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ABSTRACT9
10

We find an exact quantized expression of the Schwarzschild solution to Einstein’s field
equations utilizing spherical Planck units in a generalized holographic approach.  We
consider vacuum fluctuations within volumes as well as on horizon surfaces, generating a
discrete spacetime quantization and a novel quantized approach to gravitation.  When
applied at the quantum scale, utilizing the charge radius of the proton,  we find values for the
rest mass of the proton within 240.069 10 gm of the CODATA value and when the recent
muonic proton charge radius measurement is utilized we find a deviation of

240.001 10 gm from the proton rest mass. We identify a fundamental mass ratio between
the vacuum oscillations on the surface horizon and the oscillations within the volume of a
proton and find a solution for the gravitational coupling constant to the strong interaction.
We derive the energy, angular frequency, and period for such a system and determine its
gravitational potential considering mass dilation.  We find the force range to be closely
correlated with the Yukawa potential typically utilized to illustrate the exponential drop-off of
the confining force.  Zero free parameters or hidden variables are utilized.
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14
1. INTRODUCTION15

16
In 1916, Karl Schwarzschild published an exact solution to Einstein’s field equations for the17
gravitational field outside a spherically symmetric body [1,2]. The Schwarzschild solution18
determined a critical radius, sr for any given mass where the escape velocity equals c , the speed19
of light. The region where sr r is typically denoted as the horizon or event horizon and is given20
by the well known definition21

2

2
s
Gmr
c

 (1)22

where G is the gravitational constant, and m is the mass. John Archibald Wheeler in 196723
described this region of space as a “black hole” during a talk at the NASA Goddard Institute of24
Space Studies. In 1957 Wheeler had already, as an implication of general relativity, theorized the25
presence of tunnels in spacetime or “wormholes” and in 1955, as a consequence of quantum26
mechanics, the concept of “spacetime foam” or “quantum foam” as a qualitative description of27
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subatomic spacetime turbulence [3]. The theory predicts that the very fabric of spacetime is a28
seething foam of wormholes and tiny virtual black holes at the Planck scale as well as being the29
source of virtual particle production. In Wheeler’s own words: “The vision of quantum gravity is a30
vision of turbulence – turbulent space, turbulent time, turbulent spacetime… spacetime in small31
enough regions should not be merely “bumpy,” not merely erratic in its curvature; it should32
fractionate into ever-changing, multiply-connected geometries. For the very small and the very33
quick, wormholes should be as much a part of the landscape as those dancing virtual particles34
that give to the electron its slightly altered energy and magnetism [Observed as the Lamb shift].”35
[4]36

37
On the cosmological scale, black hole singularities were initially thought to have no physical38
meaning and probably did not occur in nature. As general relativity developed in the late 20th39
century it was found that such singularities were a generic feature of the theory and evidence for40
astrophysical black holes grew such that they are now accepted as having physical existence and41
are an intrinsic component of modern cosmology. While the Schwarzschild solution to Einstein’s42
field equations results in extreme curvature at the origin and the horizon of a black hole, it is43
widely utilized to give appropriate results for many typical applications from cosmology to44
planetary physics. For instance, the Newtonian gravitational acceleration near a large, slowly45
rotating, nearly spherical body can be derived by 2 22sg r c r where g is the gravitational46
acceleration at radial coordinate r , sr is the Schwarzschild radius of a gravitational central body,47
and c is the speed of light. Similarly, Keplerian orbital velocity can be derived for the circular48
case by49

2

2
sr cv
r

 (2)50

where r is the orbital radius. This can be generalized to elliptical orbits and of course the51
Schwarzschild radius is utilized to describe relativistic circular orbits or photon spheres for rapidly52
rotating objects such as black holes. There are many more examples of the ubiquitous nature of53
the Schwarzschild solution and its applications to celestial mechanics and cosmology.54

55
In developments over the past decade event horizons have been demonstrated to be dynamically56
fluctuating regions at a scale where quantum mechanical effects occupy a central role. Early57
explorations of spacetime fluctuations at the quantum level predicted that the vacuum at those58
scales undergoes extreme oscillations as formulated in the Wheeler model. Indeed, in quantum59
field theory, the vacuum energy density is calculated by considering that all the vibrational modes60
have energies of / 2 . When summed over all field modes, an infinite value results unless61
renormalized utilizing a Planck unit cutoff [5]. Yet, while the high curvature of general relativity62
and the vacuum fluctuations of quantum field theory converge and meet at the Planck cutoff,63
efforts to define gravitational curvature in a discrete and elegant manner, as in quantum gravity64
have proven elusive.65

66
In the early 1970s, expanding from Hawking temperature theorems for black hole horizons,67
Bekenstein conjectured that the entropy of a black hole is proportional to the area of its event68
horizon divided by the Planck area times a constant on the order of unity [6]. Hawking confirmed69
Bekenstein’s conjecture utilizing the thermodynamic relationships between energy and70
temperature [7].71

24
kAS 


(3)72

where A is the area of the event horizon, k is Boltzmann’s constant, and  is the Planck length.73
The Bekenstein bound conjecture and the entropy of a black hole eventually led to the74
holographic principle (generally given as an analogy to a hologram by Gerard 't Hooft) [8] where75
the covariant entropy bound demands that the physics in a certain region of space is described76
by the information on the boundary surface area, where one bit is encoded by one Planck area77
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[8,9]. Since the temperature
2H
kT


 determines the multiplicative constant of the Bekenstein-78

Hawking entropy of a black hole which is79

4
AS  (4)80

therefore, Hawking fixes the proportionality constant at 1 4 of the surface area, which we note is81
equivalent to the surface area of the equatorial disc of the system.82

83
In this paper, we generalize the holographic principle by utilizing a spherical Planck unit rather84
than a surface area Planck unit, 2 as a minimum-size vacuum energy oscillator on which85
information encodes, which we term “Planck spherical unit” (PSU). This approach is consistent86
with the dimensional reduction of the holographic principle, which states explicitly that all the87
information of the interior volume of a black hole is encoded holographically on it's horizon88
surface. We consider the interior vacuum energy density ratio, in terms of PSU packing, to the89
surface horizon and find a generalized holographic principle which broadens the applicability of90
the holographic method to other areas of physics, such as gravitation, hadronic mass, and91
confinement.92

93
As a result, an exact quantized derivation of the Schwarzschild solution to Einstein’s field94
equations is found, yielding a novel approach to quantum gravity. We apply this method to the95
quantum scale and derive the proton rest mass from geometric considerations alone.  When the96
CODATA charge radius value of the proton is employed, our result yields a very close first-order97
approximation within ~4% deviation from the CODATA mass value, the difference of which is98

240.069 10 gm . Utilizing the recent muonic measurement of the proton charge radius however99
[10], we obtain a more accurate value within 240.001 10 gm or ~0.07% deviation. Employing100
our generalized holographic approach we predict a precise proton charge radius. Our prediction101
falls within the reported experimental uncertainty for the muonic measurement of the proton102
charge radius [10].103

104
By further algebraic derivation, we find a fundamental constant we term  , defined by the mass105
ratio of vacuum oscillations on the surface horizon to the ones within the volume of the proton.106
As a result, clear relationships emerge between the Planck mass, the rest mass of the proton,107
and the Schwarzschild mass of the proton or what we term the holographic gravitational mass.108
Further, we find that our derived fundamental constant 24 generates the gravitational coupling109
constant to the strong interaction, thus defining the unification energy for confinement. We also110
derive the energy, angular frequency, and period for such a system utilizing our generalized111
holographic approach. We find that the period is on the order of the interaction time of particle112
decay via the strong force which is congruent with our derivation of the gravitational coupling113
constant. Moreover, the frequency of the system correlates well with the characteristic gamma114
frequency of the nucleon decay rate. Finally, we compute the gravitational potential resulting115
from the mass dilation of the system due to angular velocities as a function of radius and find that116
the gravitational force of such a system produces a force range drop-off closely correlated with117
the Yukawa potential typically utilized to define the short range of the strong interaction.118

119
We demonstrate that a quantum gravitational framework of a discrete spacetime defined by120
spherical Planck vacuum oscillators can be constructed which applies to both cosmological and121
quantum scales. Our generalized holographic method utilizes zero free parameters and is122
generated from simple geometric relationships and algebra, yielding precise results for significant123
physical properties such as the mass of black holes, the rest mass of the proton, and the124
confining nuclear force.125

126
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Note that in this paper, we utilize the full significant digits of the Planck length and other relevant127
physical constants as given by CODATA in our derivations to demonstrate the accuracy of our128
results.129

130
2. THE SCHWARZSCHILD SOLUTION FROM PLANCK OSCILLATOR SPHERICAL131
UNITS132

133
In view of the increasingly significant role that quantum field effects or vacuum fluctuations have134
played in current cosmology to characterize the information structure of the horizons of135
astrophysical black holes, as in the holographic principle and its application to entropy [11], we136
examine a hypothetical black hole horizon of the approximate order of magnitude of the well137
documented black hole Cygnus X-1 with a radius of 6~2.5 10 cm .138

139
In order to better represent the natural systems of harmonic oscillators we initiate our calculation140
by defining a Planck spherical unit (PSU) oscillator of the Planck mass m with a spherical141
volume sV and a Planck length diameter 331.616199 10 cm  with a radius of / 2r   .142
We utilize a spherical volume for our fundamental spacetime quantum foam PSU oscillator143
instead of the typical Planck area 2 or Planck volume 3 in our generalized holographic144
approach. Therefore a spherical PSU of radius r has a volume of145

34
3s rV   (5)146

or 99 32.210462  10sV cm  . Such a sphere will have an equatorial plane circular area of147
2

c rA   (6)148
or 66 22.051538 10cA cm  , which will be utilized for the purpose of holographic tiling. In our149
generalized holographic approach we consider the volume vacuum oscillation energy in terms of150
Planck spherical units as well as the typical tiling of the surface horizon found in the holographic151
principle entropy calculations of equations (3) and (4). Our considerations of information within152
the volume stems from an exploration of the role of vacuum fluctuations in surface gravity and153
spacetime quantization relationships between the interior information network and the external154
surface tiling. It is important to note that although, in this exercise, we tile the surface horizon155
with Planck circular areas, these are equatorial areas of spherical oscillators.156

157
Consequently, we derive the quantity  , the number of Planck areas cA on the surface A of158
the horizon of Cygnus X-1 with a radius of 62.5 10 cm and find that159

c

A
A

 


(7)160

or 793.828339 10   . We calculate R or the quantity of Planck volume oscillators sV within161
the volume V of the interior of the Cygnus X-1 black hole162

s

VR
V




(8)163

or 1182.960912 10R   . We then examine the relationship between the information network of164
the horizon  and the interior information network of PSU oscillators R , then multiply it by the165
Planck mass, m to obtain the mass-energy equivalence of the ratio and we determine that166

h
Rm m

  (9)167
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where 341.683354 10hm gm  is the mass derived from this geometric approach, or what we168
term the “holographic gravitational mass”. This expression can be written as well in terms of169
mass relations by multiplying equation (9) by m m 170

h

R
m m


  (10)171

where R is the total mass-energy of  PSU oscillators within the volume and  is the mass-172
energy of PSU oscillators on the surface horizon, so that all terms are Planck mass quantities,173
which clarifies the relationship between masses in the geometry. Equation (10) can then be174
written as175

h

R
m 


 . (11)176

We then calculate the Schwarzschild mass of a black hole of the same radius as our example177
Cygnus X-1. Rearranging equation (1) we have178

2

2 s
rc m
G
 (12)179

where sm is the Schwarzschild mass of such a black hole, c is the speed of light and G is the180
gravitational constant. We obtain the exact same quantity, 341.683354 10sm gm  utilizing181
CODATA values.182
Therefore183

h sm m . (13)184
We find that a simple relationship of the internal PSUs within a given volume, to the discrete185
“pixelation” of the holographic membrane surface horizon of the black hole yields what we term186
the holographic gravitational mass of the object which is equivalent to its classical Schwarzschild187
mass. This of course, is valid for any system, is free of any relativistic expressions, and utilizes188
only discrete Planck quantities, which has implications for quantum gravity.189

190
From the above geometric analysis we then perform an algebraic derivation to find an elegant191
formulation of this quantized relationship. Therefore we can write equation (11) in terms of192
equation (7) and R193

/
c

c

R Rm ARm
A A A




   



. (14)194

Utilizing equations (6) and (8) and rearranging terms we have195
2 2

2 2

( / ) ( / )
4 4
s r s rV V m V V m
r r



     

. (15)196

Expanding to the spherical form in terms of r and r and reducing,197
3 3 2 3 3 2

2 2

4 4( / ( )) ( / )3 3
4 4

r r r r
r m r m

r r

 
 

 
   

(16)198

or,199

4 r

R mr


 


(17)200

where r is the radius of a system. Given that / 2r   , and utilizing equation (11) we now201
obtain what we have previously termed the holographic gravitational mass hm as,202
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2 h
mr m


. (18)203

Of course now a radius we term the holographic radius hr can be calculated for any mass m ,204
giving the expression205

2h
mr
m




 . (19)206

Therefore, we find that the number of discrete Planck masses within any given mass m207
multiplied by 2 , which is a discrete quantity, will generate the holographic radius equivalent to208
the well known Schwarzschild radius of equation (1) so that in the case of equation (19) we have209
a non-relativistic form derived from discrete vacuum oscillator Planck quantities generating a210
quantized solution. The geometric equation (9) and the algebraic derivation (19) are both simple211
and meaningful as they clearly demonstrate that the gravitational mass of an object can be212
obtained from discrete quantities based on Planck spherical units. Consequently our results are213
consistent with the dimensional reduction embodied in the holographic principle, and thus we214
have found a unique expression involving the holographic gravitational mass, radius, Planck215
mass, and the mass of any black-hole object that is congruent with the usual holographic entropy216
computation of equation (3) and (4).217

218

Clearly in both cases c and G are involved since Planck entities are derived from 3

G
c




219

and
cm
G




,   therefore we can write equation (19) as220

23

42 2 2h

G
Gcr m m m

m cc
G

  





 (20)221

or222

2

2
s h

Gmr r
c

  . (21)223

Here we arrive to the Schwarzschild expression of equation (1) from geometric considerations224
alone. It then follows that the Schwarzschild solution to Einstein’s field equations could have225
been developed in the late 19th Century by computation of tiling Planck quantities independent of226
spacetime curvature and singularities, near the time when Max Planck in 1899 derived his units.227
His units were, of course, the result of the renormalization of the electromagnetic spectrum of228
black body radiation by the utilization of a quantum of action h , which confirmed experimental229
results. Planck quantities are natural units, free of any arbitrary anthropocentric measurements,230
are based on fundamental physical constants, and can be defined as, for example, the time it231
takes a photon to travel one Planck length which is the Planck time. Therefore, in the case of the232
generalized holographic solution the difficulties associated with discontinuities and singularity233
production are precluded from occurring due to the Planck quantization where the presence of  ,234
the quantum of angular momentum or the quantum of action of the energetic vacuum quantizes235
spacetime and yields a discrete gravitational mass or quantum gravity.236

237
However, if our holographic solution is a correct representation of quantum gravitational238
spacetime structure, then it should be applicable to the quantum world and yield appropriate239
results such as fundamental physical quantities from first principles and geometric considerations.240

241
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3. HOLOGRAPHIC MASS AT THE HADRON SCALE242
243

We now apply the above surface to volume relationships of Planck vacuum oscillations of a244
cosmological scale object to the quantum world. We initially utilize the standard CODATA proton245
charge radius given as 130.8775 10pr cm  due to the fundamental nature of protons in the246
hadronic picture. We derive the quantity  as the number of Planck areas cA on the surface247
area pA of a proton248

p

c

A
A

 


. (22)249

In this case, 404.716551 10   . Multiplying by the Planck mass, we obtain250
361.026562 10m gm    (23)251

or the holographic mass of the surface horizon of the proton. We then calculate R or the number252
of PSUs within the proton volume pV utilizing equation (8), yielding 601.280404 10R   .253

254
We can now examine the relationship between  and R and find255

242 1.603498 10pm gm
R
 

    (24)256

where pm  is the holographic derivation of the mass of the proton. The result is a close257
approximation to the measured CODATA value for the proton mass 241.672622 10pm gm 258
with a 240.069 10 gm or ~4% deviation from the CODATA value.259

260
Therefore a simple reversal of the holographic “pixelation” relationship in equation (11) produces261
a close approximation to the rest mass of the proton; whereas the above geometric holographic262
gravitational mass (which is equivalent to the Schwarzschild solution) is generated by dividing the263
mass of PSUs in the interior by the number of PSUs on the surface, conversely the proton rest264
mass is extrapolated from the mass of PSUs on the surface divided by the number of PSUs in the265
interior. Clearly both equation (11) and it's inverse in equation (24) can be utilized to describe a266
relationship between the interior information to the screening on the surface horizon and is267
consistent with the dimensional reduction associated with the holographic approach. In the268
following sections we will clarify the nature of this relationship, which has significant implications269
to the gravitational coupling constant and confinement.270

271
The usual method of determining the charge radius of the proton is to measure the Lamb shift of272
a bound proton-lepton system via spectroscopy. A prior method was to measure the Sachs273
electric form factor with a scattering experiment, such as electron-proton scattering. The Sachs274
form factors are the spatial Fourier transforms of the proton’s charge distribution in the Breit275
frame [12]. Recently an international research team from the Paul Scherrer Institut (PSI) in276
Villigen (Switzerland) and scientists from the Max Planck Institute of Quantum Optics (MPQ) in277
Garching, the Ludwig-Maximilians-Universität (LMU) Munich and the Institut für Strahlwerkzeuge278
(IFWS) of the Universität Stuttgart (both from Germany), and the University of Coimbra, Portugal279
obtained measurements recently published in Nature of the spectrum of muonic hydrogen that280
found a significantly lower value of 130.84184 10pr cm  [10] compared to the CODATA value281
of the proton charge radius. In the case of measuring the Lamb shift of a bound proton-muon282
system it was anticipated to reduce the error by an order of magnitude compared to283
measurements from proton-electron scattering and typical proton-electron spectroscopy [13].284
While it did indeed reduce the error by an order of magnitude, the fact that the new measurement285
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is five standard deviations from the CODATA value has raised significant questions about the286
implications of this new result on Quantum Electrodynamics, and so far no experimental errors287
have been found despite thorough scrutiny by the physics community [14-20].288

289
We now proceed to calculate the rest mass of the proton as above, utilizing the new muonic290
hydrogen measured proton charge radius 130.84184 10pr cm  and find 404.340996 10   ,291

359.448222 10 gm   , and 601.130561 10R   . Again utilizing equation (24) we obtain292

242 1.6714213 10pm gm
R
 

    . (25)293

This result is now a much closer approximation to the measured CODATA value for the proton294
mass 241.672622 10pm gm  with a 240.0012 10 gm or ~0.07% deviation from the295
CODATA value. This extremely close result is supportive of the new muonic hydrogen296
measurement of the proton charge radius, and of our generalized holographic approach applied297
to the quantum scale. Considering that this method yields an exact solution to the gravitational298
mass of an object, we can now make a prediction of the precise radius of the proton from299
theoretical tenets. Assuming that the current CODATA mass measurement of the proton (which300
has been measured to a high level of precision empirically) is accurate, we can solve equation301
(25) for the radius of an object of mass 241.672622 10pm gm  by utilizing algebraic302
computations from the geometric consideration. Consequently303

( / )2 2
/
c

p
s

A A mm
R V V


    



. (26)304

Substituting equations (5) and (6) on the right side and canceling common terms we have
305

2 2 2 2

3 33 3

(4 / ) (4 / )2 24 4 // ( )3 3

r r

p rp r

r m r m
rr

 
 

   


(27)306

and reducing to
307

8 8
/

r

p r p

m m
r r
  


. (28)308

Since / 2r   , we can reduce this to309

4p
p

mm
r   . (29)310

Therefore the mass of the proton can be simply extrapolated from the relationship of the Planck311
length times the Planck mass divided by the proton charge radius. Again, as in section 2 we find312
a simple and elegant quantized solution to a fundamental physical quantity utilizing an intrinsic313
generalized holographic relationship.314

315
We now can predict a precise radius for the proton, which we term pr  , from the CODATA value316
for the proton mass by inverting equation (29)317

134 0.841236 10p
p

mr cm
m


    (30)318

a difference of 130.000604 10 cm from the muonic measurement of the proton charge radius of319
130.84184(67) 10r cm  and therefore falls within less than one standard deviation320

130.00067 10 cm , or within their reported standard experimental error value [10]. More precise321
measurement may confirm this theoretical result.322
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323
324
325

4. DETERMINING A FUNDAMENTAL GEOMETRIC MASS RATIO AND THE326
GRAVITATIONAL COUPLING CONSTANT327

328
As in section (2), we now replace  and m in equation (29) by their respective fundamental329
constant Planck unit definitions, to derive deeper meaning. Therefore, canceling terms and330
simplifying331

2

3 24 4 4 44p
p p p p p

G c
m c G c cm
r r r r r c     

   


 . (31)332

We rewrite the last term and multiply the numerator and denominator by /c G ,333

2

/2 2
/ 2 / 2p p

c G
r c r c G

 
 

(32)334

and since
cm
G




, we substitute335

2

22
/ 2p

m
r c G

  . (33)336

Here the Schwarzschild condition 2 2sm rc G appears in the denominator which is equivalent337
to our holographic solution 2hm rm   . We can now write equation (33) as338

2

2p
h

mm
m


  . (34)339

This is a significant result as we now observe a direct relationship between the rest mass of the340
proton pm , the Planck mass m , and the Schwarzschild mass or holographic gravitational mass341

hm , which we denote as hm  to indicate the holographic gravitational mass specific to the proton.342
Thus, the presence of a strong gravitational potential equivalent to the Schwarzschild mass in343
equation (34) relates the rest mass of the proton to our cosmological generalized holographic344
mass solution, confirming that the holographic principle, typically consistent with strong345
gravitational objects, is potentially involved in the strong field confinement environment of the346
femtometer scale due to Planck fluctuations. Here our generalized holographic approach has led347
us to a direct relationship between a cosmological gravitational solution and the Planck scale to348
produce the mass of a quantum object. From equation (11)349

h
Rmm


  (35)350

where R is the number of PSUs within the interior and  is the number of PSUs on the surface351
horizon, we now clearly discern that both the holographic gravitational mass (equivalent to the352
Schwarzschild mass) and the rest mass of the proton are a consequence of the Planck mass m ,353
and the geometrical considerations of Planck vacuum oscillators alone.354

355
Although equation (35) has a simple and elegant form, we now explore a little further the algebra356
to better understand the geometric relationship between pm  , m and hm  .357

358
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Starting from equation (34) and multiplying by h hm m  we have359
2 2

22 2p h
h h

m mm m
m m 
 

   . (36)360

361
362
363

Expanding hm  in the denominator with equation (35) and rearranging terms we have364
22

22 2h h
m mm m

RmRm




 

 
   
   
 
 

 



. (37)365

366
We now express this in terms of  and R367

2

2p hm m
R





 

 
   
 

(38)368

where  is the mass of PSUs on the surface horizon and R is the mass of PSUs in the interior369
volume as in equation (10). Here the geometric mass relationship clearly emerges. Significantly,370
the rest mass of the proton is generated by the square of the simple mass relationship of the371
surface mass of PSUs to the interior mass of PSUs multiplied by the holographic gravitational372
mass of the proton. Of course we can also express this relationship in terms of dimensionless373
quantities. We divide by m in the numerator and denominator374

2
/

2
/p h

m
m m

R m





 

 
   
 





(39)375

yielding376
2

2 hmR



   
 

. (40)377

Yet, another step can be taken to further elucidate the nature of the relationship by expanding378
hm  utilizing equation (9)379

2

2 R m
R



   
 

 (41)380

which reduces to381

2pm m
R


   (42)382

which can be converted back to a mass only expression by multiplying the dimensionless383
quantities by m , yielding384

2pm m
R





   . (43)385

The relationships between the proton mass, the Planck mass and the holographic gravitational386
mass clearly emerge from this algebraic sequence of equations. One of the most significant387
challenges of modern physics has been to find a comprehensive framework to explain the388
significant discrepancy between the relatively large Planck mass, the mass of the proton, and the389
gravitational force or what is known as the hierarchy problem. Frank Wilczek, whose390
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fundamental contribution of asymptotic freedom to the strong interaction theory, states “We see391
that the question it poses is not, ‘Why is gravity so feeble?’ but rather, ‘Why is the proton’s mass392
so small?’ For in natural (Planck) units, the strength of gravity simply is what it is, a primary393
quantity, while the proton’s mass is the tiny number...” [21]394

395
Here the hierarchy problem between the Planck mass and the proton rest mass is resolved as we396
clearly demonstrate that the rest mass of the proton is a function of the Planck vacuum oscillators397
holographic surface to volume geometric relationship of spacetime, the energy levels of which398
include the gravitational mass-energy hm  derived from the same primary quantity of Planck399
entities. We express the relationship of the proton surface horizon to its volume Planck400
oscillators as a fundamental constant we term 401

203.839682 10
R R





     (44)402

which appears as a fundamental geometric ratio from equations (38) to (43), whether in403
dimensionless quantities or in mass ratios. The inverse relationship404

191 2.604382 10
RR 

  
    (45)405

is clearly seen in equation (41) where hm  is fully expanded in its holographic expression from406
equation (9) of section 2. Therefore,  and its inverse relate the gravitational curvature of a407
Schwarzschild metric to the quantum scale so that408

2 212 2p hm m m 
   (46)409

and relates the proton rest mass to the Planck mass410

2
pmm

 (47)411

and of course the Planck mass to the holographic gravitational mass is 412

hm m  . (48)413
Consequently  acts as a fundamental constant relating the background Planck vacuum414
fluctuation field to the cosmological and quantum scale where it may be the source of415
confinement so that scaling from the proton rest mass to the Planck mass requires a proportional416
mass-energy conversion of 2 while from the Planck mass to the holographic gravitational mass417
requires a factor of  , which yields a total scaling from the proton rest mass to the holographic418
gravitational mass of419

2 392 2.948632 10   . (49)420
Exploring the  relationships relative to quantum gravity confinement, we utilize equation (47),421
and we determine422

2 2p
cm m
G

   


. (50)423

424
Squaring both sides425

2 24p
cm
G

 


. (51)426

Multiplying both sides by
G
c

we have427
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2
24 p p pGm Gm m

c c
    

 
. (52)428

where 2 394 =5.897264 10  is the exact value for the coupling constant between gravitation429
and confinement at the proton scale or the strong interaction. The typical computation given for430
the gravitational coupling constant is431

2 2
39

2 2 2

/
5.905742 10

/
g g p p pe

s e s

F F Gm m r GmF
F F F e r e

       (53)432

where e is the elementary charge and  is the fine structure constant. Note that the slightly433
different value of equation (53) from 24 of equation (52) is due to our utilization of the new434
muonic measurement of the radius of the proton, and that utilizing our predicted radius pr  from435
equation (30) yields the exact value.436

437
Hence the gravitational force coupling constant is computed directly from the geometric438
relationship of the Planck oscillator surface tiling to the interior volume oscillations of the proton439
which as well clearly relate the Planck mass to the proton rest mass, and the 22 ratio of the440
proton mass to the holographic gravitational mass or the Schwarzschild mass. Consequently, the441
unifying energy required for confinement is generated by holographic derivations directly from first442
principles of simple geometric Planck vacuum fluctuation relationships. Furthermore, the rest443
mass of the proton is computed without requiring the complexities introduced by a Higgs444
mechanism, which also utilizes a non-zero vacuum expectation value, but which only predicts 1 to445
5 percent of the mass of baryons, and in which the Higgs particle mass itself is a free parameter446
[22]. The current QCD approach accounts for the remaining mass of the proton by the kinetic447
back reaction of massless gluons interacting with the confining color field utilizing special relativity448
to determine masses. Yet it is critical to note that after almost a century of computation, there is449
still no analytical solution to the Lattice QCD model for confinement. This problem is thought to450
be one of the most obscure processes in particle physics and a Millennium Prize Problem from451
the Clay Mathematics Institute has been issued to find a resolution [23, 24]. Since there is no452
analytical solution to LQCD and no framework for the energy source necessary for confinement,453
associating the remaining mass of the proton to the kinetic energy of massless gluons is based454
on tenuous tenets. Our results demonstrate that the holographic gravitational mass-energy of the455
proton hm  is the unification energy scale for hadronic confinement and that the mass of456
nucleons is a direct consequence of vacuum fluctuations. Keeping in mind that a neutron quickly457
decays into a proton when free of the nucleus, we have therefore addressed the fundamental458
nature of the nucleon by deriving the proton rest mass and the confining force from holographic459
considerations. In future publications we will address the confinement string-like gluon jet flux460
tube structures of the QCD vacuum model as potentially arising from high curvature within the461
spacetime Planck vacuum collective behavior background, acting as vortices near the462
holographic screen topological horizon. This will be addressed utilizing an extended center vortex463
picture which has been significantly developed by 't Hooft [25] and in which the surface area of a464
Wilson loop is related to a confining force. In the next section, we explore the energy and angular465
frequency associated with our model and we compute the gravitational potential range of our466
confining force utilizing special relativity.467

468
5. FREQUENCY, ENERGY AND THE YUKAWA POTENTIAL469

470
From equations (29) and (47) we have471

2 4p
p

mm m
r

   
  . (54)472

Dividing by 2m on both sides we find473
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2

pr
   (55)474

or475
2

pr 



. (56)476
Calculating Einstein’s mass-energy equivalence for the proton we have477

2
p pE m c . (57)478

479
480

From equation (47) we can then write481
22 m c  (58)482

where 2m c is the Planck energy. Now we expand the terms483
484

5 2 3 2 2 3 3

3

2 22 2 2 2c c c c c c c cc
G G G G G

c

         
     


   

. (59)485

From equation (56) it follows that486
4 4 4

22 p

c c c
r





  
  


. (60)487

Given that
2
h


 , then488

4 4 4
2p p

p p

hc hcE hf
r C

   . (61)489

Thus we have obtained an expression for the energy where 2p pC r is the circumference of490

the proton and the angular frequency p
p

cf
C
 . Therefore the energy of such a system can be491

written in terms of  as 8p pE f  which yields a frequency492

225.667758 10
8 4
p p

p

E E
f hz

h
   


(62)493

characteristic to high-energy nuclear gamma emission, and a period of494
231 1.764366 10p

p

t sec
f

   (63)495

where 2310 sec is typically given as the interaction time of the strong force [26]. From equation496
(58) we find that 2 multiplied by the Planck energy yields an angular frequency with a period of497

pt , which is the time it takes for a particle to decay via the strong interaction. Hence from the498
generalized holographic geometric relations of Planck entities, we have derived clear quantum499
gravitational mass-energy formulations that define the characteristics of the strong nuclear force500
such as the energies to produce it from gravitational coupling and its interaction time.501

502



14

Yet, the short range of the nuclear force as defined by the Yukawa potential demands that the503
force strength drops off at an exponential rate close to the horizon where pr r . To explore this504
force strength to radius relation in our approach, we begin by refining our derivation from505
reference [27] where we theorize that the difference between the Schwarzschild energy potential506
and the rest mass of the proton may be the result of mass dilation near the horizon where velocity507
is relativistic. Therefore, we begin with the known relativistic mass dilation expression508

0
2

21

mM
v
c





(64)509

where 0m is a rest mass and M is the dilated mass and v is the velocity. Solving for
v
c

, we510

find511
21 ( )v m

c M
  (65)512

513
Substituting 0 pm m and hM m514

2 41 ( ) 1 4p

h

mv
c m





    . (66)515

516
Therefore the dilated mass-energy yielding the Schwarzschild unifying energy potential occurs at517
v
c

extremely close to 1. We compute the result and examine how close v is to c and find518

781 4.347214 10v
c

   . (67)519

That is, the Schwarzschild energy potential is reached when v is 784.34 10 less than c , which520
can be computed as well, with an accuracy of some 76 significant digits, to be 42 . We now521
seek an expression for v as a function of r utilizing an orbital velocity formula. Our purpose is522
to identify velocities at the Schwarzschild horizon or the holographic horizon described in earlier523
sections. The use of relativistic velocity equations produces results describing velocities at the524
photon sphere or the ergosphere in the case of the Kerr Metric where the ergosurface is situated525
at 1.5 times the Schwarzschild radius at the equator (the photon sphere) and is oblate so that the526
poles are coincident with the Schwarzschild surface. We note that the relativistic photon sphere527
solution corresponds closely with the Compton wavelength of the proton. However, for our528
purpose in this work our intent is to compute the velocity at the Schwarzschild surface or529
holographic surface rather than the ergosphere. For that purpose a simple semi-classical form530
can be utilized. Therefore531

2

2( ) 2 2Gm Gmv r ar r
r r

   (68)532

and multiplying by 2c in the numerator and denominator and utilizing the Schwarzschild radius533
equation534

2

2 srGmc c
rc r

  . (69)535

Substituting ( )v r into the mass dilation equation (64) we have536
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2 2

2 2
[ ( )] 11 1 ss

m m mM
rv r c r
rc rc

  
 

. (70)537

Substituting hm  for m and pr for sr , we can derive that the radius at which the unification538
energy 145.668464 10hm gm   is achieved due to mass dilation can be computed as539

2 2 2

2 2 2 2 2 2 4 4( (2 ) ) (1 4 ) (1 4 )
ph h h

p p p
h p h h h

rm m mr r r r
m m m m m  

  

    

   
   

(71)540

or the dimensionless quantity 78( ) 8.694428 10p pr r r    . Consequently we can assert for541
all intent and purposes, that the Schwarzschild mass occurs at or extremely close to horizon. We542
now compute the mass dilation from the velocity found at  from pr utilizing equation 1 and find543

14( )2 1.206294 10
1

p p
pd p

pp

p

m r
m m gm

rr
r


 




   









(72)544

where pdm
 is the dilated mass at one Planck length from pr . Evidently an asymptotic drop of the545

dilated mass-energy hm  occurs, reducing by some 28 orders of magnitude within one Planck546

length from the horizon. We note that
2
pdm


is equivalent to the geometric mean p hm m 547

between the Planck mass and the rest mass of the proton, which may represent a harmonic548
relationship between pdm

 and pm  .549
550

We now utilize equation 1 to compute mass dilation as a function of radius, which we convert to a551
gravitational energy potential Gm r . We graph our results and compare them with the Yukawa552
potential, see figure 1a.553

554

555
Figure 1. (a) The relativistic gravitational potential  resulting from mass dilation near the horizon pr . (b)556
The Yukawa potential  typically given as the short range energy potential of the strong force where  is557
the hard-core surface potential and k is the inverse screening length (inverse Debye length).558

559
From Figure 1(a) we find that the gravitational potential from the mass dilation of a proton due to560
the angular velocity of an accelerated frame generates an asymptotic curve with a force potential561
drop-off as a function of r characteristic of the short range force of nuclear confinement562
equivalent to the Yukawa potential in figure 1(b). Therefore, we have derived a relativistic source563
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for the confining energy with a quantum gravitational potential equivalent to the unification energy564
of a Schwarzschild mass or the holographic gravitational mass of the proton hm  , yielding a565
gravitational coupling with a Yukawa-like short range, and the appropriate interaction time of the566
strong force pt , resulting in an analytical solution to confinement. These results are derived from567
first principles and classical considerations alone, with zero free parameters or hidden variables,568
and extend our generalized holographic solution to generate a complete picture of confinement569
whether at the quantum scale or the cosmological scale of black holes. Furthermore,570
considerations of equations (38) and (43), where the rest mass of the proton is derived from571
relationships of Planck oscillators PSUs of an energetic structured vacuum at the holographic572
horizon, may provide us with a source for mass. This is analogous to the non-zero vacuum573
expectation value of the Higgs field where the Yukawa interaction describes the coupling between574
the Higgs mechanism and massless quark and lepton fields or fermions. However, this Higgs575
mechanism only accounts for a small percentage of the mass of baryons where the rest is576
thought to be due to the mass added by the kinetic energies of massless gluons inside the577
baryons. Our generalized holographic model accounts for all of the rest mass of protons and the578
energy of confinement in addition to predicting the mass of cosmological objects directly out of579
geometric considerations of the energetic vacuum.580

581
6. CONCLUSION582

583
We have generalized the holographic principle to considerations of spherical tiling of584
Planck vacuum fluctuations within volumes as well as on horizon surfaces. From these585
discrete spacetime quantization relationships we extract the Schwarzschild solution to586
Einstein’s field equations, generating a novel quantized approach to gravitation. We587
apply this resulting quantum gravitational method to the nucleon to confirm its relevance588
at the quantum scale and we find values for the rest mass of the proton within589

240.069 10 gm or ~4% deviation from the CODATA value and 240.0012 10 gm or590
~0.07% deviation when the recent muonic radius measurement is utilized. As a result,591
we predict a precise proton charge radius utilizing our holographic method which falls592
within the reported experimental uncertainty for the muonic measurement of the proton593
charge radius. More precise experiments in the future may confirm our predicted594
theoretical proton charge radius.595

596
We determine a fundamental constant  defined by the mass ratio of vacuum597
oscillations on the surface horizon to the ones within the volume of the proton. As a598
result, clear relationships emerge between the Planck mass, the rest mass of the proton,599
and the Schwarzschild mass of the proton or what we term the holographic gravitational600
mass. Furthermore, we find that 24 generates the coupling constant between601
gravitation and the strong interaction, thus defining the unification energy for602
confinement. We also derive the energy, angular frequency, and period for such a603
system utilizing our holographic approach and find that the frequency is the604
characteristic gamma frequency of the nucleon and the period is on the order of the605
interaction time of particle decay via the strong force. Finally, we calculate the mass606
dilation due to velocity as a function of radius and plot the resulting gravitational potential607
range. We find the range to be a close correlation to the Yukawa potential typically608
utilized to illustrate the sharp drop-off of the confining force. In future work we will609
examine the application of this approach to more complex systems. We will consider as610
well some of the seminal work done in defining maximal particle momentum and it's611
applicability to our approach [28].612

613



17

In this paper, we demonstrate that a quantum gravitational framework of a discrete614
spacetime defined by spherical Planck vacuum oscillators can be constructed which615
applies to cosmology and quantum scale. Our generalized holographic method utilizes616
zero free parameters and is generated from simple geometric relationships and algebra,617
yielding precise results for significant physical properties. In the words of Einstein, “One618
can give good reasons why reality cannot at all be represented by a continuous field.619
From the quantum phenomena it appears to follow with certainty that a finite system of620
finite energy can be completely described by a finite set of numbers (quantum numbers).621
This does not seem to be in accordance with a continuum theory and must lead to an622
attempt to find a purely algebraic theory for the representation of reality.” [29]623
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