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ABSTRACT8

9
Theoretical formalism using vectorial Rayleigh diffraction integrals is developed to calculate
the electric field components  zyx EEE , of generalized vector-vortex (VV) beams of different
phase and polarization characteristics as a function of propagation distance ‘z’ in the focal
region of an axicon.  This formalism is used to generate sub-wavelength spot-size (0.43λ)
ultra-long length (80λ) longitudinally-polarized optical needle beam by appropriately selecting
the phase and polarization characteristics of the input VV beam.  The formalism is further
extended to also generate purely transverse polarized beam with similar characteristics. The
focusing process leads to interference between different field components of the beam
resulting in the formation of C-point polarization singularities of index Ic = ±1 whose
transverse characteristics evolve with propagation distance. Experimental results to support
our theoretical calculations are presented along with lens focus comparison results.
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1. INTRODUCTION14

15
Optical beams with spatially varying state of polarization are known as cylindrical vector16
beams [1]. As the focusing characteristics of optical beams strongly depend on the state of17
polarization, especially in the non-paraxial regime, the high numerical aperture (NA) focusing18
of vector beams results in unusual electric field distributions in the focal region [1]. For a19
generalized vector beam the electric field vector makes a fixed angle of  with the radial20
direction [1] with  =0o for radially polarized vector beam and  =90o for azimuthally21
polarized vector beam. The focusing properties of radial and azimuthal polarized vector22
beams using high NA lenses are well studied both experimentally and theoretically [2-4].23
Optical vector beam with suitably engineered polarization and phase structures can give rise24
to sub-wavelength spot-size non-diverging beams on high-NA focusing [5, 6]. These non-25
diverging vector beams are widely used in super resolution microscopy [7], laser focusing26
acceleration of electrons [8] and optical tweezers [9].27

In addition to the spatially varying polarization the optical vector beam can also carry28
helical phase structure making it a vector-vortex (VV) beams. It was shown recently that29
focusing of annular radially polarized beam can give much smaller spot sizes [10], leading to30
the possibility of encoding phase structure on to vector beams  to generate smaller spot31
sizes [6].Focusing of VV beams can generate transversely-polarized non-diffracting beams32
[11]. The reduction of spot size happens at the expense of depth of focus (DOF), the sharper33
the focusing smaller will be the DOF. But extended DOF is needed in many applications34
including optical imaging. Though there are methods such as wave-front coding [12], annular35
illumination [13] and adaptive optics techniques [14] available to extend the focal region, the36
axicon lens [15] based method is one of the simple ones. Most of the studies using axicon37
for imaging and formation of non-diverging Bessel-Gauss beams are restricted to the scalar38
regime. In this work we present the axicon focusing characteristics for vector-vortex input39
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beams, extending the usefulness of the treatment to complex phase and polarization40
engineered optical beam focusing. Toward this we first develop the theoretical formalism41
based on vectorial Rayleigh diffracting integrals to explain the focusing characteristics of42
generalized VV beam by an axicon.43

Vector beams are also known to possess V-singularity in the beam cross section44
where the orientation of the linear polarization is not defined [16]. Superposition of45
orthogonal circularly polarized plane wave and phase dislocated beams can lead to the46
formation of C and L singularities where the orientation of the major axis and ellipticity of the47
polarization ellipse respectively are not defined [16, 17]. Though it is known that  high-NA48
focusing of azimuthally [18] and radially [19] polarized beams lead to the generation of49
polarization singular (PS) beams,  experimental realization of the PS patterns are difficult50
since the focal region in high NA focus is very small (few multiples of λ). Axicon focusing51
enables us to experimentally measure the PS pattern and its evolution due to the extended52
focal region. By solving the vectorial diffraction integrals for the focusing of generalized VV53
beam we explain the fine structure of field and the evolution of optical field in the focal54
region. The interesting aspects of axicon focusing of VV beams is to realize optical beams55
with purely transverse and longitudinal non-diverging beams which are explained using the56
developed theoretical formalism.57

58
59

2. VECTOR DIFFRACTION THEORY60
61

We use vectorial Rayleigh diffraction integrals to calculate the  zyx ,, components of the62
electric field vector of a vector-vortex beam focused by an axicon at any position along the63
axis. The schematic of the focusing system that is useful to understand the formalism is64
shown in Fig.1.  An inhomogeneously polarized (vectorial) optical beam with a phase vortex65
at its center, the vector-vortex (VV) beam is focused by an axicon (A) of open angle ‘α’. The66
input beam with such phase and polarization characteristics can be generated by passing a67
generalized cylindrical vector beam (CVB) through a spiral phase plate (SPP). Vectorial68
Rayleigh diffraction integral is used to calculate the electric field of the monochromatic69
electromagnetic wave at any point ( )E r in the beam cross section propagating in a70
homogeneous medium by knowing the field distribution at the input z=0 plane [20,21].71

72

Fig. 1 Schematic of the focusing system, GVB-generalized vector beam, SPP-spiral73
phase plate, A-axicon, Zmax/2-centre of the non-diverging region.74

The electric field components are written using the Rayleigh diffraction integral in75
cylindrical coordinate system as [22]76
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Where, ( , , )z  are the cylindrical coordinates at the observation point and
0( , )  the polar80

coordinates of the plane immediately after the focusing axicon. Taking into consideration the81
polarization aspects, the electric field of the input beam to the axicon can be written as82
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Where ( , )P   is the polarization matrix and 0( , )A   is the amplitude and phase84
distribution of electric field after the axicon. The polarization matrix for the axicon is [23]85

2
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(3)86

Where ( , ), ( , ), ( , )a b c      are the polarization functions for x, y and z components of87
the incident beam. In the case of commonly used TM and TE polarized cylindrical vector88
beam modes these functions have a simpler form independent of [1]. In this work we89
consider paraxial input field, purely transverse in nature for which ( , ) 0c    . The90
polarization matrix (eqn. (3)) can then be rewritten as91
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(4)93

Now consider the generalized VV beam with Laguerre-Gauss (LG) beam distribution incident94
on the axicon. The polarization state of the generalized vector beam is95
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0 0

a m
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(5)96

Where ‘m’ denotes the order of the vector beam and ‘ ’ is the phase difference between97
the constituent LG beams. The amplitude and phase distribution ( 0( , )A   ) of the LG beam98
is [24]99

2
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       (6)100

Where l
pL is the generalized Laguerre polynomial and 0exp( )ik is the axicon phase101

function defined as ( 1) tann   (with ‘n’ the refractive index of the axicon material and ‘102

UNDER PEER REVIEW



 ’ the axicon open angle). Using this the electric field distribution at any point after the103
axicon when a generalized vector-vortex beam is focused by the axicon is written by104
substituting Equ.(2),(4),(5) and (6) in Equ.(1). The electric field components any point105
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Where
0

k r   .110
The special cases for focusing of vector-vortex beams are realized by substituting the111

corresponding polarization matrix in the above eqns (7). The treatment presented above is112
valid for different types of focusing optical elements including lens and axicon and for113
different types of input optical beams, from plane wavefront scalar Gaussian beam to vector114
beam to generalized vector-vortex beam.  However, as the objective of our work is to115
generate and understand sub-wavelength spot size focused beams with long Rayleigh range116
we restrict our treatment to axicon focusing of few special cases of VV beam, after verifying117
our results for lens focusing with already published work.118

119
3.1 Lens focusing of vector-vortex beams:120

121
The focusing characteristics of cylindrical vector beam by high NA lenses and the focus122
shaping properties are well studied using Richadson-Wolf diffraction integrals [2, 3]. The123
mathematical formalism discussed in Section 2 is for the focusing of generalized VV beams124
by a conical lens, but as mentioned earlier it can be extended for lens focusing as well by125
incorporating the lens phase function instead of that of axicon. We used vectorial Rayleigh126
diffraction integral formalism to study the high NA focusing of vector-vortex beam, using the127

quadratic phase function for the lens:
2

0exp( )ik
f

 , where ‘f’ is the focal length of the lens.128

Now consider a monochromatic radially polarized beam of wavelength λ incident on the129
high-NA lens of focal length f. the electric field components in the focal region can be130
calculated by using equ(7) after substituting the corresponding polarization matrix for radial131
polarization and the lens phase function. The simulation results obtained for focusing of132
radially polarized beam field using our formalism are in good agreement with the previous133
results[2, 3].Fig.2 shows the normalized intensity distribution near the focal region and the134
contribution of different electric field components towards total intensity, when a radially135
polarized beam is focused by a lens of NA=0.8.136
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137
Fig. 2 (a) Normalized intensity distribution near the focal region; (b) electric field138
components at Z=0for a radially polarized beam focused by a 0.80 NA lens139

140
3.2 Axicon focusing of azimuthally-polarized vortex beam:141

The polarization matrix for azimuthally polarized beam is obtained by substituting
2


  in142

Equ.(5), and the polarization matrix (equ (4)) then becomes143
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Substituting the polarization matrix elements in Equ. (7) the field components at any position145
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150
We used an azimuthally polarized beam of order m=1 and helical charge l=+1 in our151

experiments under low NA focusing. The vector-vortex beam generator consists of a He-Ne152
laser (λ = 632.8 nm) and a 27.4 cm long two-mode optical fiber [25]. Linearly-polarized153
Gaussian beam from the laser is coupled into the fiber as offset-tilted beam to generate a154
spirally-polarized vector beam. Two half-wave plates are used after the collimated fiber155
output to rotate the spatial polarization state of the vector beam which in turn passes through156
a spiral phase plate (VPP m-633 RPC Photonics, USA) and is subsequently focused by an157
axicon of open angle α=0.5o. The focused beam is then imaged using a CCD along the158
direction of propagation ‘z’. The polarization characteristics of the focused beam are159
measured via spatially resolved Stokes polarimetry using a quarter-wave plate and polarizer160
combination [26]. The generated transverse field (longitudinal field Ez=0) is a superposition161
of orthogonal circularly polarized J0 and J2 Bessel functions as can be seen from eqns. (9).162
The beams described by the J0 and J2 Bessel functions have respectively a central maximum163
intensity and a vortex of topological charge 2l  with intensity null at the centre.  The on-164
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We used an azimuthally polarized beam of order m=1 and helical charge l=+1 in our179

experiments under low NA focusing. The vector-vortex beam generator consists of a He-Ne180
laser (λ = 632.8 nm) and a 27.4 cm long two-mode optical fiber [25]. Linearly-polarized181
Gaussian beam from the laser is coupled into the fiber as offset-tilted beam to generate a182
spirally-polarized vector beam. Two half-wave plates are used after the collimated fiber183
output to rotate the spatial polarization state of the vector beam which in turn passes through184
a spiral phase plate (VPP m-633 RPC Photonics, USA) and is subsequently focused by an185
axicon of open angle α=0.5o. The focused beam is then imaged using a CCD along the186
direction of propagation ‘z’. The polarization characteristics of the focused beam are187
measured via spatially resolved Stokes polarimetry using a quarter-wave plate and polarizer188
combination [26]. The generated transverse field (longitudinal field Ez=0) is a superposition189
of orthogonal circularly polarized J0 and J2 Bessel functions as can be seen from eqns. (9).190
The beams described by the J0 and J2 Bessel functions have respectively a central maximum191
intensity and a vortex of topological charge 2l  with intensity null at the centre.  The on-192
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Fig. 2 (a) Normalized intensity distribution near the focal region; (b) electric field144
components at Z=0for a radially polarized beam focused by a 0.80 NA lens145

143
3.2 Axicon focusing of azimuthally-polarized vortex beam:144

The polarization matrix for azimuthally polarized beam is obtained by substituting
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Equ.(5), and the polarization matrix (equ (4)) then becomes149
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axis superposition of the two beams with orthogonal circular polarization results in elliptically165
polarized field, leading to the formation of C-point and L-line in the beam cross-section [16,166
17]. In the present case the C-point index defined as 1
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ellipse map and the ellipse orientation at the centre of the non-diffracting range Z=Zmax/2,170
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Fig. 3 (a)-(c) are respectively the theoretical simulations of intensity distribution,173
polarization ellipse map and the polarization ellipse orientation. (d)-(f) are the174
corresponding experimental results, all are at Z = Zmax/2175

The polarization ellipse orientation around the C-point depends on the phase176
difference between the constituent J0 and J2 beams. The radial type variation in the177
polarization ellipse orientation around the C-point in Fig. 3 is due to the Gouy phase178
difference of 2π between the constituent beams with an additional Gouy phase of π added179
when the beams pass through the first focus [27].180

With the simulation results (using equ. 9) matching the experimental results we181
proceed to simulate the condition when the azimuthally-polarized vector-vortex beam is182
focused by a high NA axicon. The focusing element is an axicon of open angle α=70o and183
the input beam is an azimuthally polarized vortex beam of helical charge l=+1 having a waist184
width ω0=5mm with λ=632.8nm. Fig.4 shows the propagation of the electric field185
components in the focal region calculated using equ. (9). From the figure it is seen that when186
an azimuthally polarized vortex beam is focused by high-NA axicon the longitudinal187
component of the field goes to zero resulting in a purely transverse focal field.188
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Fig. 4 (a),(b) and (c)  are respectively the transverse and longitudinal field components190
and the total intensity with propagation; (d) shows the line profiles of the intensity191
distribution at Z=Zmax/2192

193
It is also important to note here that the diameter of the central spot is calculated to194

be 0.43λ at Z=Zmax/2 and it propagates without diverging for a long distance of (80λ) as195
compared to the size of the input beam and such beams are known as optical needle beam196
[5]. Alternate optical needle beam generation methods include focusing of phase modulated197
radially polarized beam by high NA lens [5], high NA lens axicon [28], focusing of radially198
polarized Bessel-Gauss (BG) beam [29] and reversing electric dipole array radiation [30] but199
all with much smaller non-diverging range that our results presented here. These long range200
optical needle beams find applications in polarization sensitive orientation imaging [31, 32],201
and light-matter interaction in the nano-scale [33]. Longitudinally polarized optical needle202
beams are also useful in particle manipulation and acceleration [34, 35]. It is important to203
note here that all these above-mentioned methods for the generation of optical needle204
beams [5, 28-30] involve use of either complex phase modulation or amplitude modulation of205
the input beam. The high NA axicon based method presented here is simpler and involves206
direct axicon focusing of vector-vortex beam.207

208
209

3.3 Axicon focusing of radially-polarized vortex beam:210

Next, we extend our formalism to generate longitudinally polarized optical needle beam by211
focusing radially polarized vortex beam using an axicon. The polarization matrix for radial212
polarization is obtained by substituting 0  in equ. (5) for which the polarization matrix213
(equ. 4) is written as214
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In our experiment the spirally polarized vector beam output from the generator is221
made radial by rotating the two half-wave plate orientation which is then passed through the222
SPP and is subsequently focused using the axicon of α=0.5o corresponding to the case with223

UNDER PEER REVIEW



m=+1, l=+1. Here the paraxial focus of the axicon ensures that the contribution of the224
longitudinal component of electric field to the total intensity is negligibly small. As before the225
focused beam is imaged using the CCD camera and its polarization characteristics are226
obtained by measuring the Stokes parameters. Fig.5 shows the theoretical simulation and227
experimentally measured intensity distribution, polarization ellipse map and its orientation in228
the middle of the non-diverging region (Z=Zmax/2).229

230

Fig. 5 (a)-(c) are respectively the theoretical simulations of intensity distribution,231
polarization ellipse map and the polarization ellipse orientation. (d)-(f) are respectively232
the corresponding experimental results, all are at Z=Zmax/2233

Focusing radially-polarized beam of order m=1 results in a central bright spot for l=0,234
1 [36], which for the l=+1 case is transversely polarized. To generate longitudinally polarized235
optical needle beam we choose radially polarized vortex beam and focus it using a high NA236
axicon. The electric field components can be calculated from equ. (11). If we choose an237
axicon with an open angle of α=70o the resulting longitudinally polarized central bright spot238
intensity is much more than the transverse component. For radially polarized vortex beam,239
with l=+1 and beam width 5mm input to the axicon Fig.6 shows the theoretically simulated240
propagation characteristics. The spot size of the central bright spot is calculated to be 0.48λ241
and is propagating without divergence for up to a distance of 80λ.242
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Focusing radially-polarized beam of order m=1 results in a central bright spot for l=0,261
1 [36], which for the l=+1 case is transversely polarized. To generate longitudinally polarized262
optical needle beam we choose radially polarized vortex beam and focus it using a high NA263
axicon. The electric field components can be calculated from equ. (11). If we choose an264
axicon with an open angle of α=70o the resulting longitudinally polarized central bright spot265
intensity is much more than the transverse component. For radially polarized vortex beam,266
with l=+1 and beam width 5mm input to the axicon Fig.6 shows the theoretically simulated267
propagation characteristics. The spot size of the central bright spot is calculated to be 0.48λ268
and is propagating without divergence for up to a distance of 80λ.269
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Fig. 6 (a), (b) and (c) respectively are the transverse and longitudinal components and244
total intensity distribution with propagation; (d) shows the intensity line profile of the245
field components at Z=Zmax/2246

Using the mathematical formalism developed here based on vectorial Rayleigh247
diffraction integrals the focusing characteristics of vector-vortex beam by an axicon is248
studied. The focusing of VV beam leads to the formation of polarization singularities249
depending on the order of the vector beam and the helical charge. It is shown that for an250
azimuthally polarized vortex beam the focusing leads to the formation of C-point singularity251
with index 1. The C-point of index 1 is formed by the superposition of J0 and J2 Bessel252
beams which are formed by adding and subtracting helical charges of the constituent beams253
of the cylindrical vector beam. Axicon focusing ensures longer non-diverging range where254
the axial phase of the beam is stationary. This ensures the polarization singular pattern free255
from phase distortions due to propagation. Direct generation of higher order phase vortex256
leads to the splitting of the helical charges but this splitting is minimum in our method.257
Higher-order C-points can be generated by changing the order (m) of the vector beam and258
by suitably adjusting the helical charge (l) of the vortex beam. For example C-point of index259
2 can be generated by focusing a vector beam of order m=2 carrying a helical charge l= +2.260
The sign of the C-point index can also be changed by changing the handedness of the261
superposing  Bessel beams which can be achieved by including a half wave plate after the262
axicon. Also, the optical needle beams generated by high NA axicon focusing of vector-263
vortex beams has a non-diverging range which is one order of magnitude higher than264
achieved by other methods.265

4. CONCLUSION266

A general mathematical formalism is developed for the calculation of electric field267
components based on vectorial Rayleigh integrals, for VV beams focused by an axicon. The268
formation of polarization singularities by focusing VV beam by the axicon is studied269
theoretically and experiments were performed to validate the theoretical predictions under270
low NA focus conditions. The C-point of index 1 with different polarization ellipse structures271
were generated experimentally by low NA focusing of azimuthal and radial polarized VV272
beams. The formalism is extended to high NA axicon focusing of VV beams resulting in the273
generation of purely transverse or purely longitudinally polarized optical needle beams. It is274
shown using theoretical simulations that our method can generate optical needle beam of275
spot-size (0.43λ) with long non-diverging range of 80λ.276
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