<u>Research paper</u>

Introducing Some Correlations to Calculate Entropy Generation in Extended Surfaces with Uniform Cross Sectional Area

6

1

2

3

4

5

7

8 Abstract

9 The optimum length of extended surfaces with uniform cross sectional area has been analyzed numerically. The investigation is done based on the concept of entropy generation minimization. The 10 extended surface studied is a pin fin. The rate of entropy generation is investigated for different boundary 11 conditions. First, some correlations are introduced to calculate this rate, and then a model is offered to 12 find optimum length of the fin for adiabatic and convection heat transfer boundary conditions. The 13 accuracy of the model presented is compared with experimental data. The results showed that there is a 14 strong relation between optimum length(based on the entropy generation minimization concept) in one 15 side, and temperature distribution in the other side. 16

17 Key words: Entropy generation minimization, Optimum length, Pin fin.

18

28

19 **1.Introduction**

The entropy generation in the process is due to irreversibilities occurring inside the system. This internal 20 generation can be caused by the friction, unrestrained expansions, and the internal transfer of energy over 21 a finite temperature difference. In addition to this internal entropy generation, external irreversibilities are 22 possible by heat transfer over finite temperature differences as the ∂Q is transferred from a reservoir or 23 by the mechanical transfer of work. Equation of (1) is valid with the equal sign for a reversible process 24 and the greater than sign for an irreversible process. Since the entropy generation is always positive and 25 the smallest in a reversible process, namely zero, it may deduce some limits for the heat transfer and 26 27 work terms.

 $\begin{cases} dS = \frac{\partial Q}{T} + \partial S_{gen} \\ \\ \partial S_{gen} \ge 0 \end{cases}$ (1)

Considering a reversible process, for which the entropy generation is zero, the heat transfer and workterms therefore are:

Nomenclature							
A _c	cross sectional area	Re	Reynolds number				
CD	drag coefficient	\dot{S}_{gen}	entropy generation				
D	diameter	Т	temperature				

FD	drag force	U_{∞}	velocity			
Н	enthalpy	W	work			
h	convective coefficient	Greek	Greek letter symbols			
k	thermal conductivity	ρ	density			
L	length	λ	air thermal conductivity			
ṁ	mass flow rate	μ	dynamic viscosity			
Nu	Nusselt number	υ	kinematic viscosity			
N _s	entropy generation number	Subscript				
Р	pressure	b	base			
Pr	Prandtl number	∞	ambient			
р	perimeter					
q	heat transfer rate					

(2)

(3)

(4)

32 $\partial Q = T.dS$ and $\partial W = P.dV$

33 For an irreversible process with a nonzero entropy generation, the heat transfer becomes,

$$\partial Q_{irr} = T.dS - T.\partial S_{gen}$$

And thus is smaller than that for the reversible case for the same change of state, dS. Furthermore, the work is no longer equal to PdV but is smaller.

$$37 \qquad \partial W_{irr} = P.dV - T.\partial S_{gen}$$

Showing that the work is reduced by an amount proportional to the entropy generation. For this reason, the term $T_{\cdot}\partial S_{gen}$ is often called *lost work*. Although it is not a real work or energy quantity lost but rather

a lost opportunity to extract work. So, minimizing entropy generation is very important in many 40 industries. One of the this applications is in the heat exchanger industry. The compact heat exchanger are 41 widely used in automobile, chemical, petrochemical, air-conditioning systems, oil, and food industry, and 42 therefore using optimization by entropy minimization play a key role in saving energy and decreasing 43 environmental pollution. Bejan [1] was one of the first researchers who considered the entropy generation 44 minimization in convective heat transfer. Asadi and Khoshkhoo[2-5] carried out some researches about 45 transferring heat by radiation in the Plate-Fin heat exchanger. Based on their research the amount of the 46 47 heat transferring using radiation is just 2% compared with convection in the Plate-Fin heat exchanger and Finned-Tube heat exchangers. Hence, we can ignore radiation in the Plate-Fin heat exchanger with a good 48 approximation in order to minimize entropy generation. 49

Entropy generation minimization was first introduced by McClintock [6], who developed equations for 50 optimum design of fluid passages for a heat exchanger. Then, Bejan [1] examined the coupling losses due 51 to heat transfer across a finite temperature difference and frictional pressure drop. He used the number of 52 entropy generation units, N_s, as a basic parameters in analyzing the heat exchanger performance. 53 Establishing the theoretical framework for the minimization of entropy generation was done by 54 Poulikakos and Bejan [7]. However in recent years, many heat exchanger tools were introduced based on 55 the concept of entropy generation minimization. For example, Radermacher [9] studied on a numerical 56 approach for modeling of Air-to-refrigerant Fin-and-Tube heat exchanger with Tube-to-Tube heat transfer 57 . Liu et.al [8] presented a general steady state mathematical model for fin-and-tube heat exchanger. Jiang 58 and Radermacher [9] offered a general-purpose simulation and design tool for Air-to-refrigerant heat 59 60 exchangers.

61 Entropy generation minimization of a double-pipe pin fin heat exchanger was analyzed by Sahiti and Krasnig [10]. They derived their results on the basis of the behavior of entropy generation number as a 62 definition of Reynolds number. They concluded that not all definition forms for the entropy generation 63 number leads to the right conclusions. Thermal hydraulic design of fan-supplied tube-fin condenser for 64 refrigeration was investigated experimentally by Hermes and Waldyr [11]. Ibrahim and Moawed [12] 65 carried out an experimental investigation to clarify heat transfer characteristics and entropy generation for 66 individual elliptic tubes with Longitudinal fins. The investigated geometrical parameters included the 67 placement of the fins at the front of the tube, at the rear of the tube and at the front and rear of the tube. 68 The results indicated that the fin position on the elliptic tubes has as effect on the results of heat transfer 69 coefficient, friction factor, and irreversibility ratio. Zhang and Yang [13] introduced a distributed 70 parameter model in optimization the plate-fin heat exchanger based on the minimum entropy generation. 71 72 Huee and Lee [14] conducted an analytical study on optimal design of refrigerant circuitry of fin-and-tube condenser based on the entropy generation minimization. They validated their model by comparing 73 numerical results with experimental data for an R410A multi-pass condenser. The resulting refrigerant 74 circuit design enhanced heat transfer performance and lowered entropy generation in comparison to 75 simple refrigerant circuitries. The application of the entropy generation minimization method to the 76 pseudo-optimization of the configuration of the heat exchange surfaces in a solar Rooftile was studied by 77 78 Giorgio et.al, [15]. He found that the geometry with pin-fins has the best performance, and the optimal pin array shape parameters can be determined by a critical analysis of the integrated and local entropy 79 maps and of the temperature contours. Pussoli and Barbasa [16] presented an investigation in 80 optimization of peripheral finned-tube evaporators using entropy generation minimization. They 81 experimentally validated semi-empirical models for the air-side heat transfer and pressure drop with 82 entropy generation minimization theory to determine the optimal characteristics of peripheral finned-tube 83 heat exchanger. Minimizing the entropy generation rate of the plate-finned heat sinks using computational 84 fluid dynamics and combined optimization was carried out by Zhou and Yang [17]. The results showed 85 that the overall rate of entropy generation decreases as the result of introducing the additional constrained 86 variables into the optimization process. Gediz et.al, [18] focused on effect of aspect ratio on entropy 87 generation in a rectangular cavity with differentially heated walls. Aggrey and Tunde [19] presented the 88 results of a numerical analysis of entropy generation in a parabolic trough receiver at different 89 concentration ratios, inlet temperatures and flow rates. The results showed that there is an optimal flow 90 91 rate at which the entropy generated is minimum, for every combination of concentration ratio and inlet temperature. Wenhhua, Xuan and Jian [20] analyzed entropy generation of fan-supplied gas cooler within 92 the framework of two-stage CO₂ transcritical refrigeration cycle. They suggested that the analysis with 93 isolated gas cooler can lead to overestimated or unrealistic predictions on the heat transfer performance 94 compared to the analysis within the framework of entire cycle. 95

In this paper a pin fin is analyzed for the rate of entropy generation. After introducing some correlations
to calculate the entropy generation rate, optimization process has been done. Finally, the optimum value
of fin length is compared with experimental studies.

- 99
- 100
- 101

102 **2.Mathematical Description**

103 There is an important relationship between lost available work and entropy generation.

104

 $\dot{W}_{lost} = T.\dot{S}_{gen}$

$$\begin{cases} \dot{S}_{gen} = \frac{\partial S}{\partial t} - \frac{Q}{T} - \sum_{in} \dot{m}S + \sum_{out} \dot{m}S \end{cases}$$
(5)

This equation represents the Gouy-Stodola theorem. This theorem states that the lost available work is directly proportional to the entropy production. The terms of entropy production is arising heat transfer and fluid friction. For the entropy production due to heat transfer:

$$108 \qquad \dot{S}_{gen}^{m}dxdy = \frac{q_{x} + \frac{\partial q_{x}}{\partial x}dx}{T + \frac{\partial T}{\partial x}dx}dy + \frac{q_{y} + \frac{\partial q_{y}}{\partial y}dy}{T + \frac{\partial T}{\partial y}dy}dx - \frac{q_{x}}{T}dy - \frac{q_{y}}{T}dx + \left(s + \frac{\partial s}{\partial x}dx\right)\left(\upsilon_{x} + \frac{\partial \upsilon_{x}}{\partial x}dx\right)\left(\rho + \frac{\partial \rho}{\partial x}dx\right)dy \qquad (6)$$
$$+ \left(s + \frac{\partial s}{\partial y}dy\right)\left(\upsilon_{y} + \frac{\partial \upsilon_{y}}{\partial y}dy\right)\left(\rho + \frac{\partial \rho}{\partial y}dy\right)dx - s\upsilon_{x}\rho dy - s\upsilon_{y}\rho dx + \frac{\partial(\rho s)}{\partial t}dxdy$$

109 For the two-dimensional Cartesian system,

110
$$\mathbf{S}_{\text{gen}}^{\prime\prime\prime} = \frac{k}{T^2} \left[\left(\frac{\partial T}{\partial x} \right)^2 + \left(\frac{\partial T}{\partial y} \right)^2 \right] + \frac{\mu}{T} \left\{ \left[2 \left(\frac{\partial v_x}{\partial x} \right)^2 + \left(\frac{\partial v_y}{\partial y} \right)^2 \right] + \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} \right)^2 \right\}$$
(7)

111 And for friction factor,

112
$$\dot{S}_{gen} = \dot{m} \left(\int_{\rho_{out}}^{\rho_{in}} \frac{v}{T} dP \right)_{h=constant}$$
 (8)

Recently, the Bejan number was named by Paoletti. Accordingly Be=1 is the limit at which the heat transfer irreversibility dominates, Be=0 is the opposite limit at which the irreversibility is dominated by fluid friction effects, and Be=0.5 is the case in which the heat transfer and fluid friction entropy generation rates are equal.

117 For the external flow, there are three thermodynamic statements,

 $118 \quad \dot{m}_{in} = \dot{m}_{out} = \dot{m} \tag{9}$

 $119 \quad \dot{m}h_{in} + \iint q'' dA - \dot{m}h_{out} = 0 \tag{10}$

120
$$\dot{S}_{gen} = \dot{m}s_{out} - \dot{m}s_{in} - \iint \frac{q'' dA}{T_w}$$
 (11)

121 Where T_w is the temperature of wall. The canonical form dH=Tds+ $\left(\frac{1}{\rho}\right)$ dP may be written:

122
$$H_{out}-H_{in}=T_{ave}(s_{out}-s_{in})+\frac{1}{\rho}(P_{out}-P_{in})$$
(12)

123 Combination Equations (11) and (12). The entropy generation rate will be:

124
$$(\dot{S}_{gen})_{external} = \iint_{A} q'' \left(\frac{1}{T_{\infty}} - \frac{1}{T_{w}}\right) dA + \frac{F_{D}U_{\infty}}{T_{\infty}}$$
 (13)

125 Also, a fin generates entropy internally, because the fin nonisothermal,

126
$$\left(\dot{S}_{gen}\right)_{internal} = \iint_{A} \left(\frac{q''}{T_{w}}\right) dA - \frac{q_{B}}{T_{b}}$$
 (14)

127 In this expression, q_B and T_b represent the base heat transfer and absolute temperature. Adding 128 Equations of (13) and (14) side by side obtaining the entropy generation rate for a single fin is possible.

129
$$\dot{S}_{gen} = \frac{q_B \theta_B}{T_{\infty}^2} + \frac{F_D U_{\infty}}{T_{\infty}}$$
 (15)

130 Where θ_B is the base-stream temperature difference $(T_b - T_{\infty})$. Also, Drag coefficient for a pin fin is:

$$\begin{cases} C_{\rm D} = \frac{F_{\rm D}}{\frac{1}{2}\rho U_{\infty} DL} \\ C_{\rm D} \approx 5.484 \, \mathrm{Re}^{-0.246} \end{cases}$$
(16)

Needing to the rate of heat transfer, q, in order to calculate the entropy generation is necessary. The rate
of heat transfer can be calculated for different conditions. Applying the conservation of energy
requirement results in:

135
$$\frac{d^2T}{dx^2} + \left(\frac{1}{A_c}\frac{dA_c}{dx}\right) - \left(\frac{1}{A_c}\frac{h}{k}\frac{dA_s}{dx}\right)(T-T_{\infty}) = 0$$
(17)

For the uniform profile, A_c , is constant and $A_s=Px$ where A_s is the surface area measured from the base to x, and P is the fin perimeter. So,

138
$$\frac{d^2T}{dx^2} - \frac{hP}{kA_c} (T - T_{\infty}) = 0$$
 (18)

Bejan et.al, (1995) solved this equation, and suggested some correlations to calculate the rate of entropy production based on the adiabatic conditions on the tip fin. Here, our focus is on the remained conditions, very long fin, and Convection heat transfer. So, for Convection heat transfer , the rate of heat transfer is:

142
$$q = \sqrt{hPkA_c} \left(T_b - T_{\infty} \right) \frac{\sinh(mL) + (h/mk)\cosh(mL)}{\cosh(mL) + (h/mk)\sinh(mL)}$$
(19)

143 Where,

131

144
$$m = \sqrt{\frac{hP}{kA_c}}$$
 and $M = \sqrt{hPkA_c} \theta_b$ (20)

145 And using Equation of (15), the rate of entropy generation will be:

146
$$\dot{S}_{gen} = \left\{ \left(hPkA_c \right)^{0.5} \cdot \left(\frac{T_b}{T_{\infty}} - 1 \right)^2 \cdot \left(\frac{\sinh(mL) + (h/mk)\cosh(mL)}{\cosh(mL) + (h/mk)\sinh(mL)} \right) \right\} + \left\{ \frac{2.742(\rho D)^{0.754} \cdot U_{\infty}^{2.754} \cdot \mu^{0.246} \cdot L}{T_{\infty}} \right\}$$
(21)

147 Similarity for adiabatic boundary condition, the rate of entropy generation is:

148
$$\dot{S}_{gen} = \left\{ \left(hPkA_c \right)^{0.5} \cdot \left(\frac{T_b}{T_{\infty}} - 1 \right)^2 \cdot tanh(mL) \right\} + \left\{ \frac{2.742 \left(\rho D \right)^{0.754} \cdot U_{\infty}^{2.754} \cdot \mu^{0.246} \cdot L}{T_{\infty}} \right\}$$
(22)

149

Now, calculating the optimum flow length , based on the minimizing entropy generation , is possible.

150
$$L_{opt,1} = Log \left[\frac{a_1 \pm \sqrt{a_1^2 + (h/mk)^2 - 1}}{(h/mk) + 1} \right] .m^{-1}$$
 (23)

151
$$a_1 = \frac{2\sqrt{M} (T_b - T_{\infty})^2 [(h/mk)^2 - 1]m}{C_D \cdot U_{\infty}^3 \cdot D \cdot \rho \cdot T_{\infty}}$$
 (24)

These equations dictate the optimum length of flow for the convection heat transfer boundary conditions.Also, the optimum length when there is adiabatic boundary condition in system is:

154
$$L_{opt,2} = m^{-1} \cdot \sinh^{-2} (a_2 - 1)$$
 (25)

155
$$a_{2} = -\frac{2.742(\rho D)^{0.754} \cdot U_{\infty}^{2.754} \cdot \mu^{0.246} \cdot T_{\infty}^{2}}{m\sqrt{hPkA_{c}} \theta_{b}^{2}}$$
(26)

156 **3. Validation**

In order to validate results obtained, a comparison of numerically results with experimentally results has been performed. The comparison has been made for a rod 5mm in diameter has one end maintained at $100C^{\circ}$. The surface of rod is exposed to ambient air at $25C^{\circ}$. The convection heat transfer coefficient and thermal conductivity of the fin are 100 and 398 W/m².K respectively. The emissivity and absorptivity of copper are assumed that be 0.83 and 0.13 respectively. The experimental results has been derived from Bejan research on the optimum dimensions of extended surfaces with uniform cross sectional area. He suggested that the number of entropy generation for a rod with adiabatic boundary condition is:

164
$$N_{\rm s} = \frac{\left(\frac{k}{\lambda}\right)^{0.5}}{\frac{\pi}{2} \operatorname{Nu}^{0.5} \operatorname{Re}_{\rm D} \tanh\left[2\operatorname{Nu}^{0.5}\left(\frac{\lambda}{k}\right)^{0.5} \frac{\operatorname{Re}_{\rm L}}{\operatorname{Re}_{\rm D}}\right]} + \frac{1}{2} \operatorname{BC}_{\rm D} \operatorname{Re}_{\rm L} \operatorname{Re}_{\rm D}$$
(27)

165 $\operatorname{Re}_{\mathrm{L,opt}} = \frac{\operatorname{Re}_{\mathrm{D}}}{2\operatorname{Nu}^{0.5}} \left(\frac{\mathrm{k}}{\lambda}\right)^{0.5} \operatorname{sinh}^{-1} \left(\left(\frac{8}{\pi C_{\mathrm{D}} \mathrm{BRe}_{\mathrm{D}}^{-3}}\right)^{0.5} \right)$ (28)

Also, Masoud Asadi and N.D.Mehrabani [21] presented an equation to determine the optimum diameterof the versus Reynolds number,

168
$$\operatorname{Re}_{D,opt} = \left\{ 2.38 \frac{8}{\pi C_D B} \right\}^{0.333}$$
 (29)

169 In Equation of (27) through (29) Re_D , Re_L and B are respectively:

170
$$\operatorname{Re}_{\mathrm{D}} = \frac{\mathrm{U}_{\infty}\mathrm{D}}{\mathrm{v}}$$
(30)

171	$\operatorname{Re}_{L} = \frac{U_{\infty}L}{\upsilon}$						(31)				
172	$B = \frac{\rho \upsilon^3 k T_{\infty}}{q_B^2}$						(32)				
173	3 Table.1. Input information										
	U _∞	υ	λ	k	Pr	ρ	L				
	20	15.89×10^{-6}	26.3×10^{-3}	398	0.707	1.1614	0.200				
174											
175	Table.2. Thermal quantity results										
	Re _D	C _D	В	Nu	m	М	q(W)				
	6293.2	0.637	8.14×10^{-12}	30.12	14.17	8.3	8.24				
176											

177 **4. Discussion**

The validation of numerical method showed that the optimum length of the fin based on the Bejan research is 63 mm, while for the presented method is 223mm. To discuss about the reason of this difference, it is necessary that we notice to the temperature distribution along the fin. Figure of (1) demonstrates the temperature profile for the adiabatic condition.

182

183

Figure .1. Fin temperature distribution

Moving along fin the fin temperature decreases, but there is an inverse trend from x=225 onwards. In fact, unlike temperature profile there is a moderate increase in the fin temperature when $225 \le x \le 300$. Also, it is useful to see the function of entropy generation for the case study presented.

187

188

Figure.2. Function of entropy generation

As it is evident from the Figure of (2) the entropy generation for the fin increases along the fin. However, 189 from the x=200 mm onwards the entropy generation will be constant approximately. The green graph 190 shows the derivative of the entropy generation. So, when the length is between 220 to 250 mm the 191 function of entropy generation reaches to its optimal value. Referring to the temperature profile, in the 192 Figure of (1), it is clear that when x is 63 mm the fin performance is not favorable, because the difference 193 between fin and ambient temperature is so much, about 27C°. On the other hands, considering both 194 temperature profile and entropy generation function simultaneously will reveal that when the fin 195 temperature reaches to its optimum value, to have maximum rate of heat transfer, the entropy generation 196 function will be constant ($x \ge 223$ mm). Furthermore, for a very long rod the rate of the entropy generation 197 is: 198

199
$$\dot{S}_{gen} = \left\{ \left(hPkA_c \right)^{0.5} \cdot \left(\frac{T_b}{T_{\infty}} - 1 \right)^2 \right\} + \left\{ \frac{2.742 (\rho D)^{0.754} \cdot U^{2.754} \cdot \mu^{0.246} \cdot L}{T_{\infty}} \right\}$$
(33)

200
$$D_{opt} = -\left\{\frac{3.656\rho^{0.754}.U^{2.754}.\mu^{0.246}.L.T_{\infty}^{2}}{\theta_{b}^{2}\sqrt{\pi^{2}hk}}\right\}^{1.341}$$
 (34)

Equation of (34) states that the length of the rod is so much as the rod diameter have to be negative value to the rate of the entropy generation be optimized. So, the presented model has high accuracy in comparison to previous method.

204 **5.** Conclusion

Pin fins are widely used as effective elements for heat transfer enhancement. For this reason, extensive work has been carried out to select and optimize pin fins for various application such as electronic devices, chemical, food, and petrochemical industry. One of the strong tools in optimization, which has been introduced recently by Bejan, is entropy generation minimization. In this paper, some correlations to calculate the rate of entropy generation are offered for two boundary conditions, adiabatic and convection heat transfer. Then, the optimum fin length is presented for both boundary conditions. The accuracy of the

211 model has been compared with experimental studies. The results showed high level of accuracy of the 212 model, and can be used as a strong tool in optimization process of pin fins.

213

214 References

- 215 [1] Bejan, A.(1996), Entropy Generation Minimization, CRC Press, New York.
- [2]Masoud Asadi and Dr R.H.Khoshkhoo, Investigation into radiation of a plate-fin heat exchanger with strip fins, Journal of
 Mechanical Engineering Research, April 2013, pp: 82-89.
- [3]Masoud Asadi and Dr R.H.Khoshkhoo,Entropy Generation in a Plate-Fin Compact Heat Exchanger with Louvered Fins ,
 International Journal Energy Engineering, March2013, pp: 110-118.
- [4]Masoud Asadi and Nasrin Dindar Mehrabani, Minimization entropy generation into compact heat exchanger with Louvered
 fins, Journal of Petroleum and Gas Engineering, 2013, pp: 35-45.
- [5]Masoud Asadi and Dr R.H.Khoshkhoo, Effects of mass flow rate in terms of pressure drop and heat transfer characteristics ,
 Merit Research Journal of Environmental Science and Toxicology Vol. 1(1), February, 2013, pp: 5-11
- [6] McClintock.F.A, The design of heat exchangers for minimum irreversibilities, ASME paper NO.51-A-108.1952.
- [7] Poulikakos.D and Bejan.A, Fin geometry for minimum entropy generation in forced convection, Journal of Heat Transfer,
 Vol 104, 1982, pp: 616-623.
- [8] Lee, J. H., Kwon, Y. C., and Kim, M. H., An Improved Method for Analyzing a Fin and Tube Evaporator Containing a
 Zeotropic Mixture Refrigerant with Air Maldistribution, International Journal of Refrigeration, vol. 26, no. 6, pp. 707–720,
 2003.
- [9] H. Jiang, R. Radermacher, and V. Aute, A User-Friendly Simulation And Optimization Tool For Design Of Coils,
 International Refrigeration and Air Conditioning Conference.2002, Paper 546.
- [10] N. Sahiti, F. Krasniqi, Xh. Fejzullahu, J. Bunjaku, A. Muriqi, Entropy generation minimization of a double-pipe pin fin
 heat exchanger, Applied Thermal Engineering, Volume 28, Issues 17–18, December 2008, Pages 2337-2344.
- [11] Christian J.L. Hermes, Waldyr de Lima e Silva Jr., Felipe A.G. de Castro, Thermal-hydraulic design of fan-supplied tube fin condensers for refrigeration cassettes aimed at minimum entropy generation, Applied Thermal Engineering, Volume 36,
 April 2012, Pages 307-313.
- [12] E. Ibrahim, M. Moawed, Forced convection and entropy generation from elliptic tubes with longitudinal fins, Energy
 Conversion and Management, Volume 50, Issue 8, August 2009, Pages 1946-1954.
- [13] Lina Zhang, Chunxin Yang, Jianhui Zhou, A distributed parameter model and its application in optimizing the plate-fin
 heat exchanger based on the minimum entropy generation, International Journal of Thermal Sciences, Volume 49, Issue 8,
 August 2010, Pages 1427-1436.
- [14] Huee-Youl Ye, Kwan-Soo Lee, Refrigerant circuitry design of fin-and-tube condenser based on entropy generation
 minimization, International Journal of Refrigeration, Volume 35, Issue 5, August 2012, Pages 1430-1438.
- [15] Giorgio Giangaspero, Enrico Sciubba, Application of the entropy generation minimization method to a solar heat
 exchanger: A pseudo-optimization design process based on the analysis of the local entropy generation maps, Available online
 4 March 2013.
- [16] Bruno F. Pussoli, Jader R. Barbosa Jr., Luciana W. da Silva, Massoud Kaviany, Optimization of peripheral finned-tube
 evaporators using entropy generation minimization, International Journal of Heat and Mass Transfer, Volume 55, Issues 25–
 26, December 2012, Pages 7838-7846.
- [17] Zhou Jian-hui, Yang Chun-xin, Zhang Li-na, Minimizing the entropy generation rate of the plate-finned heat sinks using
 computational fluid dynamics and combined optimization, Applied Thermal Engineering, Volume 29, Issues 8–9, June 2009,
 Pages 1872-1879.

[18] Gamze Gediz Ilis, Moghtada Mobedi, Bengt Sunden, Effect of aspect ratio on entropy generation in a rectangular cavity
 with differentially heated vertical walls, International Communications in Heat and Mass Transfer, Volume 35, Issue 6, July
 2008, Pages 696-703.

[19] Aggrey Mwesigye, Tunde Bello-Ochende, Josua P. Meyer, Numerical investigation of entropy generation in a parabolic
 trough receiver at different concentration ratios, Energy, Volume 53, 1 May 2013, Pages 114-127.

[20] Wenhua Li, Shenglan Xuan, Jian Sun, Entropy generation analysis of fan-supplied gas cooler within the framework of
 two-stage CO₂ transcritical refrigeration cycle, Energy Conversion and Management, Volume 62, October 2012, Pages 93-101.

- •