High density optical memories for safe archival data

5 Abstract

1

6 Ion nano-beams are used to write data bits of nanometer diameter into storage

materials and photon near-field technology is employed to read this novel kind of
 digital memory.

9 Keywords: nano-technology, Tbit memory capacity.

10 I. Experimental

A very important application of Xe nanobeams pertains to the fabrication of permanent 11 (non-volatile) opticaL data memories (WORM type) of Tbit capacity. A first outline of this 12 idea was presented about 10 years ago, without, however, specifying a reading process. [1] 13 This latter task is addressed in the following. Bit creation makes use of local phase 14 transitions of initially monocrystalline silicon layers (c-Si) to the amorphous state (a-Si) 15 16 locally changing optical absorption for incident photons of energies $hv \leq 3.0$ eV. Irradiation with ion nano-beams with fluences of about 10^{13} Xe ions/cm² of 15 keV energy will amorphise irradiated Si-areas of about 10 nm diameter to a depth of 20 nm, comprising a bit 17 18 volume of about $2 \cdot 10^{-18}$ cm³ constituting a solid state equivalent of 10^5 Si atoms. Fig. 1 19 displays calculated ion trajectories of a total of 10^5 ions of a 15 keV Xe sub -nm ion beam 20 in c Si. Evidently, the implantation profile will vary with beam energy and size, so that both 21 22 smaller and larger bit sizes can be produced. In this way, a memory storage density n of bits 23 b of diameter D = 2R amounts to

24
$$n \sim 10^2 (D[nm])^{-2} \text{ Tb/cm}^2$$

25 (1)

Thus, for D = 10 (100) nm, a standard disk of 100 cm² would provide space for 100 (1) Tbit 26 of data, favorably comparable to recently reported maximum densities of about n 27 ~2.5Tbit/in² ~0.4 Tb/cm².[2] Suitable storage material is silicon-on-sapphire. It is available 28 as single-crystalline hetero-epitaxial c-Si layers of about 100 - 1000 nm thickness grown on transparent monocrystalline Al_2O_3 substrates (commercially available as silicon-on-29 30 sapphire or 'SOS' from Kyocera, Japan). But also other wider band-gap semiconductors 31 such as c-SiC and pc-diamond may be considered [1]. c-Si has absorption coefficients of α_c 32 ~ 10⁴ cm⁻¹ at $hv \sim 2.5$ eV and a-Si up to $\alpha_a \sim 10^6$ cm⁻¹, providing sufficient contrast by 33 differing transmissions T_c and T_a of an incident light beam [1]. Detailed annealing studies 34 have shown that these amorphised Si-regions do not recrystallise below temperatures of 35 about 600°C; so that the stored information is of practically unlimited lifetime at 36 37 temperatures in all global climates, in contrast with all presently available storage

technologies. Also, its immunity against strong electromagnetic transient fields and virus attacks is an important feature for many civil and military environments. The very major technical challenge is the optical reading of such memories. Near-field technology seems a viable approach.

42 **II** . Theoretical

43 The topic of light transmission through subwavelength apertures has a long history, starting 44 with the initial 'scalar' theoretical approach by Kirchhoff, followed by several 'vectorial' 45 treatments with Bethe's predicting the total transmitted light power P_t of the incident 46 photon flux density I_0 through sub-wavelength apertures R.[3]

47
$$P_{t} = c((kR)^{4} (R^{2}I_{0}).$$
 (2)

Experiments with 1 mW laser radiation incident onto 1 mm² area in the focal plane of a 48 screen confirmed the R^6 -dependence of the transmitted power over a wide range of sub-49 wavelength-aperture radii R [4]. c is a constant of order of unity for normal incidence of 50 light and the wave vector is $k = 2\pi/\lambda = 0.0126 \text{ nm}^{-1}$ for $\lambda = 500 \text{ nm}$. Let I_0 be the laser light 51 intensity within a monomode fibre with kernel radius $R_k = 2.5 \ \mu m$ (fig. 2). We assume $I_0 =$ 52 $10 \text{mW}/\pi R_k^2 \sim 5 \cdot 10^8 \text{W/m}^2$, equivalent to a photon flux areal density of $I_{0,p} \sim 1.3 \cdot 10^{27}$ 53 hv/m^2s). The screen is usually coated onto the front end of the fibre. For simplicity we 54 assume homogeneous intensity across the kernel cross section. Out of the total power P_t 55 transmitted through the aperture a fraction P_{c(a)} will reach the photo diode in case of 56 transmission $T_{c(a)}$ through a c(a)-bit area: 57 $P_{c(a)} = q \cdot T_{c(a)} \cdot P_t$ (3)58 59 The reduction factor q depends on the exact geometry of the optical arrangement. A value of $q \sim 10\%$ may serve as a rough estimate of the solid angle subtended by the bit area in fig. 2 60 where equal diameters D of aperture and bit area are presumed. This is further illustrated by 61 fig. 2, where incident laser light of intensity I_0 and wavelength $\lambda \sim 500$ nm, or energy 62 $hv \sim 2.5 \text{eV}$, provides digital information with contrast $(T_c - T_a)/T_c$ of the order of 1, to be 63 recorded by an ultrafast photon detector. The memory disk will rotate at appropriate speeds, 64 of say 10 m/s, or 10¹⁰ nm/s, at a close distance of present-day realisable separation of some 65 10 nm, as practised in magnetic memory reading, in order to provide fast data recognition. 66 This engineering task appears completely solvable. Further improvements are possible by 67 optimising silicon layer thickness, ion implantation parameters, and photon energy, 68 enhancing the optical effects. Even at moderate laser intensities a memory density of at least 69

 10^{10} b/cm^2 appears readable as shown below.

In further specifying the reading process we consider q = 0.1, $T_c \sim 1$ and a lower (upper) bound of aperture radius R = 10(100) nm, and $I_{0,p} = 1.3 \cdot 10^{27} hv /(m^2 s)$. The corresponding transmission cross section of the aperture is $k^4 R^6 = 2.5 \cdot 10^{2(+4)}$ nm²

according (2). The power received at the photo diode by passing a c-bit is then $P_c = 3.3 \cdot 10^{6(12)} h v/s$ according (3). With scan frequencies of $f = 1/\tau = 10^{7\{9\}}$ Hz the number of detectable photons per scanned c bit will be $N_c = P_c \cdot \tau$ photons. N_c may present the digit 1. As said above, the corresponding figure for the digit 0, representing the photon beam passing an amorphous zone is much smaller and constitutes a threshold level of N_a $<< N_c$ so that a sufficient signal contrast is achieved in the response of the fast photo diode.

In fig. 3 the results for N_c are plotted within the considered ranges. For R > 20 nm and a 80 dwell time of $\tau \sim 10^{-7}$ s/bit we have signals $N_c > 10$ photons, sufficient for safely reading 81 the bits in view of the quantum efficiency of present photodiodes exceeding 50 %. The 82 smallest, about 10 nm wide bit areas, achieved by ion implantation in ref. [1], however, can 83 be read only at about 100 kHz rates with the light intensity considered here – not practical 84 for a complete reading of multi-Tbit memories. Ultrafast photodiodes have rise times ~2ns 85 and hence can handle well above 10^8 signals per second. Exploiting a limit of $f \sim 100$ MHz 86 would require a bit radius R > 30 nm and allow for a disk of 3 Tb/100cm²⁺. By optimisation 87 of the numerous input parameters useful operational values for a 10 Tb memory seem 88 89 accessible.

Richard Feynman's intriguing question: Why cannot we write the entire 24 volumes
of the Encyclopedia Britannica on the head of a pin?; based on a pixel size of 8
nm,can be answered with: Yes, we now can!

93 ACKNOWLEDGEMENT

The author is greatly indebted to E.W. Otten for his advice concerning the use of focused laser technology for the memory reading process and for critical reading of the ms.

- 96
- 97

98 **References**

99 [1] S: Kalbitzer: *Novel concepts for the mass storage of archival data,* Nucl. Instr. and 100 Methods B218 (2004) 343-354

- 101 [2] EE Times,08/18/2010 quoting Toshiba results.
- 102 [3] H.A. Bethe Theory of Diffraction by Small Holes. Phys. Rev. 66 (1944) 163-182

[4] A. Roberts: *Coupling of radiation into a near-field probe*. J.Appl.Phys.70.8 (1991) 4045-4049.

105 [5] Computer Code SRIM 2012, by J.F.Ziegler. J.P. Biersack and M.D.Ziegler. University of 106 California at Los Angeles. CA 90066 (www.SRIM:org.)

107 Figure captions

Fig.1: Implantation profile of a pencil beam of 10^5 Xe ions of 15 keV into c-Si with the main range parameters shown: Ion longitudinal range: $L_1 \sim 20$ nm, lateral radial diameter: $L_r \sim 10$ nm. (Color on line). Calculation with the computer code SRIM. [5].

Fig. 2: Scheme of the optical reading arrangement: A 5 μ m wide kernel of a monomode fibre carries laser light of wavelength $\lambda \sim 500$ nm (2.5 eV) and intensity $I_0 = 10$ mW/(π (2.5 μ m)²) (equivalent to 1.3 $\cdot 10^{27}$ photons/m²s. The light falls onto a D=20 (200)nm wide aperture of an opaque screen (S). The transmitted power P_t of 3.3 $\cdot 10^{7(13)}$ hv/s hits the rotating memory disk (MD) consisting of transparent, crystalline (c) or opaque, amorphous (a) silicon bit areas. The light power $P_{c(a)}$, passing bit areas c(a) generate bit signals $N_{c(a)}$ in the fast photo diode (PD). (Color on line)e (PD). (Color on line)

- 119 Fig.3: Number of photons N_c passing a c-bit area and hitting the photo diode for beam
- 120 dwell times of $\tau = 100$, 10, and 1 ns/bit as function of aperture radius *R*. (Color on line)
- 121 Other conditions as in figure 2- caption.

122 Fig: 1

123

124

Ion Distribution

Plot Window goes from 0 A to 400 A; cell width = 4 A Press PAUSE TRIM to speed plots. Rotate plot with Mouse. Ion = Xe (15, keV)

