
Geometric Phase, Curvature, and the Monodromy Group

Abstract

The geometric phase requires the multivaluedness of solutions to Fuchsian second-order equa-

tions. The angle, or its complement, is given by half the area of a spherical triangle in the case of

three singular points, or half the area of a lune in the case of two singular points. Both are fun-

damental regions where the automorphic function takes a value only once, and a linear-fractional

transformation tessellates the plane in replicas of the fundamental region. The condition that the

homologues of the poles, representing vertices, be angles places restrictions on quantum numbers

which are no longer integers, for, otherwise, the phase factors would become unity. Restriction

must be made to regular singular points for only then will solutions to the differential equation

be rational functions so that the covering group will be cyclic and the covering space be a ‘spiral

staircase’. Many of the equations of mathematical physics, with essential singularities, become

Fuchsian differential equations, with regular singularities, at zero kinetic energy. Examples of geo-

metric phase include the phasor, the Pancharatnam phase of beams of polarized light in different

states, the Aharanov-Bohm phase, and angular momentum with centripetal ‘attraction’. In the

latter example, the phase is one-half the area of the lune, which disappears when the pole at infinity

becomes an essential singularity thereby recovering the Schrödinger equation. The behavior of an

automorphic function at a limit point on the boundary is analogous to the confluence of two reg-

ular singularities in a linear second-order differential equation to produce an essential singularity

at infinity.
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INTRODUCTION

Quantum mechanics goes to great lengths to ensure that the wavefunctions are singleval-

ued. This means discarding terms in the solution to the Schrödinger equation that either

blow up at the origin or diverge at infinity. Solutions of second-order differential equations

which are rational lead to multivaluedness, and great efforts were spent, in the late nine-

teenth century, to uniformize the solutions so as to render them singlevalued. However,

multivaluedness is not a stigma, and will explain numerous phenomena from the interaction

of polarized beams to the Aharonov-Bohm effect. In this paper we treat multivaluedness

from the theory of automorphic functions.

If a vector is parallel-transported around a closed curve it may not necessarily return as

the same vector it started as. The effect is known as holonomy, and has been attributed to

positive, Gaussian curvature [12]. Holonomy also occurs when we solve a Fuchsian differential

equation as a power series and take the analytic continuation around a regular singular point.

We will, in general, not get back the solution we started with but one that differs from it

by a phase factor.

We will show that geometric phase is a manifestation of periodicity with respect to a

group of motions of the tessellations of a disc, or half-plane, by lunes or curvilinear triangles,

depending on whether the Fuchsian differential equation has two or three regular singular

points, respectively. Functions whose only singular points are rational functions will be

solutions to a Fuchsian differential equation of two singular points while the solutions of

one with three regular points will not reduce to elementary functions, but rather can be

expressed as a beta integral.

Differential equations containing only regular singular points, like the hypergeometric

equation, have very little to do with the equations of mathematical physics [7]. Although

the latter equations have a regular singular point at the origin they possess an essential

singularity at infinity that prevents the solution from diverging at infinity. The regular

singular point at the origin has linearly independent solutions, which are powers of the

radial coordinate whose exponents are determined by the roots of the indicial equation.

Their quotient is an automorphic function, whose inverse is a periodic function, that will

undergo a linear-fractional transformation and tessellate the plane with lunes, or curvilinear

triangles. Quantum mechanics eliminates one of the solutions on the basis that it blows up
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at the origin. However, this depends on the roots of the indicial equation.

Because of a finite value of the kinetic energy, the other singular point at infinity is an

essential singularity. The solutions are exponential rising and decaying functions of the radial

coordinate. In order that the wavefunction be finite and singlevalued, the rising solution

is excluded. The essential singularity arises as a coalescence of two regular singular points,

and is analogous to the behavior of an automorphic function in the immediate neighborhood

of limit points of the group of motions which tessellate the half-plane or principal circle.

Therefore, if we allow for the multivaluedness of the Schrödinger equation, its solutions

will behave like automorphic functions far from the limit points on the boundary when we

consider the limit of zero kinetic energy.

In the next three sections, through the discussion of the phasor angle, the Pancharatnam

phase of polarized light beams, and the Aharonov-Bohm phase, we will show that geometric

phase requires positive Gaussian curvature so that the ratio of the area of a curvilinear

triangle to its angular excess is constant. Periodicity with respect to a group of motions

tessellate the half-plane, or disc, which are natural boundaries upon which reside essential

singularities. Periodicity requires at least two regular singular points, and the elliptic motion

is a rotation. Non-integral values of quantum numbers are required in order that the group

not reduce to the identity, corresponding to the equivalence class of null paths. These do

not represent particles, whose quantum numbers must be integers, but, rather, are to be

associated with resonances.

We then discuss ‘centripetal attraction’, for which the angular momentum varies over

a continuous range of non-positive, and non-integral values. The quotient of the solution

to the differential equation will take on each value only once in the lune, which is the

fundamental region. This forms a dichotomy with quantum mechanics, where the angular

momenta are discrete and space is continuous. We conclude the paper by reconstructing

the original Schrödinger equation: for negative kinetic energy the essential singularity is an

exponential function, while for positive kinetic energy it is a circular function. As long as

the kinetic energy vanishes, the Schrödinger equation, even in the presence of a potential,

can be reduced to a Fuchsian form with multiple space scales.
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PHASOR AND THE CONSTRUCTION OF AN ESSENTIAL SINGULARITY

The linear-fractional transform,

w =
az + b

cz + d
, (1)

guarantees that the fundamental region will have the same number of poles and zeros, where

a, b, c, d are constants such that ad − bc = 1. The difference between the number of zeros,

n, and the number of poles, p, is given by

1

2πi

∮
C

f ′(z)

f(z)
dz = n− p, (2)

where the contour C encloses all zeros and poles. Setting f(z) = w, with w given by (1) we

find
1

2πi

∮
C

(
1

z + b/a
− 1

z + d/c

)
dz = 0. (3)

The multipole moment of order m is given by

1

2πi

∮
C
zm
f ′(z)

f(z)
dz. (4)

The multipole moments are the analogs of essential singularties [4]. Since equation (4)

vanishes for an automorphic function; there can be no concentration of ‘charges’, which are

analogs of zeros and poles, so that (3) expresses charge neutrality.

Real values of the coefficients in (1) will have the zero fall on the real axis. The contour

in the z-plane for (1) is a circle passing through the pole at −d/c, and zero −b/a, as shown

in Fig. 1. The phase δ at point P is the difference between the angle β and the exterior

angle α [4],

δ = β − α. (5)

The lines of constant phase are circles which pass through −b/a and −d/c.

The crucial, and new, point is to realize that by adding δ to both sides of (5), and adding

and subtracting π on the right-hand side give

2δ = δ + β + (π − α)− π ≥ 0. (6)

The right-hand side is precisely the angle excess of a spherical triangle. We will soon

appreciate that the phasor (5) is the complementary angle to the Pancharatnam phase,

(12), to be discussed in the next section.
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FIG. 1. The contour is a circle passing through the pole at −d/c, and the zero −b/a.

The three angles of the triangle in Fig. 1, δ = λπ, β = µπ, and π−α = γπ, correspond to

three regular singular points, which by a linear-fractional transformation can be placed at

0, 1, and ∞. The simplest Fuchsian differential equation whose solutions do not reduce to

elementary rational functions is one with three singular points. With β at the origin, π− α

at 1, the phasor δ will be found at ∞.

The automorphic function,

w =

∫ z

zµ−1(1− z)γ−1 dz, (7)

is a beta integral, and satisfies the Fuchsian differential equation of second-order:

w′′ =

(
µ− 1

z
+

1− γ
1− z

)
w′, (8)

where the prime stands for differentiation with respect to z. The value of the third angle, δ

at ∞, can be determined from the Schwarzian deterivative,

{w, z} =
1− µ2

2z2
+

1− γ2

(1− z)2
− 2(1− γ)(1− µ)

2z(z − 1)
.

Equating the numerator of the last term with the canonical form [11],

γ2 + µ2 − λ2 − 1 = −2(1− γ)(1− µ),

we find

λ = ±(γ + µ− 1). (9)

The negative sign will give the Euclidean result,

π = δ + π − α + β, (10)

5



which is the negative of the phasor, (5), while the positive root in (9) will give the correct

phasor, (5). This proves that the phasor belongs to spherical geometry, and not to Euclidean

geometry.

PANCHARATNAM’S PHASE FOR POLARIZED LIGHT

Berry [3] claims that Pancharatnam’s phase [14] is one-half the solid angle subtended by

a geodesic triangle on the Poincaré sphere. Without even knowing what the Pancharatnam

phase is, it can safely be ruled out that the phase would be related to an interior solid angle

when it is known that all deductions are made on the surface of the Poincaré sphere with

absolutely no knowledge of the interior angles or points that the sphere encompasses [16].

Moreover, any shape on the surface of the sphere that has the same area will have the same

solid angle, and thus it need not be a geodesic triangle. In contrast, we will show that

the complementary angle found by Pancharatnam is equal to half the area of a spherical

triangle, given by the angle excess.

Pancharatnam considers a polarized beam C to be separated into two beams in states of

polarization A and B, whose phase difference is the complementary angle to δ. In reference

to the phasor (5), δ will be equal to the difference in the internal angle ∠ACB and the

exterior angle ∠ABC ′,

δ = ∠ACB − ∠ABC ′, (11)

as shown in Fig. 2. Expressing the exterior angle in terms of the interior angle, and adding

δ = ∠BAC to both sides of (11), result in

2δ = ∠BAC + ∠ACB + ∠ABC − π. (12)

Equation (12) expresses twice the phase difference between the two beams in terms of the

area of a spherical triangle given by its angle excess.

Actually, Pancharatnam defines δ = ∠CAB as the phase difference which he expresses

in terms of the triangle colunar to 4ACB, namely 4AC ′B. This is to say the angle,

∠C ′AB = ∠AC ′B − ∠ABC, (13)

is the phasor, (5), being the difference between the opposite internal angle and the external

angle of the third angle of the spherical triangle. Adding the angle ∠C ′AB to both sides of
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FIG. 2. The phase ∠C ′AB is determined by the angle excess of the triangle 4BAC colunar to

4C ′AB. As B → C the the two beams will have opposite phases, while as B → C ′, which is the

opposite state of polarization to C, the phase difference will vanish.

(13), and adding and subtracting π on the right-hand side yield:

2∠C ′AB = ∠C ′AB + ∠AC ′B + ∠ABC ′ − π, (14)

The right-hand side of (14) is the area of the triangle 4C ′AB, and replacing the left-hand

side by its complementary angle gives

δ = ∠CAB = π − 1
2 (∠C ′AB + ∠AC ′B + ∠ABC ′ − π) , (15)

which is eqn (5.a) of Pancharatnam [14].

As B → C, the phase ∠C ′AB → π, and the beams will have opposite phases. This is

analogous to the coalescence of the zero and pole to form a multipole. Alternatively, as

B → C ′, the opposite state of polarization to C, the beams in the state of polarization A

and B will have zero phase difference.

Pancharatman then asks what happens when the split component B tends to the opposite

polarized state A′ of the other polarized component A? As B → A′ and δ → ∆, the latter

will be given in terms of the area of the lune cut out by the great circles AC0A
′ and AC ′A′,

which is 2∠C0AC
′. Hence,

∆ = π − ∠C0AC
′ = ∠C0AC, (16)

is half the area of the lune formed from the great circles AC0A
′ and ACA′. When the area

vanishes, the beams will have opposite phases, ∆ = π. Fig. 2 also illustrates Pancharatnam’s

7



observation that the emergent state of polarization C can be obtained from the incident state

of polarization C0 when polarized light passes through a birefringent medium, which can

be viewed as a rotation of the Poincaré sphere through an angle ∆ in the counterclockwise

direction about the AA′ axis.

THE AHARONOV-BOHM EFFECT

The fringe shift in a field-free, but multivalued, region due to a non-vanishing vector

potential was predicted by Ehrenberg and Siday [5], and rediscovered by Aharonov and

Bohm [1] a decade later. Ehrenberg and Siday found it strange that an optical phenomenon

would be caused by a flux, instead of a change in the flux. Aharonov and Bohm insisted on

the multivaluedness of the region in which the beams are travelling.

Consider the Schrödinger equation with a vector potential, A,

i~
∂ψ

∂t
=

1

2m

(
p− e

c
A
)2
ψ. (17)

We want to see how close (17) comes to a Fuchsian equation. It becomes one when the

phase transform,

ψ −→ e−(i/~)Etψ, (18)

is introduced into (17) and the Hamiltonian, H, is replaced by H − E, which does not

“produce a trivial, computable phase change in the solution of [(17)]” [17]. The reason why

it is not trivial is because the constant E would bring in higher-order poles in the indicial

equation and introduce an essential singularity into the Schrödinger equation [cf. eqn (44)

below]. As we shall show in the last section, the elimination of E is a necessary condition

to keep all singular points regular in the Schrödinger equation, (17).

The radial Schrödinger equation then reduces to

ψ′′ + Pψ′ +Qψ = 0, (19)

where the prime denotes differentiation with respect to the radial coordinate, r, and

P = −2
ie

~c
A (20)

Q = −
(
ie

~c
A′ +

e2

~2c2
A2

)
. (21)
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With a change in the unknown ψ −→ kψ, (19) becomes

ψ′′ +

(
P + 2

k′

k

)
ψ′ +

(
Q+ P

k′

k
+
k′′

k

)
ψ = 0. (22)

If k satisfies (19), the coefficient of ψ vanishes in (22). Rather, if the coefficient of ψ′ vanishes,

P + 2k′/k = 0, (22) reduces to

ψ′′ + Iψ = 0, (23)

where

I = Q− 1
4P

2 − 1
2P
′ = Q+ P

k′

k
+
k′′

k
, (24)

is half the Schwarzian derivative. Equation (23) is known as the normal form of the equation.

Equations with the same normal form are said to be equivalent, and I is their invari-

ant [8]. However, for the Schrödinger equation, (19), with coefficients (20) and (21), the

invariant (24) vanishes identically. Therefore, (19) is weakly equivalent to ψ′′ = 0 [15],

and there would be no invariant in the Aharonov-Bohm effect. Any function that has a

vanishing Schwarzian derivative must be a linear-fractional transformation. And because a

non-vanishing Schwarzian derivative is curvature [13], we can conclude that (17) is not the

correct equation to derive the Aharonov-Bohm effect [18].

In fact, Aharonov and Bohm [1] consider the wave equation outside the magnetic field

region, [
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

(
∂

∂ϑ
− iα

)2

+ k2

]
ψ = 0, (25)

where k is the wave vector of the incident particle, α = −eφ/hc, and φ is the total magnetic

flux inside the circuit. By introducing the phase transformation

ψ −→ eimϑψ,

in (25) we can select a spherically symmetric solution by setting the magnetic quantum

number m = 0. Equation (25) then becomes the solution found by Tamm which is a Bessel

function for k2 > 0. According to Wu and Yang [18], it has no meaningful solution if k2 ≤ 0.

However, it is precisely the equality that allows (25) to be transformed into the Fuchsian

differential equation,

ψ′′ +
1− (2α)2

4r2
ψ = 0, (26)
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provided 2α < 1. According to Wu and Yang, the origin of this term is a monopole in the

expression for the angular momentum,

L = r× (p− eA)− 2αr

r
,

but the condition `(` + 1) ≥ (2α)2 would prevent the formation of a lune. We will now

show their conclusion that “the monopole does not possess strings of singularities in the

field around it” is inaccurate since analytic continuation about a regular singular point gives

rise to a geometric phase.

Equation (26) is valid about the singular point at the origin as well as the singular point

at infinity. This can easily be shown by substituting r = 1/z in (26) to get

ψ′′ +
2

z
ψ′ +

1− (2α)2

z2
= 0.

Then the substitution ψ → ψ/z, will bring it into the exact same form as (26). This shows

that the fixed points at r = 0 and r =∞ are symmetrical.

The two independent solutions to (26) are:

ψ1 = r
1
2 (1+2α) and ψ2 = r

1
2 (1−2α). (27)

Since (27) is multivalued, one solution would have to be rejected to preserve the single-

valuedness of the Schrödinger wavefunction. The quotient of the two solutions, (27), will

undergo a linear-fractional transformation since any two independent solutions are linear

combinations of any other pair of solutions. Analytic continuation about the origin, or in-

finity, will not give back the solution we started with. So by solving (27) we have found

functions automorphic with respect to a group of rotations. The group tessellates the upper

half-plane, or disc, by lunes, of the form shown in Fig. 3, where r = 0 and r =∞ correspond

to the angular points of the lune.

Two circular arcs that cut out the lune intersect at an angle 2απ. The area of the lune is

4πα. In terms of the phasor, the phase angle would be half this area, while Panacharatnam

gives the phase as the complementary angle. Since we want the phase to vanish with the

magnetic flux intensity, we choose the former and get

δ = 2πα =
2πeφ

hc
=
eφ

~c
=

e

~c

∮
A · dr. (28)

The phase factor,

ψ = e2πiα, (29)
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FIG. 3. Two circular arcs intersect at an angle 2απ

is the change in the wave function during a circuit of the solenoid. Equation (28) says

that when φ is an odd multiple of a fluxon, hc/2e, the two beams (one bypasses the toroidal

magnetic and the other passes through its hole) should exhibit a (maximum) phase difference

of π (mod 2π), i.e.,

2ν + 1

2
2π ≡ π ( mod 2π) ν = 0,±1,±2 . . .

This is what is seen in the interferogram that results from combining the beam with a co-

herent reference beam that avoids the magnetic field [2]. It is seen that integral quantization

of the phase eliminates the phase factor, (29), altogether.

Denote by bα−1c Gauss’ bracket, which indicates the largest integer not exceeding α−1.

Then ε = e2πi/bα
−1c is an elliptic generator with period bα−1c. In other words, there will

be bα−1c distinct branches, or bα−1c ‘steps’ in the ‘spiral staircase’. The different branches

are gn = εng0, where n = 0, 1, 2, . . . , bα−1c − 1 are the winding numbers. Each step can

be regarded as a covering space corresponding to a particular branch of the multivalued

function. In particular, for destructive inference of the beams, bα−1c = 2, so that there is a

single branch, and the surface is simply connected.
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ATTRACTIVE ANGULAR MOMENTUM

Many of the equations of mathematical physics can be transformed into Fuchsian differ-

ential equations at vanishing kinetic energy. Consider the spherical Bessel equation,(
1

r2
d

dr
r2
d

dr
− `(`+ 1)

r2
+ k2

)
ψ = 0, (30)

which can be transformed into (23) where

I = k2 − `(`+ 1)

r2
. (31)

The Bessel equation, (30), has a regular singular point at r = 0, and an essential singularity

at r = ∞. This can be seen by making the substitution z = 1/r, and noting that the

coefficient of ψ has higher-order poles at z = 0 [cf. eqn (51) below].

The indicial equation at the regular singular point, r = 0, has two independent solutions:

ψ1 = r`+1 and ψ2 = r−`. (32)

The second solution ψ2 is ordinarily discarded on the basis that it blows up at the origin.

This makes ψ it singlevalued. The quotient of the two solutions,

s = ψ1/ψ2 = rλ, (33)

has a multivalued nature, and is automorphic with respect to a group of rotations that will

tessellate the half-plane, or disc, with lunes, if and only if k2 = 0. There can be no constant

terms appearing in (31), or the Schwarzian derivative [cf. eqn (37) below].

When k2 6= 0, there will be an essential singularity at r → ∞. We may study this

singularity by making the substitution z = 1/r, and as z → 0, (30) will reduce to

ψ′′ +
2

z
ψ +

k2

z4
ψ = 0. (34)

The solution to (34) gives an essential singularity,

ψ = sin(k/z), (35)

at z = 0 which consists of a pole of infinite order. It is the limit point of two sequences

of zeros, one on the positive real, and the other on the negative real, axis [4]. Since the

integrand of (2) is

f ′(z)

f(z)
= − k

z2
cot

k

z
= −1

z
+

k2

3z3
+

k4

45z5
+ · · · , (36)
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and introducing it into (4) shows that it has a ‘charge’ of −1, a vanishing dipole moment, a

quadrupole moment of k2/3, a hexadecapole moment of k4/45, etc.

The automorphic function, s, has the Schwarzian derivative,

{s, r} =
1− λ2

2r2
= 2I, (37)

only in case of vanishing kinetic energy, k2 = 0, where λ = 2`+1. As we have already shown,

the indicial equations will then be identical about r = 0 and r = ∞, thereby reducing the

second singular point from an essential to a regular one. This is necessary insofar as the

analytic continuation of the solution about the singular point will not give back the solution

that we started with, but, the product of analytic continuations about two singular points

will give back the original solution. In other words, the group of rotations needs, at least, two

generators whose product is the identity. In the case of two singular points, the generators

will be inverses of one another. This is Riemann’s condition for the “periodicity of the

function” [7], and the group generated by these matrices is the ‘monodromy group’, a term

coined by Jordan.

When the two poles are regular, a simply closed circuit in the counterclockwise direction

about r = 0, described by the monodromy matrix,

S0 =

e2πi` 0

0 e−2πi`

 , (38)

must be accompanied by a counterclockwise circuit about the other singular point at r =∞,

S∞ =

e−2πi` 0

0 e2πi`

 , (39)

in order that Riemann’s condition must be fulfilled:

S0S∞ = I, (40)

so that the motions form a group, the monodromy group. Periodicity results in a multivalued

function only for non-integral values of `. Integral values would reduce the monodromy

matrices, (38) and (39), to the identity matrix, and destroy the tessellations of the half-

plane, or disc, by lunes. This is the condition for constructive interference, which is no

longer possible when the singular point at infinity becomes an essential singularity. The

presence of an essential singularity destroys the periodicity with respect to the group.
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The existence of a lune formed from two circular arcs with angle λπ implies that λ ≤ 1,

or, equivalently ` ∈ [−1
2 , 0]. The centripetal repulsion `(`+ 1) has now become ‘centripetal

attraction’, `(`+ 1) < 0.

The Bessel differential equation, (30), thus becomes identical to the Aharonov-Bohm

equation, (26). The automorphic function s = ψ1/ψ2 can be written more generally as

S =
as+ b

cs+ d
, (41)

which gives a conformal representation of the S-lune upon the s-half plane. Inside the lune,

which is the fundamental region, the automorphic function will take on any value only once.

Thus, the linear-fractional transformation, (41), will transform two circles cutting at angle,

λπ, into any two others intersecting at the same angle. This result has been known since

the time of Kirchhoff [10].

Thus, space and angular momentum have switched roles: the former is discontinuous

while the latter is continuous in the interval ` ∈ [−1
2 , 0]. The geometric phase is now half

the area of the lune, δ = (2` + 1)π. For ` = −1
2 the regular and irregular solutions, (32),

coalesce, and the phase vanishes. At the other extreme, ` = 0, and the phase, δ = π, in

which the area of the lune becomes the area of a hemisphere, and the Schwarzian derivative,

(37), vanishes. The differential equation (30) becomes weakly equivalent to ψ′′ = 0 so that

there is no invariant [15], exactly as in the case of the Schrödinger equation (17).

RECONSTRUCTION OF THE SCHRÖDINGER EQUATION

For Fuchsian automorphic functions, accumulation, or limit, points occur on the principal

circle or real axis of the half-plane [6]. Not all points on the boundary need be limit points

of the group. If the automorphic function is not a constant, each limit point of the group

is an essential singularity of the function. The behavior of an automorphic function at

a limit point is analogous to the behavior of the Schrödinger equation in the immediate

neighborhood of the point at infinity. We first establish the form of the essential singularity

in the case of negative kinetic energy, 1 and then show that the Schrödinger equation can be

reduced to Fuchsian form even in the presence of a potential at infinity provided the kinetic

energy vanishes.

1 For positive kinetic energy the essential singularity is given by (35).
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Consider the radial Schrödinger equation for the bound states of the hydrogen atom,

ψ′′ −
[
`(`+ 1)

r2
−
(
γ

r
− 1

4

)]
ψ = 0, (42)

where the parameter γ = 1/krB, and rB is the Bohr radius. As r → 0, (42) becomes

ψ′′ − 1− λ2

r2
ψ = 0, (43)

which has two independent solutions, (32).

As r →∞, (42) reduces to

ψ′′ +
2

z
ψ′ − 1

4z4
ψ = 0, (44)

when the transformation r = 1/z is made. The two independent solutions are

ψ1 = e−1/2z and ψ2 = e1/2z. (45)

On the condition that ψ must remain bounded, as r →∞, or z → 0, the second solution in

(45) is eliminated. The solution to (42) is given as a product of the first solutions in (32)

and (45) multiplied by the associated Laguerre polynomials.

The transcendental function,

f(z) = ψ2/ψ1 = e1/z, (46)

has an essential singularity at z = 0, corresponding to r = ∞. It can be considered as a

limit of a rational function which is the ratio of a pole of order n at z = 0 and a zero of

order n at z = −1/n [4]. The ratio,

lim
n→∞

(z + 1/n)n

zn
= lim

n→∞
(1 + 1/nz)n = e1/z, (47)

has a finite limit coinciding with a transcendental function.

This occurs on the principal circle, or the positive real axis of the half-plane.2 The

essential singularity thus consists of the merger of a pole at infinite order at z = 0 and a

zero of infinite order at r = 0−. Introducing (46) into the multipole moment (4), shows

that the only non-vanishing moment is m = 1 so that the essential singularity has a dipole

moment of −1. This permits us to interpret poles and zero as opposite charges [4].

2 Points at infinity can be transformed to the principal circle by the linear-fractional transformation,

U(z) =
iz + 1

z + i
.

15



If equation (43) has two singular points r = 0 and r =∞ there are no limit points of the

group of motions that separate the plane [6]. By transforming the singular point at infinity

into an essential singularity, where an infinite number of poles will cluster, we introduce

a boundary, either a principal circle or real axis. The transform involves introducing the

kinetic energy which is represented by the last term in (42). The essential singularity has

a dipole moment, which is related to a bound state, such as in the Schrödinger equation

for the hydrogen atom, (42), in contrast to an unbound state as in Bessel’s equation, (30),

which has an infinite number of moments.

Let us look for a solution to (42) of the Fuchsian type, ψ(r) = r`+1ϕ(r). Then ϕ(r) will

be the solution to

ϕ′′ + 2
(`+ 1)

r
ϕ′ +

(γ
r
− 1

4

)
ϕ = 0. (48)

Introducing the Euler operator, D = rd/dr [9], (48) can be reduced to the Fuchsian form:

D(D + λ)ϕ = −r
(
γ − 1

4r
)
ϕ. (49)

The resonances, or roots of the left-hand side of the equation, are 0 and −λ. This conferms

that for small r, the solution should behave as r−λ [cf. eqn (33)]. The stable manifold is

parameterized by γ, the coefficient of the attractive Coulombian potential.

Solving (49) recursively, we get the power expansion

ϕ = r−λ
{

1 +
γ

λ− 1
r +

1

2(λ− 2)

(
γ2

λ− 1
− 1

4

)
r2 + · · ·

}
,

or in terms of our original wavefunction,

ψ = r−`
{

1 +
γ

2`
r +

1

(2`− 1)

(
γ2

2`
− 1

4

)
r2 + · · ·

}
. (50)

The idea of such power series solution is the same as Frobenius’s ‘trick’ of considering

logarithms as limiting cases of powers. Logarithmic solutions are admissible and occur

when the roots of the indicial equation are equal. Equation (50) shows that it is an analytic

function which has a branch pole of order −` at r = 0.

When we apply the same procedure to the fixed point at infinity by setting r = 1/z, we

get

D(D − λ)ϕ = −1

z

(
γ − 1

4z

)
ϕ, (51)
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which is not an equation of the Fuchsian type. At vanishing kinetic energy, (51) can be

reduced to a Fuchsian type of differential equation by a transcendental change of variables,

R = e−1/z.

Introducing two radial coordinates, R0 = R and R1 = R lnR [9], (51) can be brought into

the form:

D (D + λ)ϕ = γ
R1

R0

ϕ, (52)

where the two-space scale operator, D = R1∂/∂R0.

There is an analogy between the essential singularity at infinity of differential equations,

like (30) and (17), and the limit point point of a group, which is also an essential sin-

gularity [6]. The essential singularities of the group are the essential singularities of the

automorphic function. The limit points either lie along the real axis in the half-plane, or on

the principal circle. When an autormorphic function is subjected to linear-fractional substi-

tutions of the group, they will fill the half-plane or principal circle with fundamental regions

that do not overlap and without lacunae. However, in the immediate vicinity of a limit

point, the automorphic function assumes any number of different values. The fundamental

regions tend to cluster in infinite number about points on the principal circle or on the real

axis. Thus, the behavior of the automorphic function at a limit point on the boundary is

analogous to the confluence of two poles in a differential equation to produce an essential

singularity at infinity .
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