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Abstract

In this paper, the new (G
′
/G)-expansion method is proposed for constructing more general

exact solutions of nonlinear evolution equation with the aid of symbolic computation.By using
this method many new and more general exact solutions have been obtained.To illus- trate the
novelty and advantage of the proposed method, we solve the Zakharov-Kuznetsov- Benjamin-
Bona-Mahony (ZKBBM) equation. Abundant exact travelling wave solutions of these equations
are obtained, which include the exponential function solutions, the hyper- bolic function solutions
and the trigonometric function solutions. Also it is shown that the proposed method is efficient for
solving nonlinear evolution equations in mathematical physics and in engineering.
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1 Introduction
In recent years, because of the wide applications of soliton theory in natural science, it is important
to seek explicit exact solutions of nonlinear partial differential equations (NLPDEs).Many powerful
methods for constructing exact solutions of nonlinear evolution equations have been established
and developed, such as the Backlund transform [1], the Hirota’s bilinear operators [2],the tanh-coth
function expansion[3][4], the Jacobi elliptic function expansion [5], the F-expansion [6], the sub-ODE
method [7], the homogeneous balance method [8], the sine-cosine method and so on[9]. But there is
no unified method that can be used to deal with all types of nonlinear evolution equations.

Recently, the (G
′
/G)-expansion method, firstly introduced by wang et al. [10] has become

widely used to search for various exact solutions of NLEEs . The value of the (G
′
/G)-expansion

method is that one treats nonlinear problems by essentially linear methods.Very lately to enhance
the (G

′
/G)-expansion method and expand the range of its applicability, further research has been

carried out by several authors. Anand Malik improved the method to deal with ten nonlinear equations
of physical importance viz[11][12],and Ghodrat Ebadi used the method to carry out the solutions of
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the integro-differential equation[13]. Zhang et al. [14] improved the method to deal with the (2+1)-
dimensional Broer-Kaup equation with variable coefficients.BIsmail Aslan explored a new application
of this method to Toda type lattice differential equations[15]. Junchao Chen used the extended multiple
(G
′
/G)-expansion method to obtain six nonlinear equations of physical importance viz[16].
The present paper is motivated by the desire to use the improved (G

′
/G) -expansion method

to construct a series of some types of exact solutions.We will get more interaction solutions of the
nonlinear Zakharov-Kuznetsov- Benjamin-Bona-Mahony (ZKBBM) equation,which are very important
nonlinear evolution equations in the mathematical physics and have been paid attention by many
researchers.

2 Summary of the expansion method
The new auxiliary ordinary differential equation is expressed as follows:

GG
′′

= AG2 +BGG
′

+ C(G
′
)2 (2.1)

where the prime denotes derivative with respect to ξ. A,B,C are real parameters.F (ξ) is

F (ξ) =
G
′
(ξ)

G(ξ)
(2.2)

Using the general solutions of Eq. (2.1), with the help of Maple we have the following four
solutions of Eq. (2.2):
(i). when B 6= 0 and ∆1 = B2 + 4A− 4AC ≥ 0, then

F (ξ) =
B

2(1− C)
+

B
√

∆1

2(1− C)

c1 exp

√
∆1
2

ξ +c2 exp−
√

∆1
2

ξ

c1 exp
√

∆1
2

ξ −c2 exp−
√

∆1
2

ξ
(2.3)

(ii). when B 6= 0 and ∆1 = B2 + 4A− 4AC < 0, then

F (ξ) =
B

2(1− C)
+
B
√
−∆1

2(1− C)

ic1 cos(
√
−∆1
2

ξ)− c2 sin(−
√
−∆1
2

ξ)

ic1 sin(
√
−∆1
2

ξ) + c2 cos(−
√
−∆1
2

ξ)
(2.4)

(iii).when B = 0 and ∆2 = A(C − 1) ≥ 0, then

F (ξ) =

√
∆2

(1− C)

c1 cos(
√

∆2ξ) + c2 sin(
√

∆2ξ)

c1 sin(
√

∆2ξ)− c2 cos(
√

∆2ξ)
(2.5)

(iv). when B = 0 and ∆2 = A(C − 1) < 0, then

F (ξ) =

√
−∆2

(1− C)

ic1 cosh(
√
−∆2ξ)− c2 sinh(

√
−∆2ξ)

ic1 sinh(
√
−∆2ξ)− c2 cosh(

√
−∆2ξ)

(2.6)

where ξ = x− ωt,ω is wave velocity,A,B,C and c1, c2 are real parameters.
Suppose that we have a NLEE for u(x, t) in the form

P (u, ut, ux, utt, uxt, uxx, . . . ) = 0 (2.7)

whereP is a polynomial in its arguments, which includes nonlinear terms and the highest order derivatives.
Next,the main steps of this method are given as follows:
Step 1.The transformation u(x, t) = u(ξ) , ξ = x−ωt reduces Eq. (2.7) to the ordinary differential

equation (ODE)
H(u, uξ, uξξ, uξξξ, . . . ) = 0 (2.8)
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Step 2.We assume that the solution of Eq. (2.8) is of the form

u(ξ) =

m∑
i=−m

ai(d+ F (ξ))i (2.9)

where F (ξ)satisfy the new auxiliary ordinary differential Eq.(2.1),and ω, d, ai(i = −m, . . . ,m) can be
determined later.We can determine the positive integer m by balancing the highest nonlinear terms
and the highest partial derivative terms in the given system equations.

Step 3.Substituting Eq. (2.9) along with (2.1) and (2.2)into Eq. (2.8) and using Maple yields a
system of equations ofF i(ξ), setting the coefficients of F i(ξ) in the obtained system of equations to
zero, we can deduce the following set of algebraic polynomials with the respect unknowns ω, d, ai(i =
−m, . . . ,m) namely.

Step 4.Solving the over-determined system of differential equations by using the symbolic computation
as Maple , we obtain expressions for ω, d, ai(i = −m, . . . ,m).

Step 5. Since the general solutions of (2.1) have been well known for us, then substituting
ω, d, ai(i = −m, . . . ,m) and the general solutions (2.3)-(2.6) into (2.2) we have more exact solutions
of the non-linear partial differential Eq. (2.7).

3 Travelling wave solitons for ZKBBM equation
In this section,we apply this method to construct the exact interaction soliton solutions of the ZKBBM
equation

ut + ux − 2auux − buxxxt = 0 (3.1)

The transformation u(x, t) = u(ξ) ,ξ = x + V t reduces Eq. (3.1) to the ordinary differential equation
(ODE):

(1 + V )u
′
− 2auu

′
− bV u

′′′
= 0 (3.2)

We can determine the positive integer n by balancing uu
′

and u
′′′

in the given system equations.So
we can suppose that Eq. (3.2) has the following ansatz:

u(ξ) =
a−2

(d+ F (ξ))2
+

a−1

d+ F (ξ)
+ a0 + a1(d+ F (ξ)) + a2(d+ F (ξ))2 (3.3)

Substituting Eq. (3.3) along with (2.1) and (2.2)into Eq. (3.2) and using Maple yields a system of
equations ofF i(ξ), setting the coefficients of F i(ξ)(i = 0, 1, 2, . . .) in the obtained system of equations
to zero, we can deduce the set of algebraic polynomials with the respect unknowns V, d, ai(i =
−m, . . . ,m) namely.Solving the over-determined system of differential equations by using the symbolic
computation as Maple , we obtain expressions for V, d, ai(i = −m, . . . ,m).

Case 1.
d =

1

2

B

C − 1
, V = V, a1 = 0, a2 = 0

a−1 = 0, a0 = −1

2

(8bV AC − 8bV A− 2bV B2 − 1− V )

a

a−2 = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

a(C2 − 2C + 1)

where A,B,C, V, a, b are arbitrary constants,and a 6= 0, C 6= 1 .
Case 2.

d =
2A

B
, V = V, a1 = 0, a2 = 0

a−2 = −6bV A2(−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

aB4
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a−1 =
6bV A(−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

aB3

a0 = −1

2

48bV A2C2 − 16bV ACB2 − 96bV A2C + 16bV AB2 −B2 − V B2 + 48bV A2 + bV B4

B2a

where A,B,C, V, a, b are arbitrary constants,and B 6= 0, a 6= 0 .
Case 3.

d = d, V = V, a−2 = 0, a−1 = 0

a1 = −6bV (−2dC2 + 4Cd+BC − 2d−B)

a
, a2 = −6bV (C2 − 2C + 1)

a

a0 = −1

2

12bV C2d2 + 8bV AC − 24bV Cd2 − 12bV BCd− 1 + 12bV d2 + bV B2 + 12bV Bd− V − 8bV A

a

where A,B,C, V, d, a, b are arbitrary constants,anda 6= 0 .
Case 4.

d =
1

2

B

C − 1
, V = V, a−1 = 0, a1 = 0

a0 = −1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

, a2 = −6bV (C2 − 2C + 1)

a

a−2 = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

a(C2 − 2C + 1)

where A,B,C, V, a, b are arbitrary constants,and a 6= 0, C 6= 1.
Substituting those cases in (3.3),we obtain the following solutions of Eq. (3.2). These solutions

are:

u1(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

a(C2 − 2C + 1)

1

( 1
2

B
C−1

+ F (ξ))2

− 1

2

(8bV AC − 8bV A− 2bV B2 − 1− V )

a

u2(ξ) = −6bV A2(−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

aB4

1

( 2A
B

+ F (ξ))2

+
6bV A(−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

aB3

1
2A
B

+ F (ξ)
− 1

2

48bV A2C2 − 16bV ACB2 − 96bV A2C + 16bV AB2 −B2 − V B2 + 48bV A2 + bV B4

B2a

u3(ξ) = −1

2

12bV C2d2 + 8bV AC − 24bV Cd2 − 12bV BCd− 1 + 12bV d2 + bV B2 + 12bV Bd− V − 8bV A

a

− 6bV (−2dC2 + 4Cd+BC − 2d−B)

a
(d+ F (ξ))− 6bV (C2 − 2C + 1)

a
(d+ F (ξ))2

u4(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2)

a(C2 − 2C + 1)

1

( 1
2

B
C−1

+ F (ξ))2
− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a
(
1

2

B

C − 1
+ F (ξ))2
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whereξ = x+ V t.
According to (2.3)-(2.6), we obtain the following exponential function solutions, hyperbolic function

solutions and triangular function solutions of Eq. (3.1). For example
(1).When B 6= 0 and ∆1 = B2 + 4A− 4AC ≥ 0,then

u41(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

( B
√

∆1
2(1−C)

c1 exp

√
∆1
2

ξ
+c2 exp

−
√

∆1
2

ξ

c1 exp

√
∆1
2

ξ −c2 exp
−
√

∆1
2

ξ
)2

− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a

(
B
√

∆1

2(1− C)

c1 exp

√
∆1
2

ξ +c2 exp−
√

∆1
2

ξ

c1 exp
√

∆1
2

ξ −c2 exp−
√

∆1
2

ξ
)2

where ξ = x+ V t.
(2).When B 6= 0 and ∆1 = B2 + 4A− 4AC < 0,then

u42(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

(B
√
−∆1

2(1−C)

ic1 cos(

√
∆1
2

ξ)−c2 sin(−
√

∆1
2

ξ)

ic1 sin(

√
∆1
2

ξ)+c2 cos(−
√

∆1
2

ξ)
)2

− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a

(
B
√
−∆1

2(1− C)

ic1 cos(
√

∆1
2
ξ)− c2 sin(−

√
∆1
2
ξ)

ic1 sin(
√

∆1
2
ξ) + c2 cos(−

√
∆1
2
ξ)

)2

where ξ = x+ V t .
(3). When B = 0 and ∆2 = A(C − 1) ≥ 0,then

u43(ξ) = −3

8

bV (16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

(
√

∆2
(1−C)

c1 cos(
√

∆2ξ)+c2 sin(
√

∆2ξ)

c1 sin(
√

∆2ξ)−c2 cos(
√

∆2ξ)
)2

− 1

2

8bV AC − 8bV A− 1− V
a

− 6bV (C2 − 2C + 1)

a
(

√
∆2

(1− C)

c1 cos(
√

∆2ξ) + c2 sin(
√

∆2ξ)

c1 sin(
√

∆2ξ)− c2 cos(
√

∆2ξ)
)2

where ξ = x+ V t.
(4). When B = 0 and ∆2 = A(C − 1) < 0,then

u44(ξ) = −3

8

bV (16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

(
√
−∆2

(1−C)
ic1 cosh(

√
−∆2ξ)−c2 sinh(

√
−∆2ξ

ic1 sinh(
√
−∆2ξ)−c2 cosh(

√
−∆2ξ)

)2

−1

2

8bV AC − 8bV A− 1− V
a

−6bV (C2 − 2C + 1)

a
(

√
−∆2

(1− C)

ic1 cosh(
√
−∆2ξ)− c2 sinh(

√
−∆2ξ)

ic1 sinh(
√
−∆2ξ)− c2 cosh(

√
−∆2ξ)

)2

where ξ = x+ V t

If c1 = −c2,u41(ξ) can be rewritten :
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u
′
41(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

( B
√

∆1
2(1−C)

tanh(
√

∆1
2
ξ))2

− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a

(
B
√

∆1

2(1− C)
tanh(

√
∆1

2
ξ))2

where ξ = x+ V t.Because of tanh2 y = 1− sech2y,u
′
41(ξ) becomes

u
′′
41(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1
B2∆1

4(1−C)2
(1− sech2(

√
∆1
2
ξ))

− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a

(
B2∆1

4(1− C)2
(1− sech2(

√
∆1

2
ξ)))

Again,if c1 = c2,u41(ξ) can be rewritten :

u
′′′
41(ξ) = −3

8

bV (−8AB2C + 8AB2 +B4 + 16A2C2 − 32A2C + 16A2

a(C2 − 2C + 1)

1

( B
√

∆1
2(1−C)

coth(
√

∆1
2
ξ))2

− 1

2

8bV AC − 8bV A− 2bV B2 − 1− V
a

− 6bV (C2 − 2C + 1)

a

(
B
√

∆1

2(1− C)
coth(

√
∆1

2
ξ))2

where ξ = x+ V t.

By the improved (G
′
/G)-expansion method, Zhang et al. [18] obtained seven solutions of the ZKBBM

equations, but by means of the proposed expansion method we obtained solutions are different to
Zhang et al. [18] solutions . Furthermore, we obtain solutions u41(ξ), u42(ξ), u43(ξ), u44(ξ). These
solutions are new and were not obtained by Zhang et al.[18].On the other hand, the auxiliary equation
used in this paper is different, so the solutions obtained is also different.

4 Summary and conclusion

In summary,the improved (G
′
/G)-expansion method with symbolic computation is developed to deal

with the nonlinear ZKBBM equation. When applying the proposed method to construct the exact
interaction soliton solutions of the nonlinear ZKBBM equation,we get a rich variety of exact solutions
which include exponential function solutions, hyperbolic function solutions and triangular function
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1.jpg 2.jpg
Fig 1:A = 0, B = C = 2, a = b = V = 1, c1 = −c2;
Fig 2:A = 0, B = C = 2, a = b = V = 1, c1 = c2

solutions.We make graphs of obtained solutions, so that they can depict the importance of each
obtained solution and physically interpret the importance of parameters too. Further more, our method
can obtain more types of travelling solutions mentioned above. We also see that our method is
different from the old (G

′
/G)-expansion method. We use the new auxiliary ordinary differential

equations to construct more types of travelling solutions.Our method is more powerful and much
easier to solve nonlinear evolution equations. We believe that this method should play an important
role in finding exact solutions of NLPDEs.

Note that the nonlinear evolution equations proposed in the present paper are difficult and more
general. Therefore, the solutions of the proposed nonlinear evolution equation in this paper have
many potential applications in physics.
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