
Studying the effect of vertical eddy diffusivity on the solution of

diffusion equation

Abstract
The advection diffusion equation (ADE) is solved in two dimensions to obtain the

crosswind integrated concentration. In this solution we used Laplace transformation

technique considering the wind speed depends on vertical height. Eddy diffusivity

depends on downwind and vertical distances. The two predicted and observed

concentrations data taken on the Copenhagen in Denmark were compared.

Key Words: Advection Diffusion Equation, Laplace Transform, Predicted Normalized

Crosswind Integrated Concentrations.

Introduction

The analytical solution of the atmospheric diffusion equation contains different

shapes depending on Gaussian and non- Gaussian solutions. An analytical solution

with power law of the wind speed and eddy diffusivity with the realistic assumption

was studied by (Demuth, 1978). The solution implemented in the KAPPA-G model

(Tirabassi et al., 1986) and (Lin and Hildemann, 1997) extended the solution of

(Demuth, 1978) under boundary conditions suitable for dry deposition at the ground.

The mathematics of atmospheric dispersion modeling was studied by (John, 2011). In

the analytical solutions of the diffusion-advection equation, assuming constant wind

speed along the whole planetary boundary layer (PBL) or following a power law was

studied by (Van Ulden, 1978; Pasquill and Smith, 1983; Seinfeld, 1986; Tirabassi et

al., 1986and Sharan et al., 1996).

Estimating of crosswind integrated Gaussian and non-Gaussian concentration

through different dispersion schemes was presented by (Essa and Fouad, 2011).

Analytical solution of diffusion equation in two dimensions using two forms of eddy

diffusivities was solved by (Essa and Fouad, 2011).

In this paper the advection diffusion equation (ADE) is solved in two dimensions

to obtain crosswind integrated ground level concentration in unstable conditions. We
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use Laplace transformation technique and considering the wind speed and eddy

diffusivity depend on the vertical height and downwind distance. Comparison

between observed data from Copenhagen (Denmark) and predicted concentration data

using statistical technique was presented.

Analytical Method
Time dependent advection – diffusion equation is written as (Arya, 1995)

where:

c is the average concentration of air pollution (μg/m3).

u is the wind speed (m/s).

Kx, ky and kz are the eddy diffusivity coefficients along x, y and z axes respectively

(m2/s).

For steady state, taking dc/dt=0 and the diffusion in the x-axis direction is assumed to

be zero compared with the advection in the same directions, hence:= + (2)

Let us assume that  ky =kz =k(x)

Integrating  equation ( 2) with respect to y, (Essa et al. 2006) :( , ) = ( , ) (3)

Equation (3) is subjected to the following boundary condition

1-The pollutants are absorbed at the ground surface i.e.

(i)

where vg is the deposition velocity (m/s).

2-There is no flux at the top of the mixing layer, i.e.
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3-The mass continuity is written in the form:-

u cy (x,z) =Q δ(z-h)                                                at x=0 (iii)

Where δ is the Dirac delta function , Q is the source strength and "h" is mixing height.
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4-The concentration of the pollutant tends to zero at large distance of the source, i.e.

cy(x,z) =0                   at  z=∞ (iv)

Applying the Laplace transform on equation (3) to have:

(4)

where    zxcLzsc ypy ,{,~  ; x→s}, where Lp is the operator of the Laplace transform

Substituting from equation (iii) in equation (4), to get:

   
2

2

( , )
, (5)y

y

c s z us Qc s z z h
z k k




   





The nonhomogeneous partial differential equation (5) has a solution in the from:

  1 2

1
, 1 (6)
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From the boundary condition (iv), we find c1=0:

  2
1, 1 ( 7 )
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Using the boundary condition (iii) after taking Laplace transform,

   hz
su

Qzsc y  ,~
(8)

Substituting from equation (8) in equation (7),
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Substituting from equation (9) in equation (7),
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Taking the inverse Laplace transform for the equation (10), we get the normalized

crosswind integrated concentration in the form:
2 2

4 4

3 3

( , ) 1 1

2

h u h u

y kx kx
c x z h u

e e
Q h xuk h xukk x  

 

  
(11)

In unstable case: Taking the value of the vertical eddy diffusivity in the form:

k (z) =kv w* z (1-z /h) (12)

Substituting from equation (12) into equation (3),

2

2
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Applying the Laplace transform on equation (13) with respect to x and considering

that:̌ ( , ) = ( , ); →
To have:

   , 0,p y y
CL sC s z C z
x
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Substituting from (14) in equation (13),

       
2

2 2 2 2

* *

21, ,
, 0,y y

y y

v v

z
C s z C s z us uh C s z C z

zz z z zz k w z k w z
h h h

      
     

       
     

 
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Substituting from (ii) in equation (15),
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Integrating equation (16) with respect to z, to have:
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Equation (17) is nonhomogeneous differential equation. The homogeneous solution of

(17) is given by:

  *

l n
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After taking Laplace transform for equation (18) and substituting from (ii),
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1
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u s
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Substituting from equation (19) in equation (18) ,
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The special solution of equation (17) becomes:
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Then, the general solution of equation (17) is a combination between the two

solutions (20) and (21) as:
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Taking Laplace inverse transform of equation (22) using Shamus (1980),
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 , 1 1
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This is the concentration of pollutant at any point (x,z)

To get the crosswind integrated ground level concentration, put z=0 in equation (23):

 ,0 1 1

1ln

y

ss v s
s

v

C x
hQ h h k w h xu hh

u x
k w





 
          
  
 

(24)

Validation

The used data was observed from the atmospheric diffusion experiments

conducted at the northern part of Copenhagen, Denmark, under neutral and unstable

conditions (Gryning and Lyck, 1984; Gryning et al., 1987). Table (1) shows that the

comparison between observed, predicted model "1" and predicted model "2"

integrated crosswind ground level concentrations under unstable condition and

downwind distance.

Table (1) The comparison between observed, predicted model "1" and predicted

model "2" integrated crosswind ground level concentrations under unstable condition

and downwind distance.
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Run

no. Stability

Down

distance

(m)

Cy/Q *10-4 (s/m3)

observed

Predicted model 1

K(x) = 0.16 (σw
2/u) x. Predicted model  2

K(z)= kv w* z   (1-z /h)
1 Very unstable (A) 1900 6.48 8.95 5.01
1 Very unstable (A) 3700 2.31 4.64 2.62
2 Slightly unstable (C) 2100 5.38 6.28 4.36
2 Slightly unstable (C) 4200 2.95 3.14 2.26
3 Moderately unstable (B) 1900 8.2 10.92 5.01
3 Moderately unstable (B) 3700 6.22 6.30 2.61
3 Moderately unstable (B) 5400 4.3 8.30 1.80
5 Slightly unstable (C) 2100 6.72 9.47 4.50
5 Slightly unstable (C) 4200 5.84 9.01 2.27
5 Slightly unstable (C) 6100 4.97 12.19 1.57
6 Slightly unstable (C) 2000 3.96 5.30 4.35
6 Slightly unstable (C) 4200 2.22 2.53 2.21
6 Slightly unstable (C) 5900 1.83 1.98 1.60
7 Moderately unstable (B) 2000 6.7 8.11 4.57
7 Moderately unstable (B) 4100 3.25 3.96 2.32
7 Moderately unstable (B) 5300 2.23 3.06 vb 1.81
8 Neutral (D) 1900 4.16 10.31 4.89
8 Neutral (D) 3600 2.02 5.45 2.68
8 Neutral (D) 5300 1.52 4.37 1.85
9 Slightly unstable (C) 2100 4.58 6.86 4.34
9 Slightly unstable (C) 4200 3.11 3.43 2.26
9 Slightly unstable (C) 6000 2.59 2.40 1.60
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Fig. 1 The variation of the two predicted and observed models via downwind distances

Fig. (1) Shows the predicted normalized crosswind integrated concentrations values

of the model 2 are good to the observed data than the predicted of model 1.

Fig. (2) Shows the predicted data of model 2 is nearer to the observed concentrations

data than the predicted data of model 1.

From the above figures, we find that there are agreement between the predicted

normalized crosswind integrated concentrations of model 2 depends on the vertical

height with the observed normalized crosswind integrated concentrations than the

predicted model "1" that depends on the downwind distance.
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Fig. 2 The variation between the predicted models and observed concentrations data.

Statistical method

Now, the statistical method is presented and comparison between

predicted and observed results was offered by (Hanna, 1989).The following

standard statistical performance measures that characterize the agreement

between prediction (Cp =Cpred/Q) and observations (Co=Cobs/Q):Fractional Bias (FB)= ( − )0.5( + ) Normalized Mean Square Error (NMSE)
= (C − C )(C C ) Correlation (COR)
= 1 ( − ) × ( − )( ( 2)
= 0.5 ≤ ≤ 2.0

Where σp and σo are the standard deviations of Cp and Co respectively. Here the over
bars indicate the average over all measurements. A perfect model has the following
idealized performance: NMSE = FB = 0 and COR = 1.0.
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Normalized Mean Square Error (NMSE) = (C − C )(C C )
( ) = ( − )0.5( + )

Correlation (COR) = 1 ( − ) × ( − )(
( 2) = 0.5 ≤ ≤ 2.0

Where σp and σo are the standard deviations of Cp and Co respectively. A perfect
model would have the following idealized performance: NMSE = FB = 0 and COR =
1.0.

Table (2) Comparison between our two models according to standard statistical
Performance measure

Models NMSE FB COR FAC2

Predicated model 1 0.30 - 0.40 0.78 1.56

Predicated model 2 0.26 0.32 0.67 0.80

From the statistical method, it is evident that the two models are inside a factor of

two with observed data.  Regarding to NMSE and FB, the predicted two models are

good with observed data The correlation of predicated model "1" equals (0.78) and

model "2" equals (0.67).

Conclusions

The predicted crosswind integrated concentrations of the two models are inside

a factor of two with observed concentration data. There is agreement between the

predicted normalized crosswind integrated concentrations of model "2" depends on

the vertical height with the observed normalized crosswind integrated concentrations

than the predicted model "1" which depends on the downwind distance.
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