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Abstract

A theoretical investigation has been made of the roles of the degeneracy and the dynamics of

electrons and ions on the DIA (dust ion-acoustic) Korteweg-de Vries (K-dV) and modified Korteweg-

de Vries (mK-dV)solitons that are found to exit in a dusty degenerate dense plasma containing

non-relativistic degenerate ions and both non-relativistic and ultra relativistic electrons fluids, and

the negatively charged dust grains. This fluid model, which is valid for both the non-relativistic

and ultra-relativistic limits has been employed with the reductive perturbation method. The K-dV

and modified K-dV equations have been derived, and numerically examined. The basic features

of K-dV and modified K-dV solitons have been analyzed. It has been observed that the dusty

degenerate plasma system under consideration supports the propagation of solitons obtained from

the solutions of K-dV and modified K-dV equations. The relevance of our results obtained from this

investigation in compact astrophysical objects is briefly discussed.
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1 Introduction

Recently, the physics of dusty plasma is receiving a great deal of attention. Dusty plasmas are
characterized as a low temperature multispecies ionized gas comprising electrons, protons, and
negatively (or positively) charged grains of micrometer or submicrometer size. The study of the
collective effects in dusty plasmas is of significant interest. Charged dust grains are found to modify
or even dominate wave propagation Angelis (1988); Rao (1990); Angelo (1990a); Shukla and Silin
(1992a); Verheest (1992), wave scattering Angelo and Song (1990b); Angelis (1992) wave instability
Shukla (1992b), ion trapping Goree (1992). However, most of the studies on wave motions Angelis
(1988); Rao (1990); Angelo (1990a); Shukla and Silin (1992a) in dusty plasma assume constant
charge on the dust grains. Now-a-days a number of authors have become interested to study the
properties of matter under extreme conditions Chandrasekhar (1931a,b, 1935), which occur due to
the combine effect of Pauli’s exclusion principle and Heisenberg’s uncertainty principle, depends
only on the number density of constituent particles, but independent on it’s own temperature Mamun
and Shukla (2010a,b). This degenerate pressure has an important role to study the electrostatic
perturbation in matters which exist in extreme conditions Chandrasekhar (1931a,b, 1935). Electron
degenerate pressure will halt the gravitational collapse of a star if its mass is below the Chandrasekhar
limit (i.e. 1.44 solar masses) Mazzaliet al. (2007). This is the pressure that prevents a white dwarf star

*Corresponding author: E-mail: k.mukta@rocketmail.com

file:www.sciencedomain.org�


British Journal of Mathematics & Computer Science
X(X): XX-XX, 20XX

SCIENCEDOMAIN international
www.sciencedomain.org

from collapsing. Astrophysical aspects of high density like in many cosmic environments, compact
astrophysical objects Michel (1982); Miller and Witta (1987); Tandberg-Hansen and Emslie (1988);
Rees (1983). Examples of the latter are white and brown dwarf stars Shapiro and Teukolsky (1983),
as well as massive Jupiter which serves as the super-Earth terrestrial planets around other stars,
and the benchmark for giant planets. In case of such a compact object the degenerate electron
number density is so high (in white dwarfs it can be of the order of 1030cm3, even more Mamun and
Shukla (2010a,b)) that the electron Fermi energy is comparable to the electron mass energy and as a
result the electron speed becomes comparable to the speed of light in vacuum. For such interstellar
compact objects the equation of state for degenerate ions and electrons are mathematically explained
by Chandrasekhar Chandrasekhar (1935) for two limits, named as nonrelativistic and ultra-relativistic
limits. Chandrasekhar Akbari-Moghanjoughi (2011); Chandraet al. (2012) presented a general expression
for the relativistic ion and electron pressures in his classical papers. The pressure for ion fluid can be
given by the following equation

Pi = Kin
α
i , (1.1)

where

α =
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3
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3
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3
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' 3
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Λc~c, (1.2)

for the non-relativistic limit (where Λc = π~/mc = 1.2 × 10−10 cm, and ~ is the Planck constant
divided by (2π). While for the electron fluid,

Pe = Ken
γ
e , (1.3)

for non-relativistic limit
γ = α; Ke = Ki, (1.4)
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in the ultra-relativistic limit Chandrasekhar (1931a,b, 1935).
Recently, a large number of authors Manfredi (2005); Shukla (2006a); Shukla and Stenflo (2006b),

etc. have used the pressure laws 1.3 to 1.5 investigate the linear and nonlinear properties of electrostatic
and electromagnetic waves, by using the non-relativistic quantum hydrodynamic (QHD) and quantum-
magnetohydrodynamic(Q-MHD) Manfredi (2005) models and by assuming either immobile ions or
non-degenerate uncorrelated mobile ions. It turns out that the presence of the latter and degenerate
ultra relativistic electrons with the pressure law (1.3-1.5) admits one-dimensional localized ion models
(IMs) supported by linear and non linear ion inertial forces and the pressure of degenerate electron
fluids in a dense quantum plasma that is unmagnetized. Again in this present days, some authors
Misra and Samanta (2008); Misraet al. (2010) has made a number of theoretical investigations on the
nonlinear propagation of electrostatic waves in degenerate quantum plasma. Again there are some
works on electron-positron degenerate plasma with magnetic field El-Taibany and Mamun (2012).
These investigations are mainly based on the electron equation of state, which are only valid for
the non-relativistic limit. Some investigations have been also made of the nonlinear propagation
of electrostatic waves in a degenerate dense plasma which are mainly based on the degenerate
electron equation of state valid for ultra-relativistic limit Mamun and Shukla (2010a,b). Still now,
there is no theoretical investigation has been made to study the extreme condition of matter for
both non-relativistic and ultra-relativistic limits on the propagation of electrostatic solitary waves in
a dusty degenerate dense plasma system. Therefore, in our paper we study the properties of the
solitons considering a dusty degenerate dense plasma containing degenerate electron-ion fluid (both
non-relativistic and ultra-relativistic limits) with the negativelycharged dust grains to study the basic
features of the electrostatic solitary structures with the solutions of modified K-dV equation. Our
considered model is relevant to compact interstellar objects (i.e. white dwarf, neutron star, black hole,
etc.).
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2 Governing Equations

We consider a one-dimensional, unmagnetized dusty degenerate electron-ion; plasma system containing
non-relativistic degenerate cold ion and both non-relativistic and ultra-relativistic degenerate electron
fluids with arbitrary charged dust grains. We are interested in the propagation of electrostatic perturbation
in such a dusty degenerate dense plasma. Thus, at equilibrium condition we have ni0 = ne0,
where ni0(ne0) is the ion (electron) number density at equilibrium. The nonlinear dynamics of the
electrostatic waves propagating in such a degenerate plasma is governed by

∂ni

∂t
+

∂

∂x
(niui) = 0, (2.1)

∂ui

∂t
+ ui

∂ui

∂x
+

∂φ

∂x
+

K1

ni

∂nα
i

∂x
= 0, (2.2)

ne
∂φ

∂x
−K2

∂nγ
e

∂x
= 0, (2.3)

∂2φ

∂x2
= −ρ (2.4)

ρ = ni − ne(1− µ), (2.5)

where ni(ne) is the ion (electron) number density normalized by its equilibrium value ni0(ne0), ui
is the ion fluid speed normalized by Ci = (mec

2 = mi)
1/2 with me(mi) being the electron (ion)

rest mass, c being the speed of light in vacuum, φ is the electrostatic wave potential normalized by
mec

2 = e with e being the magnitude of the charge of an electron, the time variable (t) is normalized
by ωpi = (4πn0e

2/mi)
1/2, and the space variable (x) is normalized by λs = (mec

2/4πn0e
2)1/2

and µ is the ratio of of the number density to the ion number density (Zdnd0/ni0). The constants
K1 = nα−1

0 Ki/mi
2Ci

2 and K2 = nγ−1
0 Ke/miCi

2=nγ−1
0 Kp/miCi

2.

3 Derivation of K-dV equation

Now we derive a dynamical K-dV equation for the nonlinear propagation of the DIA waves by using
equations (2.1) - (2.5). To do so, we employ a reductive perturbation technique to examine electrostatic
perturbations propagating in the relativistic dusty degenerate dense plasma due to the effect of
dispersion, we first introduce the stretched coordinates Maxon and Viecelli (1974)

ζ = ε1/2(x− Vpt), (3.1)

τ = ε3/2t, (3.2)

where Vp is the wave phase speed (ω/k with ω being angular frequency and k being the wave number
of the perturbation mode), and ε is a smallness parameter measuring the weakness of the dispersion
(0 < ε < 1). We then expand ni, ne, ui, ρ, and φ, in power series of ε:

ni = 1 + εn
(1)
i + ε2n

(2)
i + · · ·, (3.3)

ne = 1 + εn(1)
e + ε2n(2)

e + · · ·, (3.4)

ui = εu
(1)
i + ε2u

(2)
i + · · ·, (3.5)
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φ = εφ(1) + ε2φ(2) + · · ·, (3.6)

ρ = ερ(1) + ε2ρ(2) + · · ·, (3.7)

and develop equations in various powers of ε. To the lowest order in ε, using equations (3.1)-(3.7) into
equations (2.1) - (2.5) we get as, u

(1)
i = Vpφ(1)/(V 2

p −K′
1), n

(1)
i = φ(1)/(V 2

p −K′
1), n

(1)
e = φ(1)/K′

2,
and Vp =

p
K′

2/(1− µ) + K′
1, where K′

1 = αK1/(α − 1) and K′
2 = γK2/(γ − 1). The relation

Vp =
p

K′
2/(1− µ) + K′

1 represents the dispersion relation for the dust ion acoustic type electrostatic
waves in the degenerate plasma under consideration. We are interested in studying the nonlinear
propagation of these dissipative dust ion acoustic type electrostatic waves in a three components
degenerate plasma. To the next higher order in ε, we obtain a set of equations

∂n
(1)
i

∂τ
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∂n
(2)
i
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− ∂
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i ] = 0, (3.8)
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�
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2
(n(1)

e )
2
�

= 0, (3.9)

∂2φ(1)

∂ξ2
= −ρ(1), (3.10)

ρ(1) = n
(2)
i − (1− µ)n(2)

e . (3.11)

Now, combining equations (3.8-3.11) we deduce a Korteweg-de Vries equation as

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (3.12)

where the value of A and B are given by

A =
(V 2

p −K′
1)

2

2Vp
[
3V 2

p + K′
1(α− 2)

(V 2
p −K′

1)
3 +

(1− µ)(γ − 2)

K′
2
2 ],

B =
(V 2

p −K′
1)

2

2Vp
. (3.13)

The stationary solitary wave solution of equation (3.12) is

φ(1) = φmsech2

�
ξ

∆

�
, (3.14)

where the special coordinate, ξ = ζ − u0τ , the amplitude, φm = 3u0/A, and the width, ∆ =
(4B/u0)

1/2.

4 Derivation of mK-dV equation

To examine electrostatic perturbations propagating in the relativistic degenerate dense plasma due to
the effect of dispersion by analyzing the outgoing solutions of equations (2.1-2.5), we now introduce
the new set of stretched coordinates for the modified K-dV equation is:

ξ = ε(x− Vpt), (4.1)
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τ = ε3t. (4.2)

To the lowest order in ε, using equations (4.1,4.2, and 3.3-3.7), into the equations (2.1-2.5), we
find the same results as we have had for the solitons for K-dV equation.

To the next higher order in ε, we obtain a set of equations, which, after using the values of u
(1)
i ,

n
(1)
i , and n

(1)
e , can be simplified as

u
(2)
i =

Vpφ(2)

V 2
p −K′

1
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1 +

V 3
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+
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To further higher order of ε, we obtain a set of equations
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∂2φ(1)
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= −ρ(3), (4.11)

ρ(3) = n
(3)
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e . (4.12)

Now combining equations (4.8) - (4.12) and using the values of n
(1)
i , n

(2)
i , u

(1)
i , u

(2)
i , and ρ(2), we

obtain an equation of the form

∂φ(1)

∂τ
+ β{φ(1)}2 ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ3
= 0, (4.13)

where the value of B is as before and β is given by

β = Bα (4.14)

where α is given by
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15V 4
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1V
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1V
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(4.15)
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Figure 1: Showing the effect of µ on soliton (potential structure) obtained from
eq.(3.14) for both electron-ion being non-relativistic degenerate when uo is 0.1.

-10
-5

0
5

10
Ξ

0.1

0.2

0.3

0.4
0.5

Μ

0.4
0.6
0.8
1

ΦH1L

-10
-5

0
5

10
Ξ

Figure 2: Showing the effect of µ on soliton (potential structure) obtained
from eq.(3.14) for ion being non-relativistic degenerate and electron being ultra-
relativistic degenerate when uo is 0.1.

We call equation (4.13) as modified K-dV equation for planner geometry. The stationary solitary
solution of equation (4.13) is given by

φ(1) = φmsech(
ξ

∆
), (4.16)

where the special coordinate, ξ = ζ − u0τ , the amplitude is φm =
q

6u0
β

, the width is ∆ =
q

1
γφm

,

γ = α
6

and u0 is the plasma species speed at equilibrium.

5 Numerical Analysis

By the careful observation on the figures 1-4 it has become clear that the term µ have an great effect
on the potential, φ(1) of the K-dV and modified K-dV solitons. Because the potential, φ(1) increases
more rapidly for ion being non-relativistic degenerate and electron being ultra-relativistic degenerate
than for both electron-ion being non-relativistic degenerate. Again in the same case (either ion being
non-relativistic degenerate and electron being ultra-relativistic degenerate or electron-ion both being
non-relativistic degenerate) the width, ∆ of the solitons obtained from the solutions of K-dV and
modified K-dV equations (3.14) and (4.16) decreases sharply in all conditions whatever µ increases
with the term ξ. The most interesting point to note that the polarity of potential structure are different:
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Figure 3: Showing the effect of µ on soliton (potential structure) obtained from
eq.(4.16) for both electron-ion being non-relativistic degenerate when uo is 0.1.
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Figure 4: Showing the effect of µ on soliton (potential structure) obtained
from eq.(4.16) for ion being non-relativistic degenerate and electron being ultra-
relativistic degenerate when uo is 0.1.

i.e. opposite for solitary waves and solitons. It is become more clear from observing the figures. The
potential of solitary waves increases with the value of µ with position ξ (figures 1 and 2). But the
potential of solitons decreases with the value of µ with position ξ (figures 3 and 4). It is the most
important significance of this theoretical investigation.

6 Discussion

To summarize, we have carried out solitons by deriving the K-dV and modified K-dV equations for a
planar geometry in an unmagnetized plasma system containing degenerate electrons (non-relativistic
or ultra relativistic limits) and degenerate ions being non-relativistic limit and the arbitrary charged dust
grains. We have shown the existence of compressive (hump shape) DIA modified K-dV solitons. It
can be noted here that rarefactive (dip shape) also may be occurs. We have identified the basic
features of potential DIA solitons, which are found to exist beyond the K-dV limit. Generally the DIA
modified K-dV solitons are completely different from the K-dV solitary waves. The plasma system
under consideration supports finite potential modified K-dV solitons, whose basic features depend
much on the degenerate pressure of ion and electron and the presence of arbitrary charged dust
grains. It may be stressed here that the results of this investigation should be useful for understanding
the nonlinear features of electrostatic disturbances in laboratory plasma conditions. Our investigation
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would also be useful to study the effects of degenerate pressure in interstellar and space plasmas
Ferroet al. (2004), particularly in stellar polytropes Plastino and Plastino (1993), hadronic matter
and quark-gluon plasma Gervino et al. (2012), protoneutron stars Lavagno and Pigato (2011), dark-
matter halos Feron and Hjorth (2008) etc. Further it can be said that the analysis of shock structures,
vortices, double-layers etc. in a nonplanar geometry where the degenerate pressure can play the
significant role, are also the problems of great importance but beyond the scope of the present work.
To conclude, we propose to perform a laboratory experiment which can study such special new
features of the DIA solitons propagating in dusty plasma in presence of degenerate electrons and
ions.

7 CONCLUSIONS

a In the section (1), a brief discussion has been made about the validity of our this theoretical
investigation.

b In the section (2), we have represented the governing equation of our considered model which we
have assumed theoretically.

d In the section (3), we have derived the K-dV equation with the help of strong mathematical tools;
reductive perturbation method.

e In the section (4), we have derived the modified K-dV (mK-dV) equation with the help of strong
mathematical tools; reductive perturbation method.

f In the section (5), we have made a general analysis that what the results we have found from this
investigation.

g In the section (6), we have made some strong points in our favor to prove that our assumption for
this model and this corresponding theoretical investigation are totally valid on the basic of the
results.

.
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