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Nonequilibrium statistical operator (NSO) in the form suggested by Zubarev is represented13
as an averaging operation of the quasiequilibrium statistical operator over the distribution of14
the lifetime of the system. The form of the density function of the system lifetime affects all15
its non-equilibrium characteristics. In general, we consider the situation when the distribution16
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principle of maximum entropy20
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1. INTRODUCTION27

28
One of the most fruitful and successful ways of development of the description of the non-29
equilibrium phenomena is given by a method of the non-equilibrium statistical operator30
(NSO) [1, 2, 3]. In work [4] new interpretation of the NSO method is given, where the31
operation of taking the invariant part [1, 2, 3] or the use of the  auxiliary «weight function» (in32
terminology of [5, 6]) in NSO are treated as the averaging of the quasi-equilibrium statistical33
operator on the distribution of the past lifetime of a system. This approach is consistent with34
the  approach by Zubarev [2] with NSO yielded by averaging over the initial time35

36
This interpretation of NSO gives it physical sense of the account of causality and allocation37
of a real final time interval in which a given physical system is placed. New interpretation38
leads to various directions of development of NSO method which is compared, for example,39
with Prigogine’s [7] approach, introduction of the operator of internal time, irreversibility at40
microscopically level.41

42
In [5] a source is introduced in the Liouville equation which gives the modified Liouville43
operator coincideing with the form of the Liouville equation suggested by Prigogine [7] (the44
Boltzmann-Prigogine symmetry), when the irreversibility is entered in the theory at the45
microscopic level. We note that the form of NSO by Zubarev in the interpretation of [4]46
corresponds to the main idea of [7] in which one sets to the distribution function  q which47
evolves according to the classical mechanics laws, the coarse distribution function  = q48
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( is operator) whose evolution is described probabilistically since one perform an averaging49
with the probability density pq(u), acts as an integral operator.50

51
In Kirkwood’s works [8] it was remarked, that the system state in some time moment52
depends on all previous evolution of the non-equilibrium processes developing in the53
system. In [5, 6] it is noted, that  different «weight functions» can be chosen. Any consistent54
form of the  lifetime distribution density would  give a source term in the general form in55
dynamic Liouville equation which thus aquires the form considered by Boltzmann and56
Prigogine [5, 6, 7], and contains dissipative items.57

58
In Zubarev’s works [1-3] the linear form of a source corresponding to the limiting exponential59
distribution for lifetime is introduced. Other choices of the lifetime distribution density would60
give more exact analogues of the “collision integrals». The approach in facts introduces an61
explicit account for the  time symmetry violation (introducing the finite lifetime, that is the62
beginning and the end of a system life cycle) is introduced.63

64
In [9-10] it is shown, in what consequences for non-equilibrium properties of system65

results change of lifetime distribution of system for systems with final lifetime. In [9-11]66
various dependence of the probability density of time past life pq(u) from the age of the67
system are considered, u=t-t0, t is current time, t0 is the moment of the birth of the system. In68
[11] the dependence of pq(u,t) on the current time moment is considered. In [11] this69
dependence is chosen in the piecewise continuous form, where the form of the function pq(u)70
is different for  two time intervals. The general case can be considered choosing the71
continuous function pq(u,t) with an additional argument t. This choice is considered in the72
present paper generally and for specific forms of the function pq(u,t). We show how the73
choice of this function affects the physical characteristics of the system, namely, flows and74
entropy production.75

76
2. NEW INTERPRETATION OF NSO77

78
In [3] the nonequilibrium distribution (or NSO) is written in the form79

80

(t)= 

t

ttt 00

1
exp{-i(t-t’)L}rel(t’)dt’,                                    (1)81

where L is Liouville operator; iL=-{H,}=k{(H/pk)(/qk)-(H/qk)(/pk)}; H is Hamilton82
function, z or pk and qk are momentum and coordinates of particles; {…} is Poisson bracket.83
The relevant distribution has a form84

rel(t)=exp{-(t)-


n

j 1
Fj(t)Pj(t)}; (2)85

(t)=lndzexp{-


n

j 1
Fj(t)Pj(z)}. (3)86

The Lagrange multipliers Fj(t) are determined from the self-consistency conditions87
<Pn>

t=<Pn>
t
rel=Sp(rel(t)Pn);88

Pm(t) are some observable macroscopic quantities, dynamical variables [1-3]. For example,89
they may be the energy, the number of particles, the momentum, or some other variables.90

91
In [1-3] in taking the limit transition for t-t0, the Abel's theorem is used and the NSO92

is rewritten as93
94
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ln(z;t)=limε→0 


0

dt’exp{t’}lnrel(z;t+t’,-t’)dt’, (4)95

where 2
1 2 1( , ) ( ,0)iLt

rel relt t e t  . The Liouville equation has a source term96
/ t+iL(t)=-((t)-q(t,0)), (5)97

which tends to zero ( ) after the thermodynamic limiting transition. Equation (5) thus98
posesses the  Boltzmann-Bogoliubov-Prigogine symmetry. For (1)99

/ t+iL(t)= ((t)-q(t,0))/(t-t0).100
The statistical distribution before taking limit is101

ln(z;t)= 


t

dt’exp{-(t-t’)}lnrel(z;t’,t-t’)dt’. (6)102

103
In [4, 9-11] the distributions (4), (6) are rewritten as104

ln(t)= 


0

pq(y)lnrel(t-y,-y)dy=lnrel(t,0) - 


0

(pq(y)dy)(dln rel (t-y,-y)/dy)dy ,       (7)105

where probability distribution density function pq(y) is interpreted as the lifetime distribution106
y=t-t0 of the system. We obtain the distribution of (1) from the expression (7) when using a107
uniform distribution of the form108

0

1 , [ , ]
( ) , ,

0, [ , ]
q

x a b
p y b t a tb a

x a b

   
 

(8)109

without using the Abel's theorem. If110

pq(y)=exp{-y}; =1/T=<>-1,                                               (9)111
the expression (7) reduces to the form of the NSO [1, 2].112

Thus the operations of taking the  invariant part [1], averaging over initial conditions [2],113
temporal coarse-graining [8], choose of the direction of time [5, 21] are replaced by114
averaging on  the lifetime distribution. The logarithm of NSO (1) is equal to the average from115
the logarithm of the relevant distribution (2) over the system lifetime distribution. As in [22]116
we make some estimations about the values Pj. The problem of estimation corresponds to117
assuming some information about values Pj. Lets assume, that this information consists in118
assumptions about the finiteness of the system lifetime and about exponential distribution119
pq(y)= exp{-y}. We shall note that for the logarithm of the nonequilibrium distribution ln(t),120
given by equality (7), the equation (5) is valid (after replacement  / t by - /y and partial121
integration of the rhs of (5) it is equal to dln(t)/dt). The initial conditions (t0)=q(t0,0) [2] are122
satisfied, if in (7) we assume that ln(t0-y,-y)=0 at y>0, as at the moment of time, smaller123
than t0, the system does not exist.124

125
Besides the Zubarev’s form of NSO [1-3], NSO in the Green-Mori form [23] is known, where126
one assumes the auxiliary weight function [5] to be equal to W(t,t`)=1-(t-t`)/t;127
w(t,t`)=dW(t,t`)/dt`=1/t; =t-t0. After averaging one sets . This situation at pq(u)=w(t,t`)128
coincides with the uniform lifetime distribution (8). In [1] this form of NSO is compared to the129
Zubarev’s form.130

131
It is possible to specify many specific expressions for the lifetime distribution of system, each132
of which can possess its advantages. Each of these expressions  corresponds to the specific133
form of the  source term  in the  Liouville equation for the nonequilibrium statistical operator.134
Generally for pq(y) this source term  has the form135
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J=pq(0)lnq(t, 0)+ 


0

( pq(y)/ y)(lnq(t-y, -y))dy. (10)136

137
If the function pq(y,t) depends on t as well, the form of the source changes. The Liouville138
equation holds, for example, under the conditions indicated in [1-3], when 0 , 0 .t t    139
Another possibility to arrive at the Liouville equation with zero source is to find a function140
pq(y,t) that satisfies the condition J=0. To do this it is necessary to solve the integral141
equation. Setting the form of the function pq(u) reflects not only the internal properties of the142
system, but also the impact of the environment on the open system, its characteristics of the143
interaction with the environment. In [2] a physical interpretation of the function pq(u) in the144
form of the exponential distribution is given as a free evolution of an isolated system145
governed by the Liouville operator. In addition, the system undergoes random transitions146
whereas the corresponding representing point in the phase space switches from one phase147
trajectory to another with exponential probability under the influence of a "thermostat", the148
random time intervals between consecutive switches growing infinitely. This occurs if the149
parameter of the exponential distribution tends to infinity after taking thermodynamic limit.150
But real physical systems are finite-sized. The exponential distribution is suitable for the151
description of completely random systems. The impact of the environment on a system can152
have more organized character, for example, for a system in the stationary nonequilibrium153
state with input and output fluxes; so different can be the interaction between the system and154
environment, therefore various forms of the function pq(u) different from the exponential form155
can be set.156

157
One could name many examples of explicitly defining the function pq(u). Every definition158
implies some specific form of the source term J in the Liouville equation, some specific form159
of the modified Liouville operator and NSO. Thus the family of NSO is defined. If the160
distribution pq(u) contains n parameters, it is possible to write n equations for their161
expression through the parameters of the system. From the other side, they are expressed162
through the moments of the lifetime. There is the problem of the best choice of the function163
pq(u) and NSO. In [24] to determine the type of function pq(u) the principle of maximum164
entropy for the evolution equations with the source is used.165

166
One can make various assumptions about the form of the function pq(u), yielding different167
expressions for the source in the Liouville equation and the behaviour of the nonequilibrium168
system. The main difference of this paper from [4, 9-11] and expressions (1), (7) is that the169
function pq(u) is replaced by the function pq(u, t), as pt

q(y) in [19].170
171

3. Additional terms in the expressions for the fluxes and entropy production172
173

If instead of the function class pq(u) the dependence on pq(u, t) is considered, this results in174
the change of the Liouville equation for NSO ρ(t). In [2-3] expression for175

)()()( ttt q  is obtained in the form176





t

qqq
tt dttiLtQttUet ')'()'()',()( )'(   ,                                 (11)177

where })(exp{)',(
'

 dQttU
t

t
qq  , qqQ 1 is the operator, additional to the178

Kawasaki-Gunton projection operator. The action of the latter on the quantum or classical179
variable A is defined by180
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t
n

q

n

t
nnqq P

t
PTrAAPTrTrAtAt






)(
})()({)()(   ,181

(...)Tr is the operation of taking the trace [3]. The operation (...)Tr can be interpreted as182
the integration over the phase space of N particles with subsequent summation over all N183
[3]. For the case of dependence pq(u,t) instead of (11) we obtain184

 



 

t

qqqqq
tttp dtduuuttuptiLtQttUet q '}),'()',()'()'(){',()(

0

)')(,0(  ,                  (12)185

where
t
tup

u
tup

tuptptup qq
qqq 








),(),(
),(),0(),( . In comparison with [4, 9-11] an186

additional term
t
tupq


 ),(

appears.187

188
We obtain an expression for the fluxes189

 


 



n

t

mnmn
tttp

q
t

m

t
m dttttFtteP
t
P

q ')]',()'()',([)')(',0( ,                   (13)190

where the first term in square brackets is obtained in [2, 3]191

 
1

0

1 )}'()'()'()',()({)',( ttItttUtIdxTrtt x
qn

x
qqmmn  ,                        (14)192

nnn PtPPtQtI  ))(1()()(  are dynamic variables of flows, P(t) is Mori projection193
operator acting on the classical and quantum dynamical variables on the rule194

 
n

t
nnt

n

q
t

q
t PP

P
A

AAtP )()(



, and the second term i presents a correction to the195

expression obtained in [2, 3]. The appearance of such an additive caused a general form of196
the density function of the lifetime distribution. In this case,197

198














0

)},'()',()({]
'
)',()',(

)',()',0([)',( duuutttUtITr
t
tup

u
tup

tuptptt qqm
qq

qqm 199

.  (15)200
For pq(u) in exponential form (10) 0 qp and, therefore, the addition of (15) is zero.201
The expression for the entropy production with an  additional term in comparison with the202
expressions derived in [2, 3] is:203

 


 
nm

t

mnmnm
tttp dttttFtttFe

dt
tdS q

,

)')(',0( ')]',()'()',()[()(
.                                      (16)204

205
4. Estimates of the additional terms206

207
To estimate the magnitude of the addition terms in terms of flows and entropy production we208
use the explicit expression for the function ),( tupq obtained in [24] with the maximum209
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entropy method. Under certain approximations the expression for the distribution of the210
lifetime obtained in [24] can be written as211

))()((
)0(

1

)0(
),(

0
/

/

tRtRe
F
p

ep
tup

ii

ii

Fuc

i

q

Fuc
q

q








,                                                     (17)212

213

  




m k

i
kiki

kmjmjk
jm

j
tZF

PPPP
PPPPPP

tFtFtR )(ln)()()( 000214





mimi

mjmj

m j
j PPPP

PPPP
tF )( 0 ,                                                 (18)215

where we use the Zubarev-Peletminsky rule [1, 5, 25, 26]216

)(),,...,1(,
1

zw
dt
zdMiPCPw

M

j
jiji



 



,                                (19)217

where Cij are c-numbers. When considering the local density of the dynamical variables, Pi218
values may depend on the spatial variables. Then the quantities Cij may also depend on the219
spatial variables or may be differential operators;220


j

jjii tFCС )( 0 . (20)221

From the normalization condition we find222

)()(;/)1()0( 0
/ 2

tRtRrreFp ii FrC
iq   .223

For the distribution of (17) the expression ),( tupq , appearing in (15), is224

)](
),(

),0()[,(),(
t
r

F
rC

F
tup

F
Ctptuptup

i

i

i

q

i

i
qqq 


 .225

The value 1)( 

i

i

F
C

is close to the average lifetime 0tt  , and following approximate226

equality can be written:
t
r

tt
r

t
r

F
rС
i

i












0

. If the value r quickly changes with time227

this expression can take  large values.228
229

In the linear approximation in r230

)();1(),(;/)0(),0(
22

0 t
rar

F
eape

F
araetupFCaptp

i

ua

q
au

i

au
qiiqq 





231

.232
233

5. Conclusion234
235

Our main result is that, for a specific example of defining a function pq(u,t) shows the effect236
of this function on the physical characteristics of the system: flows and entropy production.237

238
In [16-19] the lifetimes of a system are considered as functionals of a random process, that239
is the random moment for a stochastic process that characterizes the system, to achieve a240
certain threshold, such as zero level. This definition is used in the present work. In [11, 27-241
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28] the lifetime is included within the range of common physical quantities acting as controls242
(in terms of information theory) for the quasi-equilibrium statistical operator, and providing243
additional information about the system. Considered in [11, 28] The distribution containing244
lifetime as thermodynamic parameter considered in [11, 28] can be related to the245
interpretation of NSO from [4] and in the present paper as an average over the distribution of246
the lifetime of the system.247

248
Let's notice, that in a case when the value dlnq(t-y, -y)/dy (the operator of entropy249
production σ [1]) in the second item of the right part (9) does not depend on y and is taken250
out from the  integration on y, this second term  becomes σ<Γ>, and the expression (9) does251
not depend on form of the function pq(y). It is the case, for example, of q(t)exp{-t},252
=const. In  [29] such distribution is obtained from the principle of  maximum entropy with253
inclusion of the  average values of fluxes as constrains.254

255
The form of the density distribution of the lifetime is essential for the kind of expressions for256
nonequilibrium system behaviour. A more detailed description pq(u) compared with the257
limiting exponential (10) allows  to describe the real stages of the evolution (and systems258
with small lifetimes). Each of the distributions for the lifetime has a certain physical meaning.259
In the queuing theory different service policies correspond to different expressions for the260
density distribution of a lifetime. In the stochastic theory of storage specifying these261
expressions corresponds to setting different models of the output and input into the system.262

263
It is shown that the account for dependence of this function on the current point in time leads264
to additional terms in the expressions for the average flows, of entropy production and other265
characteristics of a nonequilibrium system.266

267
If the type of source in the Liouville equation for a non-equilibrium statistical operator is268
chosen in the form suggested by Zubarev [2] it is possible to compare it with the  linear269
relaxation source in the Boltzmann equation; more complicated types of sources from other270
distributions for lifetime of the system, can be compared to more realistic types of collision271
integrals.  Different forms appear to be representation of the openness of the system, its272
interaction with surroundings, finiteness of its lifetime, and coarsening procedures for273
physically infinitely small volumes.274

275
In [30] it was noted that the role of the form of the source term in the Liouville equation in276
NSO method has never been investigated. In [19] it is stated that the exponential distribution277
is the only one which possesses the Markovian property of the absence of the afteraction,278
that is whatever is the actual age of a system, the remaining time does not depend on the279
past and has the same distribution as the lifetime itself.280

281
The physical sense of averaging over the introduced lifetime distribution of quasi-equilibrium282
system consists in the obvious account of breaking the time symmetry and information loss283
related to it, which is manifested in the average of entropy production <S (t)> not equal to284
zero, obviously reflecting fluctuation-dissipative processes as irreversible phenomena in285
non-equilibrium systems. The correlations obtained in the present paper generalize the286
results of statistical non-equilibrium thermodynamics [1, 2, 3] and information statistical287
thermodynamics [4-5] as instead of weight function in a form exp{t'} the  probability288
density of the lifetime distribution for quasi-equilibrium system is introduced which need not289
be in exponential form (in the latter case it coincides with weight function from [1, 2, 3]). For290
example, for system with n classes of ergodic states the limiting exponential distribution is291
replaced with the generalized Erlang function. In the study of lifetimes for complex systems it292
is possible to involve many results of the theory of reliability, the theory of queues, the293
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stochastic theory of storage processes, theory of Markov renewal, the theory of semi-Markov294
processes etc.295

296
As it is specified in [31], the existence of time scales and information stream  from slower to297
faster degrees of freedom creates irreversibility of the macroscopical description. The298
information continuously passes from slow to fast degrees of freedom, which  leads to299
irreversibility. The information thus is not lost, and passes into the form inaccessible to300
retrieval on the Markovian level of the description. For example, for the rarefied gas the301
information is transferred from one-partial observables to multipartial correlations. In [4] the302
values =1 / <> and pq (u) = exp {-u} are expressed through the operator of entropy303
production and, according to [31], through the  information flow from relevant to irrelevant304
degrees of freedom.305

306
The introduction of the function pq(u) into NSO corresponds to the specification of the307
description by means of the effective account of interaction with irrelevant degrees of308
freedom. In the present work it is shown, how it is possible to expand the description of309
memory effects  within the limits of method NSO, to a more detailed account of influence on310
the system evolution of quickly varying variables through the specified and expanded kind of311
the lifetime distribution function density.312

313
In many physical problems the finiteness of lifetime can be neglected. Then 1/<> 0.314
For example, for the case of drops evaporation in a liquid it is possible to show [32], that315
non-equilibrium characteristics depend on exp{y2}; y=/(22)

1/2, 2 is the second moment of316
correlation function of the fluxes averaged over quasi-equilibrium distribution. Estimations317
show, that even at the minimum values of lifetime of drops (generally of finite size) and the318
maximum values  is the value of y=/(22)

1/210-5. Therefore finiteness of values <> and 319
does not influence the behaviour of system and it is possible to set  =0. However in some320
situations it is necessary to consider finiteness of lifetime <> and values  >0. For example,321
for nanodrops the  effect of finiteness of their lifetime should be already taken into account.322
For the lifetime of neutrons in a nuclear reactor in [4] the equation for  =1/<> is obtained323
which solution leads to the expression for the average lifetime of neutrons which coincides324
with the so-called period of a reactor. In [33] the account for the finiteness of lifetime of325
neutrons result to the corrections to the  distribution of neutrons energy.326

327
REFERENCES328

329
[1] Zubarev DN. Nonequilibrium statistical thermodynamics. New York: Plenum-Consultants330
Bureau; 1974.331
[2] Zubarev DN. In Gamkrelidze RB, editor. Reviews of Science and Technology: Modern332
Problems of Mathematics. Vol.15, pp. 131-226, Moscow: Nauka; 1980 (in Russian). [English333
Transl.: J. Soviet Math. 16, 1509 (1981)].334
[3] Zubarev DN, Morozov V, Ropke G. Statistical Mechanics of Nonequilibrium Processes:335
Basic Concepts, Kinetic Theory. New York: John Wiley & Sons; 1996.336
[4] Ryazanov VV. Lifetime of System and Nonequilibrium Statistical Operator Method.337
Fortschritte der Phusik/Progress of Physics. 2001; 49(8-9): 885-893.338
[5] Ramos JG, Vasconcellos AR and Luzzi R. A classical approach in predictive statistical-339
mechanics - a generalized Boltzmann formalism. Fortschr. Phys./Progr. Phys. 1995; 43(4):340
265-300.341
[6] Ramos JG, Vasconcellos AR and Luzzi R. On the thermodynamics of far-from-equilibrium342
dissipative systems. Fortschr. Phys./Progr. Phys. 1999;47(6):937-964.343
[7] Prigogine I. From Being to Becoming. San Francisco: Freeman; 1980.344



* Tel.: +38 099 5213980.
E-mail address: vryazan@yandex.ru.

[8] Kirkwood JG. The statistical mechanical theory of transport processes. I. General Theory.345
J. Chem. Phys. 1946; 14(3,5):180-201, 347; The statistical mechanical theory of transport346
processes: II. Transport in gases, J. Chem. Phys. 1946;15(1, 3), 72–76, 155.347
[9] Ryazanov VV. Nonequilibrium Statistical Operator for Systems with Finite Lifetime. Fizika348
nizkikh temperature. 2007;33(9):1049-1051.349
[10] Ryazanov VV. Nonequilibrium Statistical Operator for Systems of Finite Size.350
International Journal of Theoretical and Mathematical Physics. 2012;2(1):1-11.351
[11] Ryazanov VV. Lifetime distributions in the methods of non-equilibrium statistical352
operator and superstatistics. European Physical Journal B. 2009;72(4):629-639.353
[12] Dorfman JR, Gaspard P. Chaotic scattering theory of transport and reaction-rate354
coefficients. Phys. Rev. E. 1995;51(1):28-35.355
[13] Gaspard P. What is the role of chaotic scattering in irreversible processes? Chaos;356
1993; 3(4): 427-442.357
[14] Gaspard P, Dorfman JR. Chaotic scattering theory, Thermodynamic formalism, and358
transport coefficients. Phys. Rev. E. 1995;52(4):3525-3552.359
[15] P. Gaspard, Microscopic chaos and chemical reactions. Physica A. 1999;263(1):315-360
328.361
[16] Korolyuk VS and Turbin AF. Mathematical Foundations of the State Lumping of Large362
Systems. Dordrecht, Boston/London: Kluwer Acad.Publ.; 1993.363
[17] Stratonovich RL. The elected questions of the fluctuations theory in a radio engineering.364
New York: Gordon and Breach; 1967.365
[18] Cox DR. Renewal theory. London: Methuen; New York: John Wiley; 1961.366
[19] Feller W. An Introduction to Probability Theory and its Applications, vol.2. New York: J.367
Wiley; 1971.368
[20] Cox DR and Оakes D. Analysis of Survival Data. London, New York: Chapman and369
Hall; 1984.370
[21] Vasconcellos AR, Luzzi R, Garcia-Colin LS. Microscopic approach to irreversible371
thermodynamics. I. General theory. Phys. Rev. A. 1991;43(12): 6622-32 .372
[22] Stratonovich RL. Information theory (in Russian) Moscow: Sovetskoe Radio; 1966.373
[23] Mori H, Oppenheim I and Ross J. Some Topics in Quantum Statistics, in Studies in374
Statistical Mechanics, I. In de Boer J, Uhlenbeck GE, editors. Amsterdam: North-Holland:375
1962.376
[24] Ryazanov VV. Maximum entropy principle and the form of source in non-equilibrium377
statistical operator method. Preprint. Cond-mat, arXiv:0910.4490v1.378
[25] Peletminskii SV, Yatsenko AA. Contribution to the quantum theory of kinetic and379
relaxation processes. Soviet Phys JETP. 1968;26:773-778; Zh. Eksp. Teor. Fiz. 1967;380
53:1327-1335.381
[26] Akhiezer AI, Peletminskii SV. Methods of statistical physics. Oxford: Pergamon, 1981.382
[27] Ryazanov VV. The weighed average geodetic of distributions of probabilities in the383
statistical physics. Preprint. Cond-mat, arXiv:0710.1764.384
[28] Ryazanov VV, Shpyrko SG. First-passage time: a conception leading to superstatistics.385
Condensed Matter Physics. 2006;9(1(45)):71-80.386
[29] Dewar R. Information theory explanation of the fluctuation theorem, maximum entropy387
production and self-organized criticality in non-equilibrium stationary states. J. Phys.A: Math.388
Gen. 2003;36(3):631-641.389
[30] Morozov VG. Röpke G. Zubarev’s method of a nonequilibrium statistical operator and390
some challenges in the theory of irreversible processes. Condensed Matter Physics.391
1998;1(4(16)):673-686.392
[31] Rau J. Muller B. From reversible quantum microdynamics to irreversible quantum393
transport. Physics Reports. 1996;272(1):57-117.394
[32] Ryazanov VV. Statistical theory of evaporation and condensation processes in liquid395
droplets. Colloid Journal. 2006;68(2):217-227.396



* Tel.: +38 099 5213980.
E-mail address: vryazan@yandex.ru.

[33] Ryazanov VV. The energy distribution of neutrons in a nuclear reactor for the finite397
lifetime. Atomic Energy. 2005;99(5):782-787.398

399
400


