attention because of wide

applications in many areas such as laser physics, plasma spectroscopy,

plasma technology, and surface science [16-18]. For example, plasma and

vacuum technologies are used in the microelectronics, communications,

biomedical and other modern manufacturing industries. Vacuum plasma

processing is already a well-proven and widely-used technique for etching

and surface modification in the electronics industry. It is being increasingly

used by the aerospace, automotive, medical, military and packaging

industries for cleaning and surface engineering of plastics, rubbers and

natural fibers as well as for replacing CFCs for cleaning metal components,
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polypropylene automotive components such as car bumpers, door mirror

housings and dash board components are plasma treated before painting.

. The instability of quantum plasma-vacuum interface is studied of many

different models [19-23].The vacuum- quantum plasma composed of electron,

including the effects of a quantum statistical Fermi electron temperature and

the system is acted upon by an electromagnetic field ( ),,( zyx BEE TM-model)

is studied by Lazar et al. [19]. In this model the initial values for electric and

magnetic field were vanished ( ,000 BE Electrostatic model). The same

model is considered by Mohamed [20], but in his model the initial value of

magnetic field was taken account ( yeBB 00 


, transverse magnetic field). The

previous model under the effect of electromagnetic field ( ),,( zyx EBB , TE-

model) is studied by Mohamed and Abdel Aziz [21]. The instability of the

interface between a quantum magneto-plasma composed of electrons and

positrons, and vacuum are studied by Misra et al. [22]. In this study the

external magnetic field lies in the zx  plane making an angle  with the z

axis. A quantum surface mode at a plasma-vacuum interface with uniform

magnetic field is studied in quantum electron-hole semiconductor plasma by

Misra. [23]. In the above studies [19-23] the systems had a small-amplitude

perturbation, where some terms (higher orders derivatives) of the linearized

equations are deleted

. In this paper, the classical RTI model in refs. (12, 13) will be again studied

in quantum plasmas. The surface of discontinuity ( 0z ) has considered

between infinitely conducting plasma in the half-space 0z and a vacuum in
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the other half-space 0z ,that has been permeated by a uniform horizontal

magnetic field ( xeBB 
00  ). Here, we use a system of Cartesian coordinates,

where z axis in the vertical direction. A gravitational acceleration ),0,0( gg 

directed from the plasma towards the vacuum. In all the above studies (19-

22), the perturbation was very slow. So, the higher derivatives that rise in the

system considerable are neglected. In our analysis the perturbation will be

superabundant (high-speed), such that the system cannot return to the initial

case (i. e. The system will remain in a permanent disturbance case). Thus all

the terms, which will rise in the linearized equations, will be considered.

2. Governing equations and linear perturbations

For incompressible quantum plasma as a fluid of electrons and immobile ions

the relevant equations may be written as (see refs. 19 -26)

QgP
t
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Here ),,(U zy uuux


is the velocity,  is the density, p thermal pressure, g is the

gravitational acceleration. A quantum effect in equation (1) is represented by

Bohm Potential ( 
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ion mass.  is the displacement which  is a function of yx, and t .

The pressure term in Eq. (1) contains both the Fermion FP , and the thermal tP .

For high temperature plasmas, it is simply thermal pressure tP . However, for

very low temperature plasma by assuming that the ions behave classically in

the limit FeF PP
i
 (where

iF
P is the ion Fermi temperature and

eF
P is the

electron Fermi temperature), the pressure effects of quantum electrons are

relevant only. In this situation the Fermi pressure which is contribution of the

electrons obeying the Fermi-Dirac equilibrium is of most significance. The

Fermi pressure increases with increase in number density and is different

from thermal pressure ( 3
5

3
2

22

8
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4 n
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  , n is the number density). In

our study, we consider the case of high temperature plasmas, so the thermal

pressure ( PPt  ) plays a vital role.

Now, if we wish to study quantum plasma-vacuum system with an interface

need to supplement Eqs. (1)-(4) with the equations describing the vacuum

magnetic field B


:

0 B


, 0 B


. (5)

These equations are all that is left from Maxwell’s equations when the

displacement current is negligible. So that B


may be obtained as the

gradient of a scalar  which satisfies the equations

0 2 , 0  .                                                                        (6)

The dynamic boundary condition across the interface of plasma-vacuum is
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2B
sP , (7)

the brackets  is the jump across the interface, sP the pressure through the

two layers and is magnetic permeability. The condition on the magnetic field

at the interface with a perfect conductor is

0  nBn 
, (8)

where n is the unit vector which is the outward normal to the surface. This

vector is defined by ),,( tyxzf  . According to nonlinear Fourier

perturbation and elaborated by Callebaut, where every physical quantity (say

X ) can be expanded in a series ε :

...........................XεXεXεXX 3
3

2
2

10  (9)

where ε is the amplitude of the first order term at all times,

t)exp(εε 0  and 0ε is its amplitude at t = 0 and  i- is the frequency of

perturbations or the rate at which the system departs from equilibrium thee

initial state (Plasma frequency). Here, in our example of RTI, we consider the

plasma layer is initially at rest. This means that 00U 


and 0

0
 .Then, the

linearized equations of quantum plasma layer (by Eqs. (1)- (4)) may be written

as

11110 U QgP

   ,                                                                          (10)
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is given by
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Now, where ),,( 1111U zy uuux


, ),0,0( gg  , ),,( 1111 zy QQQxQ 


, ),,(
zyx 










and the fluid is arranged in horizontal strata, then 0 is a function of the

vertical coordinate ( z ) only ( )(00 z  ). So, the system of equations (10)-(13)

can be put as:

1
1

10 xx Qx
pu 

 , (15)
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Here 1xQ , 1yQ and 1zQ are given, respectively
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Now, we put

cos)(),,( 11 zXzyxX  for 1X represents 11, Puz and 1 , (24)

sin)(),,( 11 zXzyxX  for 1X represents 1xu and 1yu ,                                   (25)

where ykxk yx  , xk and yk are horizontal components of  the wave-

number vector k


such that 222
yx kkk  ..

Using the expressions (24) and (25) in the system of Eqs. (15)-(20), we have

1110 )sin()()sin()( xxx Qzpkzu   ,                                                           (26)

1110 )sin()()sin()( yyy Qzpkzu   , (27)
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Now, multiplying Eq. (26) by xk and Eq. (27) by yk and adding the products with

helping equation (30) we get
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Eliminating 1p between equations (28) and (35) with helping the system of

equations (30)-(34) we get a differential equation in 1zu
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For the vacuum case, the linear equations may be written as follows:

01  2 , 01  


.                                                                                 (38)

Now, if we put  sin)(),,( 11 zzyx  , then Eq. (38) takes the form

0)(1
2

2

2









 zk

dz
d  . (39)

The linear case of Eqs. (7) and (8), respectively, takes the form:
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Now, we will introduce the solutions for the two regions, where plasma layer
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supported by vacuum layer that has been permeated by a uniform magnetic

field in the x direction  xeBB 
00  . Plasma region (Region (I)) through the

range 0z , while the vacuum region (Region (II)) through the range z0 .

Region (I) )0(  z :

Here, we consider the density distribution is given by )/exp()0()( 00 DLzz   ,

where )0(0 and DL are constants, so Eq. (36) becomes
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 ,  is the Plank’s constant, im the ion mass and em is the

electron mass.

The solution of last equation in this region will be as following:
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if we select 1a , we will find that:
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Region (II) )0(  z :

The solution of Eq. (39) in this region is )(exp)(1 kzbz  , and then

 sin)(exp),,(1








 kzbzyx .So, sin)(exp),,(1








 kzkbzyxzB .         (45)

Using the condition (41) we find
k
kb xB0
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Now, using the results (44) and (46) in the condition (41), then the dispersion

relation for our problem (unmagnetized quantum plasma layer has been

supported by uniform magnetized vacuum layer) given by
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If we ignore the quantum effect, then the dispersion relation (47) becomes
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while, if we ignore both quantum and magnetic field effects, we have the

Rayleigh-Taylor instability mode that is given by the classical

expression 2
1

)( gk see Eq. (1) ref. (12)

Now, we define the following dimensionless

quantities
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Then the dispersion relation (48) becomes
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From Eq. (49) it is not feasible to obtain analytically the value of  for the sets

of parameters ( 
mq  , ). So, the dimensionless dispersion relation (49) has

been solved numerically for different values of the physical parameters

involved. Numerical calculations are presented in Fig. 1. There the square

normalized growth rate 2 is plotted against the square normalized wave

number 2k .Fig.1 shows the role of quantum term )2,1(q and magnetic

field )2,1(m for a quantum plasma-vacuum model, where the magnitudes of

square normalized growth rate is less than its counterpart in the case of

quantum term only or magnetic field only.

3. Conclusion

Finally, we have presented the analytical results of the Rayleigh-Taylor

instability of quantum plasma with vacuum interface, the dispersion relation is

derived as a function of the physical parameters of the system considered in

Eq. (49). The numerical calculations are shown that the system was more
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stability in the presence of both quantum term and horizontal magnetic field.

This stabilizing, that happens in the presence of both quantum term and

horizontal magnetic field. This discrepancy highlights a stabilizing role due to

the presence of quantum term and horizontal magnetic field on Rayleigh-

Taylor instability problem (quantum plasma-vacuum), increasing the

dissipation of any disturbance, thus providing an increased stability.

Acknowledgement

The author would like to thank the referees for their useful suggestions and

comments that improved the original manuscript.



16

References

1.Klimontovich Y. and Silin V. P. Zhurnal Eksperimental'noii Teoreticheskoi

Fiziki (Zh. Eksp. Teor. Fiz.). 1952; 23: 151-154.

2. Gell-MannM. and Bruckne rK. A. Correlation energy of an electron gas at

high density. Phys. Rev.1957; 106(2): 364-368.

3. Englert F. and Brout R. Dielectric Formulation of Quantum Statistics of

Interacting Particles. Phys. Rev. 1960; 120(4): 1085-1092.

4. Ehrenreich H.  and Cohen M. H. Self-Consistent Field Approach to the

Many-Electron Problem. Phys. Rev.1959; 115 (4): 786 -790.

5.  Balescu R. Approach to Equilibrium of a Quantum Plasma. Phys. Fluids.

1960; 4(1): 94-99.

6. Guernsey R. L. Kinetic Theory of Quantum Plasmas. Phys. Rev.1962;

127(5): 1446-1452.

7. Pines D. Classical and quantum plasmas. Journal of Nuclear Energy. Part

C, Plasma Physics, Accelerators, Thermonuclear Research. 1961; 2: 5-17.

8. Zyryanov P. S. ,Okulov V . I ., Silin V. P. , Quantum Spin Waves. JETP

Letters. 1968; 8(9): 300-301.



17

9. Zyryanov P.S., Okulov V.I., Silin V.P. , Quantum Electronic Spin Acoustic

Waves. JETP Letters. 1969; 9(6): 220-222.

10. Chabrier G., Douchin F. and Potekhin A. Y. Dense astrophysical plasmas.

J. Phys.: Condens. Matter.  2002; 14, 9133-9139.

11. Marklund M. and  Shukla P. K. Nonlinear  collective effects in photon-

photon and photon-plasma interactions, Rev. Mod. Phys. 2006; 78, 591-640.

12. Goedbloed J.P. Plasma-vacuum interface problems in magnetohydro-

dynamics. Physica.1984; 12(D): 107-132.

13. Velikovich A. L. Rayleigh–Taylor instability of a plasma–vacuum

boundary in the limit of a large Larmor radius. Physics of Plasmas. 1991; 3(2):

492-494.

14. GrattojnT., Gratton F. T. and Gonzalez A. G. Convective instability of

internal modes in accelerated compressible plasmas. Plasma Physics

and Controlled Fusion. 1988; 30(4): 435-.

15. Alejandro G. and Gratton J. Compressibility effects on the gravitational

instability of a plasma-vacuum interface. Plasma Physics and Controlled

Fusion.1990; 32(1): 3-20.

16. Stenflo L. Theory of nonlinear plasma surface waves. Phys. Scripta.

1996;T63: 59-62.

17. Stenflo L. and Yu M. Y. Oscillons at a plasma surface. Phys.

Plasmas. 2003;10(3): 912-913.



18

18.   Lee H. J. Comment on "Kinetic theory of surface waves in plasma jets” [

Phys. Plasmas 9, 701 (2002) ]. Phys. Plasmas. 2005; 12: 094701.

19. Lazar M. Shukla P. K. and Smolyakov A. Surface waves on a quantum

plasma half-space. Physics of plasma. 2007; 14: 124501.

20. Bahaa Mohamed F. Quantum effects on the propagation of surface

waves in magnetized plasma. Phys. Scr. 2010; 82: 065502.

21. Mohamed B. F. and Abdel Aziz M. International Journal of Plasma

Science and Engineering. Propagation of TE-Surface Waves on Semi-

Bounded Quantum Plasma. 2010; Article ID 693049.

22. Misra A.P., Ghosg N.K. and Shukla P.K. Surface waves in magnetized

Quantum electron-positron plasmas. J. Plasma Phys.2010; 76(1):87–99.

23. Misra A.P. Electromagnetic surface modes in a magnetized quantum

electron-hole plasma. Physical Review E.2011;83: 057401.

24. Callebaut D. K. Lineaire en niet-lineaire perturbaties in hydromagneto-en

Gravito dynamica, Instituut voor Nukleaire Wetenschappen, Rijksuniversiteit

te Gent, Simon Stevin. 1971.

25. Hoshoudy G. A. Quantum effects on the Rayleigh–Taylor instability of

stratified fluid/plasma through porous media. Physics letters A.2009; 373:

2560-2567.

26. Hoshoudy G. A. Quantum Effects on the Rayleigh-Taylor Instability of

Viscoelastic Plasma Model through a Porous Medium. Journal of Modern

Physics. 2011;2: 1146-1155.



19

Figures Captions

Fig.1. The square normalized growth rate 2 against the square normalized

wave number
2k with the parameters 1 

mq  , 1h and 10g .
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