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ABSTRACT12

13
We study the direct correlation function (DCF) of a classical fluid of non-spherical molecules.
The components of the fluid are hard spherocylinder (SC) molecules. The required
homogeneous DCF is obtained by solving Orenstein-Zernike (OZ) integral equation
numerically, using the Percus-Yevich (PY) approximation and the procedure proposed by
Ram and co-workers. We also obtained the closest approach between two spherocylinders
by using two different methods, first extending the algorithm proposed by Vega and Lago by
introducing a new geometry and second use the finite element procedure. Results are in
agreement in two methods. The calculation is performed for various values of packing
fractions of the fluid and for the aspect ratio, L/D=5.0,10.0. The coefficient expansions of
DCF are obtained. The results are in agreement with the other recent works.
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1. INTRODUCTION18
19

The problem is the prediction of the physical properties of simple and multi-component20
molecular fluids based on the information about molecular shapes and intermolecular21
interactions. Considerable progress, however, has been made over the last two decades in22
understanding the behavior of these fluids at the molecular level by considering simplified23
models.24
For these fluids we can consider models in which molecules are treated as hard particles25
with a given shape [1]. The main reasons to study systems of hard convex bodies is that26
they provide us with simple references systems which are used for the investigation of more27
realistic systems such as liquid crystals [2].28
Among simple geometric forms, the spherocylinder would seem to approximate best the29
shape of the most nematgenic molecules. For this reason, a fluid of rigid SC is useful model30
for investigating the fundamental nature of the nematic-isotropic phase transition in liquid31
crystals.32
In the recent years, there have been many investigations of the structural properties of33
interface and confined molecular fluids using the liquid state such as integral equation [3,4]34
density functional theory [5-8] and computer simulations [9,10].Since the integral equation35
theory has been found to be quite successful in describing molecular fluids, this theory is36
used inorder to study the fluid.37
The direct correlation function (DCF) plays an important role in describing thermodynamical38
properties and the structure of simple [11-13], molecular [14-16] and multicomponent fluids39



[17-20]. The DCF can be used to calculate the equation of state [21], free energy [22], phase40
transition [23, 24], elastic constants [25-27], etc.41
In our work, we consider a system composed of hard SC particles and obtain the DCF of this42
system. We use the Ornstein-Zernike (OZ) integral equation [28] by the Percus-Yevick (PY)43
approximation [29] to study this system.44
This article organized as follows: In Sec.2, we introduce the SC model and explain how to45
find the DCF of this model by OZ equation, in Sec.3 the methods of calculating the closest46
approach between SC molecules are described. In Sec.4, we report and discuss the results47
and finally in Sec.5 our conclusions are summarized.48

49
2. DCF OF SC50

51
DCF of spherical fluids is only dependent on distance between the centers of the molecules.52
In non spherical fluids, in addition the distance, the orientation of the molecules is also53
effective. For solving this problem, expansion of the DCF according to spherical harmonics is54
suggested [4]. Because the spherical harmonics include polar and azimuthal angles, that are55
useful tools to describe the orientation axis of each molecule.56
In the SC model, system formed by cylinders of length L and diameter D terminating in57
hemispheres at the two bases. These spherocylinders interact according to the potential:58
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where ),( iii   is describes the orientation of particle i and r is a vector along the60

line connecting the centers of the two particles and ),,r( 21 


is the closest approach61
between the segments constituting the axis of the cylinder.62
The DCF of fluid with non-spherical molecules can be defined through the OZ equation [28]63
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where ir is the position of the center of mass and  shows the number density of the65
molecules. The symbols h and c are the well-known total and direct correlation functions.66
To solve OZ equation, we first introduce the expansion of DCF.  There are two common67
choices for this expansion. In one expansion, the molecular orientations are referred to an68
intermolecular reference frame in which the polar axis is along the intermolecular vector 12r


,69

body frame (BF). In the other one, the molecular orientations are defined in a space-fixed or70
laboratory frame (LF) of reference. We expand the angular dependence of the correlation71
functions, h or c, using orthogonal basis set of harmonics.72
Expansions in BF is73
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75
and in LF can be defined by76


l,l,l

r21l,l,l2121
21

21
),,()r;l,l,l(c),,r(c 


. (4)77

Where r


is the unit vector along r , )r;m,l,l(c 21 and )r;l,l,l(c 21 are the expansion78

coefficients in body and laboratory frames. ),,( r21l,l,l 21



is rotational invariant79
given by80
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82
Where )mmm;l,l,l(C 2121 is a Clebsch-Gordan coefficient and m

lY is the spherical83
harmonics, and * indicates the complex conjugate. In BF expansion, the z-axis of the84
coordinate system was chosen along the axis connecting the two molecules that are85
correlated. Therefore, we only need to deal with one index m. To find the direct correlation86
function the following procedure is required:87
(1) Guess an initial value for )r;m,l,l(c 21 .88
(2) Calculate the expansion coefficient in LF by using the first step89
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(3) Use Fourier-Hankel transformation to obtain the coefficients in the Fourier space91
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(4) The coefficients  k;l,l,lc 21 are used to obtain93
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These three equations transform a two particle correlation function from r frame in real space95
into a function in k space; within the complete set of the spherical harmonics we can96
transform the OZ equation as97
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This can be written in matrix form for each m and k value99

)k;m(h)k;m(c
4

)k;m(c)k;m(h



 (10)100

where c and h are symmetry matrices with indices l1 and l2.101

Here we introduce an auxiliary function )k;m(y102
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(5) The OZ equation is written as104
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and it is solved for )k;m,l,l(y 21 .106

(6) Converting )k;m,l,l(y 21 to )k;l,l,l(y 21 yields107
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(7) By using the inverse Fourier-Hankel transform we can get )r;l,l,l(y 21109
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(8) These expansions are used to obtain )r;m,l,l(y 21111
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(9) To solve the OZ equation, we require an appropriate closure relation. Here we apply the113
PY closure relation [29]114

 1)2,1(y)2,1(f)2,1(c  (16)115

where )2,1(f is the Mayer function and is defined by116

1))2,1(uexp()2,1(f   (17)117
and for the pair potential energy of interaction between particles, which defined in Eq.(1) is118
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(10) We can determine )r;m,l,l(c 21 with the help of the PY equation120
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Where )r;m,l,l(f 21 is the Mayer expansion coefficient and given by122
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With these new values of )r;m,l,l(c 21 , we return to step (2) and repeat the next steps124
again. This iteration is continued until a required convergency is achieved. By using these125
coefficients, we can obtain the DCF of SC fluid.126

127
3. CLOSEST APPROACH BETWEEN HARD SC MOLECULES128

129
In molecular liquid theory calculating the closest approach between two molecules is very130
important. In order to calculate the DCF of the fluid it is necessary to calculate the closet131
approach between the molecules, therefore, we calculate the closest approach of two SCs132
by using two different methods.133
In the first method we use a fast algorithm proposed by Vega and Lago [30]. They actually134
applied their method for calculating the closest approach between two rods and we extend135
this to find the closest approach between two SCs. If the shortest distance between two rods136
obtained and subtract this value from the half diameter of the each SC that value is the137
closest approach between SCs.138
In the second method we use the finite element procedure to find the closest approach. In139
this method, the main axis of the SCs (cylinders axis) are divided into equal parts.140



With having direction )( 1
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the vector that connects the141
centers of SCs, the coordinate of the begin and end of the main axis of the cylinder can be142
determined and given by143
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To divide this segment (axis of cylinder) into n equal parts from the following equation is146
used147

n
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where iF is the coordinate of the ith node.149
150

151
Fig. 1.  Coordinates and orientation of two SCs152

153
The main axis of the other cylinder is divided into m equal parts similarly. Now, the distances154
between the pairs of points listed from each cylinder which is the combination of 2 from m+n155
are calculated. The minimum value from the calculated distances is chosen. Finally, we156
subtract this value from the half diameter of the each SC that value is the closest approach157
between SCs. These methods are more general and can also be used for the mixtures.158

159
3. RESULTS AND DISCUSSION160

161
We solve the OZ integral equation numerically to find the DCF of hard SC fluid. For162
calculating the DCF of the fluid, it is required to calculate the closet approach between the163
molecules, therefore, we calculate the closest approach of two SCs by using two different164
methods which described. According to the results shown in the Table 1, for the aspect ratio,165
L/D=5.0, these methods are in good agreement. Here L and D are the length and diameter166
of SC, respectively. In order To make the calculation more accurate, we use the average of167
these two methods. All values are randomly selected.168

169
170
171
172
173
174
175
176



Table 1. Calculated closest approach of SCs with L/D=5.0, the angles are in radian.177
178

r  
1 1 2 2 Vega &

Lago
Method

Finite
Element
Method

2.8591
4.2640

11.7971
1.4388
5.5697
3.7358

6
2.8719
3.7071

1.2419
1.3555
2.5181
2.3084
3.0763
1.3938

0
1.5483

0

5.1896
1.8970
1.2959
3.1228
2.9350
5.2771

0
6.0874

0

2.7181
1.3601
0.6010
2.7033
0.6200
3.0850

0
2.5982
0.785

2.6025
1.5154
4.5526
1.6170
3.2049
2.5906

0
0.8067

1.57

2.4872
1.9937
3.0588
0.8722
0.6594
1.0920

0
2.6460
0.785

5.1296
2.3071
4.4264
1.8106
3.6442
4.1983

0
4.9604

1.57

0
0.2196
6.5927
0.1033
2.9350
2.2485

0
1.2461

0

0
0.2177
6.5851
0.1016
2.5141
2.5141

0
1.2437

0
179

In Table1 r, ),( iii   and ),(   are the distance between the centers of180
SCs, orientation of ith molecule and orientation of the vector which connects the center of181
SCs respectively.182
Now, we can calculate the Mayer function with Eq. (18). The packing fraction of SC can be183
given by184
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186
In Figure 2, the selected DCF expansion coefficients for packing fraction 5.0 with187
aspect ratio L/D=5.0 are plotted.188
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200

201
Fig. 2. Selected expansion coefficients of the DCF of hard SCs as a function of the202

reduced distance,
D
r*r  , for 5.0 .203

204
In Figure 3 the selected DCF expansion coefficients of DCF for packing fraction205

441.0 with aspect ratio L/D=5.0 are plotted.206
207



208

209
Fig. 3. Selected expansion coefficients of the DCF of hard SCs as a function of the210

reduced distance,
D
r*r  , for 441.0 .211

212
In the following, the expansion coefficients are compared with computer simulation [10] in213
Figure 4. These coefficients are calculated in LF for aspect ratio L/D=10 and214

1592.0 .The obtained expansion coefficients of the DCF using the PY integral equation215
are in good agreement with the coefficients provided by computer simulation.216



217

218
Fig. 4. Selected expansion coefficients of the DCF as a function of reduced219

distance
D
r*r  , for 1592.0 and L/D=10.0 in LF. The solid and dotted curves220

are due to our results and simulation [10], respectively.221
222

4. CONCLUSION223
224

For studying a system containing spherical and non-spherical members knowing the DCF is225
required. We consider a system composed of hard SC particles and obtain the DCF of this226
package. We use the integral equation by the PY closure. First, we should define how to227
calculate closest approach between two molecules and, then, compare these methods. As228
shown in Table 1 these methods are in fairly agreement. With calculating closest approach,229
the expansion coefficients of DCF are obtained. These coefficients are plotted for different230



packing fraction and aspect ratio. Finally, we compared the expansion coefficients with231
computer simulation, which are in good agreement.232

233
REFERENCES234

235
1. Allen MP, Evans GT, Frenkel D, Mulder BM. Hard convex body fluids. Adv.Chem.236
Phys.1993; 86: 1- 166.237

238
2. Colot JL, Wu XG, Xu H,Baus M. Density-functional, Landau, and Onsager theories of the239
isotropic-nematic transition of hard ellipsoids. Phy. Rev. A.1988; 38, 2022- 2036.240

241
3. Ward DA, Lado F. Structure, thermodynamics, and orientational correlations of the242
nematogenic hard ellipse fluid from the Percus-Yevick equation. Mol. Phys.1988; 63, 623-243
638.244

245
4. Hansen JP, McDonald IR. Theory of Simple Liquids: Academic Press, London; 1986.246

247
5. Rickayzen G. Phase transitions in molecular fluids. Mol. Phys. 1995; 80: 1093-1103.248

249
6. Calleja M, Rickayzen G. A model for homogeneous and inhomogeneous hard molecular250
fluids: ellipsoidal fluids. J. Phys. Condens.Matter. 1995; 7: 8839-8856.251

252
7. Chrzanowska A, Teixeria PIC,Ehrentraut H, Cleaver DJ. Ordering of hard particles253
between hard walls. J. Phys.Condens.Matter. 2001; 13: 4715-4726.254

255
8. Velasco E, Mederes L, Sullivan DE. Density-functional study of the nematic-isotropic256
interface of hard spherocylinders. Phys. Rev. E. 2002; 66: 021708-021714.257

258
9. Allen MP, Frenkel D. Observation of dynamical precursors of the isotropic-nematic259
transition by computer simulation. Phys. Rev. Lett. 1987; 58: 1748-1750.260

261
10. Savenko SV, Marjolein Dijkstra. Asymptotic decay of the pair correlation function in262
molecular fluids: Application to hard rods. Phys. Rev. E. 2005; 72: 021202-021212.263

264
11. Henderson D, Chen KY, Degreve L. The direct correlation functions and bridge functions265
for hard spheres near a large hard sphere. J. Chem. Phys. 1994; 101: 6975-6978.266

267
12. Stelzer J, Longa L, Terbin HR. Molecular dynamics simulations of a Gay-Berne nematic268
liquid crystal – elastic properties from direct correlation functions. J. Chem. Phys. 1995; 103:269
3098-3117.270

271
13. Moradi M, Shahri H. Equation of state and freezing of gmsa hard spheres.272
Int. J. Mod. Phys. B. 2003; 17: 6057-6065.273

274
14. Ram J, Singh RC, Singh Y. Solution of the Percus-Yevick equation for pair-correlation275
functions of molecular fluids. Phys. Rev. E. 1994; 49: 5117-5126.276

277
15. Letz M, Latz A. Fluids of hard ellipsoids: Phase diagram including a nematic instability278
from Percus-Yevick theory. Phys. Rev. E. 1999; 60: 5865-5871.279

280
16. Singh RC, Ram J, Singh Y. Thermodynamically self-consistent integral-equation theory281
for pair-correlation functions of a molecular fluid. Phys. Rev. E. 1996; 54: 977-980.282

283



17. Patra CN, Ghosh SK. Structure of nonuniform three-component fluid mixtures: A density-284
functional approach. J. Chem. Phys. 2003; 118: 3668-3677.285

286
18. Moradi M, Khordad R. Direct correlation functions of binary mixtures of hard Gaussian287
overlap molecules. J. Chem. Phys. 2006; 125: 214504-214510.288

289
19. DuBois S, Perera A. Entropy driven demixing in fluids of rigidly ordered particles.290
J. Chem. Phys. 2002; 116: 6354-6367.291

292
20. Biben T, Hansen JP. Phase separation of asymmetric binary hard-sphere fluids. Phys.293
Rev. Lett. 1991; 66: 2215-2218.294

295
21. Barrio C, Solana J R. Contact pair correlation functions and equation of state for additive296
hard disk fluid mixtures. J. Chem. Phys. 2001; 115: 7123-7129.297

298
22. Tang Y, Wu J. Modeling inhomogeneous van der Waals fluids using an analytical direct299
correlation function. Phys. Rev. E. 2004; 70: 011201-011208.300

301
23. Marko J F. First-order phase transitions in the hard-ellipsoid fluid from variationally302
optimized direct pair correlations. Phys. Rev. A. 1989; 39: 2050-2062.303

304
24. Singh UP, Singh Y. Molecular theory for freezing of a system of hard ellipsoids:305
Properties of isotropic-plastic and isotropic-nematic transitions. Phys. Rev. A. 1986; 33:306
2725-2734.307

308
25. Ponievierski A, Stecki J. Statistical theory of elastic constants of nematic liquid crystals.309
Mol. Phys. 1979; 38: 1931-1940.310

311
26. Phuong NH, Germano G, Schmid F. Elastic constants from direct correlation functions in312
nematic liquid crystals: a computer simulation study. J. Chem. Phys. 2001; 115: 7227-7234.313

314
27. Avazpour A, Mahdavi V, Avazpour L. Effect of direct correlation functions on elastic315
constants of molecular liquids. Phys. Rev. E. 2010; 82: 041701-041709.316

317
28. Ornestin LS, Zernike F. Accidental deviations of density and opalesence at the critical318
point of a single substance. Proc. Acad.Sci. Amsterdam, 1914; 17: 793-806.319

320
29. Percus JK, Yevick G. Analysis of Classical Statistical Mechanics by Means of Collective321
Coordinates. Phys. Rev. 1958; 110: 1-13.322

323
30. Vega C, Lago S. A fast algorithm to evaluate the shortest distance between rods.324
Comput. Chem. 1994; 18: 55-59.325

326


