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1. INTRODUCTION  

 

The localization of energy in space is a phenomenon which occurs in many physical phenomena. It is well 

known for about 50 years that solutions with this kind of characteristic arise in nonlinear dispersive 

equations in the form of solitons and more recently in the form of compactons [1-24].Solitary waves were 

observed in 1834 for the first time. These waves have constant shape across time. It happens because of 

the balanced simultaneous effect of nonlinear and dispersive terms. Nonlinear term reduces the width of 

the wave shape and dispersive term makes it wide. Soliton is a solitary wave. One of the equations which 

have soliton solution is Korteweg de Vries (KdV) equation. KdV is a special case of general partial 

differential equation k(m, n) [1],  �� + (��)� + (�	)��� = 0         , 
 > 0 ,   1 < � ≤ 3                                        (1) 

    This equation have compacton solutions for special values of 
 and �, e. g. 
 = � = 2  or 
 = � = 3. 

Compactons, by definition, have some characteristic properties of solitons such as particle-like elastic 

collision [2]. The shape of these waves remains unchanged after collision. Compctons have some basic 

differences with solitons too, such as  

1- Compactons, unlike solitons, have finite width [2]. 

2- Traveling velocity of compactons, unlike solitons, is independent of width [2]. 
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In this research, we study some properties of compactons using Finite Element Method (FEM). This 

method is complicated for programming and very time consuming; but it is an accurate method. Using 

this method, we studied soliton properties and obtained results were acceptable. Then we studied 

compactons; Compactons are solitons with finite width or on the other hand solitons with no tail. This 

defined property for compactons was not observed in our simulation. It seems that breaking of 

compacton occurred regarding the entity of compacton equations, not by numerical error. In 

compactons- anti compactons collision, particle-like manner was not observed at all during this 

research. Perhaps it is due to suddenly vanishing of compactons on both ends. 
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    Due to suddenly vanishing shape of compactons on both ends, numerical study of these equations is 

difficult. Some numerical methods have been used for solving k(m, n) before, e. g. Pseudo Spectral 

Method [2], Discontinuous Galerkin Method [3, 4] and Finite Difference Method  [5] and etc [1-24]. The 

numerical simulation of colliding solitary waves with compact support arising from the Rosenau–Hyman 

K(n, n) equation requires the addition of artificial dissipation for stability in the majority of methods. The 

price to pay is the appearance of trailing tails, amplitude damping, and delays as the solution evolves. 

These undesirable effects can be corrected by properly counterbalancing two sources of artificial 

dissipation; this procedure is designed by using the slow time evolution of the parameters of the solitary 

waves under the presence of the dissipation determined by means of adiabatic perturbation methods. 

The validity of the tail removal methodology is demonstrated on a Pad´e numerical scheme[19]. The tails 

are completely removed leaving only a small compact ripple at the original position of their front, and the 

numerical stability of the scheme under compacton collisions is preserved[19]. This paper has been 

extracted from simulation of k (m, n) equation with Finite Element Method (Galerkin method) by MATLAB 

without any additional terms for extra stability. This method is very complicated for programming and 

simulation[6].  

2. Solitons and Compactons 

2.1 Solitons 

    Some solutions of nonlinear KdV equations are solitons. KdV equation has been written as:  

�� − 6��� + ���� = 0                                                                 (2) 

� and � indices are time and space derivatives respectively. Balanced effect of nonlinear term ��� and 

dispersive term ���� , cause initial wave shape to remain unchanged. Solution of KdV equation is a 

traveling wave with general form �(�, �) = �(� − ��) and � is a constant showing wave velocity. Soliton 

solution of KdV equation is (fig. 1) 

 �(�, �) = − �� �. ���ℎ�(� − ��)                                                           (3) 

 

 

Fig. 1. Soliton solution of KdV equation 

 

2.2 Compactons 
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    k(m, n) equations were introduced for studying  the role of dispersion in the waves. General form of 

these equations is very similar to KdV  

 �� + (��)� + (�	)��� = 0         , 
 > 0 , 1 < � ≤ 3                                      (4)  

and �, � indices are time and space derivatives respectively. As a special case, k(m, n) equation for 
 = 2 and � = 1 is KdV equation. Characteristic property of solution of these equations is completely 

particle-like elastic collision. Unlike solitary waves with infinite width, these solutions have finite widths or 

on the other hand they have no tail [2]; so, they are compact and called compacton. In some articles, 

these equations were investigated for special values of 
 and �, and compacton solution was extracted, 

e. g. for 
 = � = 2 and 
 = � = 3.  

k(2, 2) equation is written as  

 �� + (��)� + (��)��� = 0                                                              (5) 

and have closed form solution (fig. 2) 

 �!(�, �) = " #!$ �%�� &�'!�# (,             |� − ��| ≤ 2*  0 ,                                           %�ℎ�+,-��   .                                       (6) 

The invariance of Eq. (6) under the transformations /� → −�� → −� ., permits negative anti-compactons 

propagating in the opposite direction[1]. Because of their compact structure, neither compactons nor anti-

compactons interact with each other until the moment of collision [7]. Eq. (6) has the following conserved 

quantities 1 � 2� , 1 �$ 2� , 1 � cos � 2�  and 1 � sin � 2�                                         (7) 

which have been investigated in ref. [1]. 

 

 

 

Fig. 2. k(2, 2) solution 

k(3, 3) equation is written as  

 �� + (�$)� + (�$)��� = 0                                                             (8) 
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and has closed form solution (fig. 3) 

 �!(�, �) = 8±:$!� �%� &�'!�$ (,             |� − ��| ≤ $;�  0 ,                                           %�ℎ�+,-��   .                                            (9) 

The solution given in Eq. (9) with the (+ sign) represents compacton and with the (- sign) represents anti-

compacton. The K(3,3) has the conserved quantities  1 � 2� , 1 �# 2�                                                                       (10) 

which have been investigated in ref. [1]. 

 

Fig. 3. k(3, 3) solution 

 

3. The Finite Element Method 

3.1 Introduction 

The finite element method was first used by engineers to solve structural problems. They modeled a 

continuous structure using a number of " finite"  (as distinct from infinitesimally small) elements that where 

connected at certain nodal points, and they required the forces to balance at each node. Only later was it 

realized that this technique good be thought of as a numerical method for solving the partial differential 

equations modeling the stresses in a continuous structure, and that similar methods good be used to 

solve other differential equations. 

Now the "Finite Element Method" (really a class of methods) is generally considered to be a competitor of 

the finite difference methods and is used to solve as wide a range of ordinary and partial differential 

equations as the latter. Although finite element methods are usually substantially more difficult to 

program, this extra effort yields approximations that are of high-order accuracy even when a partial 

differential equation is solved in a general (nonrectangular) multidimensional region, and even when the 

solution varies more rapidly in certain portions of the region so that a uniform grid is not appropriate. 

These and other considerations have earned the finite element method great popularity in recent years 

both for initial value and (specially) boundary value differential equations[6]. 

In this method we divide space of problem into subspaces with the same sizes or, in most cases, different 

sizes. Then in each subspace, the solution of differential equation is approximated by the series of some 
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arbitrary basic functions with unknown coefficients. We should try to find these unknown coefficients and 

consequently the solution. 

3.2 The Galerkin Method [6] 

The most widely used form of the finite element method is the "Galerkin" method. Although the Galerkin 

method can be applied to much more general problems, the following three-dimensional linear boundary 

value problem is chosen to make the analysis simple. We introduce the Galerkin method by studying this 

general problem  

< ∙ >?(�, @, A)<BC − D(�, @, A)� + �(�, @, A) = 0              -�  E 

� = +(�, @, A)                                                 %�   E�  
? FGF	 = −H(�, @, A)� + I(�, @, A)             %�  E�                                            (11) 

 

It is assumed that  ?(�, @, A), D(�, @, A)   and �(�, @, A) are arbitrary functions of  (�, @, A) and ?(�, @, A) > 0. 

Here E = E� + E� and J� J�⁄  represent the directional derivative of � in direction of the unit outward 

normal to the boundary. If the partial differential equation and second boundary equation are multiplied by 

a smooth function  L that is arbitrary except that it is required to satisfy L = 0 on E�  , and if these are 

integrated over E and E�, respectively, then 

M>< ∙ (?<B) − D� + �C
N

L2�2@2A + O P−? J�J� − H� + IQ
NR

L2�2@ = 0                               (12. a) 
 

Using L< ∙ (?<B) = < ∙ (L?<B) − ?(<B ∙ <T) and the divergence theorem: 

M>−?<B. <L − D�L + �LC
N

2�2@2A + O>L?<B UC
N

2�2@ + O>−L?<B U − H�L + ILC
NR

2�2@ = 0 (12. V) 
The integrand in the first boundary integral is nonzero only on E�, since L = 0 on E�. Thus 

M>−?<B ∙ <L − D�L + �LC2�2@2A + O>−H�L + ILC
NRN

2�2@ = 0                               (13) 

Equation (13) is called the weak formulation of partial differential equation (11). It is almost equivalent to 

(11) in the sense that if � is  smooth and satisfies (13) for any smooth L vanishing on E�, the steps 

leading from (11) to (13) can be reversed, so that �  satisfies the partial differential equation and the 

second (natural) boundary condition. As part of either formulation is required to satisfy the first (essential) 

boundary condition. The Galerkin method attempts to find an approximate solution to the weak 

formulation (13) of the form 

W(�, @, A) = X(�, @, A) + Y DZLZ
[

Z\� (�, @, A)                                                            (14) 
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where ^L�   , . . . , L[_ is a set of linearly independent "trial" functions that vanishes on E� and X is another 

function that satisfy the essential boundary condition X = + on E�. Clearly, W will satisfy W = + on E� 

regardless of the values chosen for D�, … , D[ . 

It is impossible to find parameters DZ such that W satisfies (13) for arbitrary L vanishing on E�, since we 

only have a finite number of parameters. Thus, it is only required that (13) be satisfied for L = L�   , . . . , L[ 

(each of which vanishes on E� ) : 

M>−?<a ∙ <Tb − DWLc + �LcC2�2@2A + O>−HWLc + ILcC
NRN

2�2@ = 0                 (15) 

This can be written as a system of M  linear equations for the M unknown parameters D�, … , D[. 

Y ecZDZ
[

Z\� = Vc                                                                                        (16) 

where 

Vc = M>�Lc − ?<f ∙ <Tb − DXLcC
N

2�2@2A + O>ILc − HXLcC
NR

2�2@                                   (17) 

 

  

ecZ = M>?<Tb ∙ <Th + DLcLZC
N

2�2@2A + O HLcLZ2�2@                                             (18)
NR

 

For example two of basic functions are "chapeau" function (20), (fig. 4) and "cubic Hermit" function (21, 

22) (fig. (5): 

chapeau function: 

jc(�) =
kll
m
lln

� − �c'��c − �c'�              for �c'� ≤ � ≤ �c
�cq� − ��cq� − �c               for �c < � ≤ �cq�

          0                      elsewhere               
.                                                   (20)   

where 

�'� < 0 = �v < �� < ⋯ < �x = 1 < �xq� 
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Fig. 4. "chapeau" function 

and the cubic Hermit function: 

yc(�) =
klm
ln 3 P � − �c'��c − �c'�Q� − 2 P � − �c'��c − �c'�Q$             for  �c'� ≤ � ≤ �c

3 P �cq� − ��cq� − �cQ� − 2 P �cq� − ��cq� − �cQ$             for  �c < � ≤ �cq� 0                                                                                    elsewhere  
.                                (21) 

zc(�) =
klm
ln − (�'�{|})R(�{'�{|}) + (�'�{|})~(�{'�{|})R             for  �c'� ≤ � ≤ �c

   (�{�}'�)R(�{�}'�{) − (�{�}'�)~(�{�}'�{)R              for  �c < � ≤ �cq� 0                                                                                  elsewhere  
                                  (22).  

where 

�'� < 0 = �v < �� < ⋯ < �x = 1 < �xq�  
It is obvious that 

yc(�Z) = �cZ, yc′ (�Z) = 0   
zc(�Z) = 0,           zc′ (�Z) = �cZ                                                          (23) 
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Fig. 5. Cubic Hermit Function 

 

3.3 Time-Dependent Problems [6] 

Many of advantages of the finite element method, such as its ability to accurately represent solution in 

general multidimensional domains, are still important when the problem is time dependent. The finite 

element method is therefore widely used to discretize the spatial variables in time-dependent problems. 

Consider, for example the general time-dependent problem : 

�(�, @, A, �)�� = <. (?(�, @, A, �)<B) − D(�, @, A, �)� + �(�, @, A, �)                              -�  E 

� = +(�, @, A, �)                         %� E�   
? J� J�� = −H(�, @, A, �)� + I(�, @, A, �)      %� E� 

� = ℎ(�, @, A)                     D�  � = 0                                                     (24) 

It is assumed that � > 0 and ? ≥ 0 . 

In a manner analogous to what we done for the corresponding steady state problem (13) , we find the 

weak formulation of (24) by multiplying the partial differential equation and second boundary condition by 

a smooth function L(�, @, A) that satisfies L = 0  on E�, and by integrating over  E and E� : 

M ���L2�2@2A
N

= M><. ?<B − D� + �CL2�2@2A
N

+ O P−? J�J� − H� + IQ
NR

 L2�2@                        (25)  
 

Integrating by parts, remembering that  L = 0  on E�, gives 

M ���L2�2@2A
N

= M>−?<B . <T − D�L + �LC2�2@2A 
N

+ O>−H�L + ILC2�2@
NR

                        (26) 
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If � is smooth and satisfies (26), for all �, for arbitrary smooth L(�, @, A) vanishing on E�, then the steps 

from (24) to (26) are reversible, and therefore � satisfies the partial differential equation along with the 

second boundary condition. Thus if it is required that �(�, @, A, �) satisfy the first boundary condition (on E�) and the initial condition, in addition to being a smooth  solution to the weak formulation (26), � will be 

a solution to the partial differential equation (24). 

In the continuous-time Galerkin method, we attempt to find a solution to the weak formulation (26) of the 

form  

W(�, @, A, �) = X(�, @, A, �) + Y DZ(�)[
Z\� LZ(�, @, A)                                                           (27) 

where ^L�   , . . . , L[_  is a set of linearly independent functions that vanishes on E� ,and X is another 

function that satisfies the essential boundary condition satisfy W = + on E�. Clearly, W will satisfy the 

essential boundary condition regardless of how the coefficients DZ(�) are chosen. 

As in the steady state case, it is not possible to find coefficients such that W satisfies (26) for arbitrary L 

vanishing on JE�, so it is only required that (26) be satisfied for L = L�   , . . . , L[: 

M �W�Lc2�2@2A = M>−?<a. <Tb − DWLc + �LcC
NN

2�2@2A + O>−HWLc + ILcC
NR

2�2@              (28) 

Substituting (27) for W  in (28) gives 

Y �cZ(�)DZ′ (�)[
Z\� = − Y ecZ(�)DZ(�) + Vc(�)[

Z\�                                                         (29) 

where 

�cZ(�) = M �LcLZ2�2@2A
N

   

ecZ(�) = M>?<Tb. <Th + DLcLZC2�2@2A
N

+ O HLcLZ2�2@
NR

  

Vc(�) = M�−�X�Lc − ?<f. <Tb − DXLc + �Lc�
N

2�2@2A + O>−HXLc + ILcC2�2@
NR

                           (30) 

In the steady state case, the Galerkin method led to a system of algebraic equation for the unknown 

coefficients DZ. Here it leads to a system of ordinary differential equations: 

�(�)�′ = −e(�)� + �(�)                                                               (31) 

for the unknown coefficient functions DZ(�). 
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The initial values for this ordinary differential equation system are obtained by requiring that, at � = 0, W 

approximately satisfy initial condition in (24). We followed the above general approaches for KdV, k(2, 2) 

and k(3, 3) equations. Details of computation was omitted for abbreviation. 

4. Conclusion  

In one part of our research, we simulate the KdV equation. It obtained soliton travelling with constant 

shape (fig. 6), collision, and then separation (fig. 7). 

 

Fig. 6. Soliton moves without change in shape 

 

Fig. 7. Collision of two solitons and separation 

    We saw that if we solve KdV equation with arbitrary initial shape (32),  

�(�) = −2.5���ℎ��                                                                                  (32) 

some perturbations leave the shape and soliton solution  �(�) = −2���ℎ��  is appeared and travels 

without change (fig. 8). For comparing between extracted soliton from arbitrary initial shape and closed 

form solution of KdV, we insert equation (3) by dots in (fig. 8) at related time. 
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Fig. 8. Some perturbations leave initial arbitrary shape (blue) and the soliton moves without 

change in shape (red shape in right), dots on right valley show the soliton shape coincidence.  

 

But for the compactons, even with closed form solution of k(2, 2) and k(3, 3) as initial wave shapes, in the 

time evolution of related equations, some perturbations appear and then blow up. We investigated k(2, 2) 

and k(3, 3) by Finite Element Method with a wide variety of basic functions, space step sizes and time 

step sizes. This happens even with reducing space and time step sizes for long time simulation for all 

basic functions (figs. 9, 10).  

 

Fig. 9.  Movement of k(2, 2) compacton before crashing 
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Fig. 10. Movement of k(3, 3) compacton before crashing 

We saw compacton and anti compacton collision for k(2, 2) and then for k(3, 3), but exactly after 

separation,  some perturbations appear and then blow up (fig. 11, 12). 

 

Fig. 11. Collision of k(2, 2) compacton and anti compacton 
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Fig. 12. Collision of k(3, 3) compacton and anti compacton 

 

    Not only in Finite Element Method, but also for all frequently used numerical methods, the compacton 

has not time evolution and particle-like collision. Perhaps, main role in divergence is caused by suddenly 

vanishing of the compactons on both ends. This event causes discontinuity in derivatives. Is it true that 

the main part or all of divergence is caused by numerical method? We should answer to this question 

carefully. All of numerical methods have some round off or truncation errors. But it is accepted that 

numerical methods are applicable, specifically for the problems with no analytic or closed form solution. 

One of the most accurate numerical methods is Finite Element Method and we obtained some acceptable 

results for solitons by this method. So, perhaps some of properties that enumerated for compactons are 

unreal. Can we confine a wave in this limit and relate particle like manner to it?  
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