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ABSTRACT10

11
In this paper, curves of AW(k)-type in isotropic space 1

3I are defined. Using Frenet frames

in isotropic space ,13I curvature conditions of AW(k)-type curves are given. In addition, new
characterizations of Bertrand and Mannheim curves are obtained.
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1. INTRODUCTION17
18

The assumption that our universe is homogeneous and isotropic means that its evolution19
can be represented as a time-ordered sequence of three-dimensional space-like20
hypersurfaces, each of which is homogeneous and isotropic. These hypersurfaces are the21
natural choice for surfaces of constants time.22

Homogeneity means that the physical conditions are the same at every point of any given23
hypersurface. Isotropy means that the physical conditions are identical in all directions when24
viewed from a given point on the hypersurface. Isotropy at every point automatically25
enforces homogeneity. However, homogeneity does not necessarily imply isotropy.26

Homogeneous and isotropic spaces have the largest possible symmetry group; in three27
dimensions there are three independent translations and three rotations. These symmetries28
strongly restrict the admissible geometry for such spaces. There exist only three types of29
homogeneous and isotropic spaces with simple topology: (a) flat space, (b) a three-30
dimensional sphere of constant positive curvature, and (c) a three-dimensional hyperbolic31
space of constant negative curvature [7].32

Many interesting results on curves of AW(k)-type have been obtained by many33
mathematicians (see [1], [3], [4], [5], [6]). Also, Bertrand curves have been studied in [8] and34
[11].35

In this paper, we have done a study about some special curves in Isotropic Space .13I36
However, to the best of author's knowledge, Bertrand and Mannheim curves of AW(k)-type37
has not been presented in Isotropic Space 1

3I . Thus, the study is proposed to serve such a38
need.39

Our paper is organized as follows. In section 2, the basic notions and properties of a Frenet40
curve are reviewed. In section 3, we study curves of AW(k)-type in Isotropic Space 1

3I . We41
also study Bertrand and Mannheim curves of AW(k)-type in section 4.42



2. BASIC NOTIONS AND PROPERTIES43
44

Let ,: 1
3II  IRI  be a curve given by45

)),(),(),(()( tztytxt 46

where xt, yt, zt 3C (the set of three times continuously differentiable functions)47
and t run through a real interval [9].48

Let  be a curve in ,13I parameterized by arc length ,st  given in coordinate form49

)).(),(,()( szsyss  (1)50

In [9], the curvature )(s and the torsion )(s are defined by51
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and associated moving trihedron is given by53
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The vectors ,t ,n b are called tangent vector field, principal normal vector field and55
binormal vector field of the curve , respectively. For their derivatives the following Frenet56
formulas hold57
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Scalar product in the Isotropic space 1
3I is defined by59

2211, yxyxYX  (5)60

where ),,( 321 xxxX  and ),,( 321 yyyY  .61

If ,02211  yxyx then ., 33yxYX 62

The isotropic norm of a vector ),,( 321 xxxX  is defined by63
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64

where  on the vector denotes the canonical projection of the vector to the base plane65
03 x . If 0X , i.e. if X is an isotropic vector, then the sumplementary invariant66

called range of the vector X is introduced67

  .3xX 68

If ,0X then X called Euclidean vector [10].69

From now on in calculations, " X " canonical projection of the vectors are denoted as " X ".70

According to [1], one can calculate the followings:71

Proposition 2.1. Let  be a Frenet curve of 1
3I of osculating order 3 then we have72
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Notation. Let us write77
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Corollary 2.2. ),(s


 )(),( ss


 and )(s
IV

 are linearly dependent if and only if81

),(1 sN )(2 sN and )(3 sN are linearly dependent.82

Theorem 2.3. Let  be a Frenet curve of 1
3I of osculating order 3 then83
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88
3. CURVES OF AW(K)-TYPE89

90
Definition 3.1. (see , cf.[1]) Frenet curves (of osculating order 3) are91

i) of type weak AW(2) if they satisfy92

),()(),()( 2233 sNsNsNsN   (14)93
94

ii) of type weak AW(3) if they satisfy95

).()(),()( 1133 sNsNsNsN   (15)96

Proposition 3.2. Let  be a Frenet curve of order 3. If  is of type weak AW(2) then97
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Corollary 3.3. Let  be a Frenet curve of type weak AW(2). If  is a plane curve then99
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Proposition 3.4. Let  be a Frenet curve of order 3. If  is of type weak AW(3) then101
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Corollary 3.5. Let  be a Frenet curve of type weak AW(3). Then103

.;
)(

)( 2 constc
s
cs 


 (19)104

Definition 3.6. (see , cf.[1]) Frenet curves are105

i) of type AW(1) if they satisfy106

,0)(3 sN (20)107

ii) of type AW(2) if they satisfy108
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110

iii) of type AW(3) if they satisfy111
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Theorem 3.7. Let  be a Frenet curve of order 3. Then  is of type AW(1) if and only if113
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and115
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Proof. Let  be a curve of type AW(1). Then from (11) and (20) we have117
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Furthermore, since )(sn and )(sb are linearly independent, we get (23) and (24).121

The converse statement is trivial. Hence our theorem is proved.122

Corollary 3.8. Every plane curve of type AW(1) is also of type weak AW(2).123

Theorem 3.9. Let  be a Frenet curve of order 3. Then  is of type AW(2) if and only if124
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Proof. If  curve is of type AW(2), (21) holds on . Substituting (10) and (11) into (21),128
we have (25) and (26).129

Theorem 3.10. Let  be a Frenet curve of order 3. Then  is of type AW(3) if and only130
if131

.0)()()()()(2 32 
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Proof. Since  is of type AW(3), (22) holds on . So substituting (9) and (11) into (22),133
we have (27).134

135
4. BERTRAND CURVES AND MANNHEIM CURVES OF AW(K)-TYPE136

137
In this section, we give the characterizations of Bertrand and Mannheim Curves of AW(k)-138
type.139

Remark 4.1. Let  be a Frenet curve of order 3 of .13I For ,0)( s  is a Bertrand140
curve if and only if there exist a linear relation141

1)()(  sBsA  (28)142

where BA, are non-zero constant and )(s and )(s are the curvature functions of143
 [9].144

Corollary 4.2. Suppose that )(s 0 and .0)( s Then  is a Bertrand curve if and145
only if there exist a non-zero real number A such that [2]146
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Theorem 4.3. Let 1
3: II  be a Bertrand curve with )(s 0 and .0)( s Then148

 is of type AW(2) if and only if there is a non-zero real number A such that149
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and151
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(31)152

Proof. Since  is of type AW(2), (25) and (26) holds and since  is a Bertrand curve,153
(29) equality holds. If both of these equations are considered, (30) and (31) are obtained.154

Theorem 4.4. Let 1
3: II  be a Bertrand curve with )(s 0 and .0)( s Then155

 is of type AW(3) if and only if156
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Proof. Now suppose that 1
3: II  be a Bertrand curve of type AW(3) with )(s 0158

and .0)( s Then the equation (27) and (29) hold on . Thus, we get (32).159

Definition 4.5. Let  be a curve in .13I If its principal normal vector field  is the binormal160

vector field of another curve, then the curve  is called Mannheim curve in .13I161

Theorem 4.6. Let  be a curve in .13I Then  is Mannheim curve if and only if its162
curvature163

.;)( constccs  (33)164

Proof. Let )(s  be a Mannheim curve in .13I Let us denote of Frenet Frame of the165

curve  by )}(),(),({ sbsnst  . The curve )(s is parametrized by arclength s as166

167
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for some functions .0)(1 sc Differentiating (34) with respect to ,s we find169
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Since the binormal vector of )(s is linearly dependent with principal normal vector of173
),(s we have174
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Hence .)(1 constsc  The second derivative )(s


 with respect to s is176
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Since )(sn is the binormal direction of ),(s we have179
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From (37), we get182
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Conversely, let )(s be a curve in 1
3I with .)( )(
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1 sc

s  Then the curve185
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has binormal direction ).(sn It follows that )(s is a Mannheim curve which proves the187
theorem.188

Theorem 4.7. Let  be a Mannheim curve in .13I Then  is of type AW(1) if and only if189

.)( consts  (39)190

Proof. Considering Theorem 4.6. in Theorem 3.7., we get (39). Hence the proof is191
completed.192

Theorem 4.8. Let  be a Mannheim curve in .13I Then  is of type AW(2) if and only if193

.0)( s (40)194

Proof. Considering Theorem 4.6. in Theorem 3.9., we get (40). Hence our theorem is195
proved.196

Theorem 4.9. Let  be a Mannheim curve in .13I Then  is of type AW(3) if and only if197

.)( consts  (41)198

199

Proof. Considering Theorem 4.6. in Theorem 3.10., we get (41). Hence the proof is200
completed.201

Example 4.10. Let  be a curve in 1
3I given by202
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Using (2) equality, we get ,)( 1
as  .0)( s )(s and )(s hold on Theorems of208

3.9, 3.10, 4.3, 4.4 and 4.8.209

210
CONCLUSION211

212

It is well-known that isotropic spaces are very important in physics and mathematics.213

Because isotropic spaces have the largest possible symmetry group:  in three dimensions214

there are three independent translations and three rotations.215

In this study, AW(k)-type curves are examined in Isotropic space .216

It is hoped that this study serves researchers who carry out research especially in geometry217

and mathematical physics.218
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