SCIENCEDOMAIN international www.sciencedomain.org

SDI FINAL EVALUATION FORM 1.1

PART 1:

Journal Name:	Physical Review & Research International
Manuscript Number:	2013_PRRI_6837
Title of the Manuscript:	Geometric Phase, Curvature, and the Monodromy Group

PART 2:

FINAL EVALUATOR'S comments on revised paper (if any)	Authors' response to final evaluator's comments
The abstract should reflect the aim, methodology, results and conclusion but these	
should not be put as subtitles in the abstract. I just advised you to add more information	
on results. Let it appear as follows.	
The aim of this study is to show that geometric phase is a consequence of curvature in	
non-Euclidean geometries, being related to the areas of spherical and hyperbolic triangles.	
in hyperbolic geometry it is well-known that the angular delicit of a hyperbolic thangle is	
related to wigher folation and morinas precession, whereas in spherical geometry, its	
pon-essential singularities has not been appreciated. It is the aim of this paper to fill this	
lacuna. Fuchsian differential equations with non-essential singularities are solved by a	
power series solution (indicial equation) and the quotient of two solutions will undergo	
linear-fraction transformations which tessellate the half-plane or unit disc with curvilinear	
triangles or lunes depending on the number of singular points. Their inverse	
aremultivalued, periodic, or automorphic, functions. Analytic continuation about a singular	
point does not give back the original solution. Multivaluedness is the cause of geometric	
phase. Examples are: the Pancharatnam phase of beams of polarized light, the Aharonov-	
Bohm effect, the Dirac monopole, and angular momenta with 'centripetal' attraction in the	
case of spherical geometry. These will be compared with non-collinear Lorentzian boosts	
that are responsible for Wigner rotation and Thomas precession in hyperbolic geometry,	
where the angle defect is related to the Euclidean measure of hyperbolic distance of two	
sides of a hyperbolic triangle in velocity space. For a right hyperbolic triangle, the angular	
defect istne angle of parallelism. A finite geometric phase requires non-integral quantum	
humbers, and, thus cannot be associated with particles. By conformal transformation, the	
and polygons which place restrictions on the range of angular momenta. In contrast to	
quantum mechanics, where space is continuous and quantum numbers discrete, the space	
is now discrete, made up of tessellations which are repetitions of the fundamental region	
without lacunae and without overlap, and the interval of the quantum numbers is	
continuous. Many of the equations of mathematic physics can be reduced to second-order	
Fuchsian equations with real coefficients in the limit of vanishing kinetic energy where	
essential singularities are reduced to simple poles. For only then will the solutions to the	
differential equations be rational functions in order that the covering group will be cyclic,	
and the covering space will be a 'spiral staircase, like the different leaves of a Riemann	
surface.	

Note: Anonymous Reviewer