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ABSTRACT15

16
Electrical machines are critical components in industrial processes. A motor failure may yield
an unexpected interruption at the industrial plant, with consequences in costs, product
quality, and safety. To determine the conditions of each part of motor, various testing and
monitoring methods have been developed. In this paper, a review on effective fault
indicators and condition monitoring methods of rotating electrical machines has been
accomplished. Fault detection methods divided to four groups: electrical, mechanical,
chemical and thermal indicators. Some fault detection methods based on electrical
symptoms like stator current, voltage, their combination or spectrum discussed in electrical
group. In second branch, mechanical symptoms like torque, vibration and so on used for
condition monitoring. Third group, chemical indicators, assigned to some chemical
parameters of materials like oil characteristic or wear and debris in oil analysis. In last group,
thermal symptoms in rotating electrical machines will be spoken. Between all methods, some
of them are more known like vibration and some of them are recently added like motor
current signature analysis (MCSA). Nowadays, combined methods and methods used
artificial intelligence (AI) in condition monitoring are more popular. In every group, the fault
detection method and the faults that can be detected have been mentioned. Mathematical
equations of some new signal processing method have been discussed in literature
presented in appendix.
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1. INTRODUCTION21
22

Fault diagnosis and condition monitoring have been studied in the recent decade to prevent23
costly interruptions due to motor faults and recognize faulty conditions as soon as possible24
[1–7]. Electrical motors are subjected to faults which may redound to secondary faults. The25
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sources of motor faults may be internal, external or due to environmental conditions. Internal26
faults can be classified with reference to their origin.27
Internal faults can be classified with their outbreak location: stator or rotor. Common28
machine faults in rotor according to [8] are:29
1) Bearing failure;30
2) Rotor broken bars;31
3) Rotor body failure;32
4) Bearing misalignment;33
5) Rotor misalignment;34
6) Bearing loss of lubrication;35
7) Rotor mechanical or thermal unbalanced;36
And common faults become apparent in stator as categorized in [8] are:37
1) Frame vibration;38
2) Stator earth faults;39
3) Damage of insulation;40
4) Stator turn-to-turn faults;41
5) Stator phase- to- phase faults;42
6) Displacement of conductors;43
7) Failure of electrical connections;44
These failures can be detected with several procedures. In this paper, they are discussed by45
their detection method and parameters will be measured to four groups.46

47
2. FAULT DETECTION METHODS48

49
There are several indicators for faulty conditions of rotating electrical machines help us to50
distinguish machine conditions. In this paper, fault detection methods persuaded by their51
fault indicators. So condition monitoring method can be analyzed in four groups as52
presented in Fig. 1.53

54

55
56

Fig. 1. Fault diagnosis methods57
58
59
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2.1 Electrical analysis60
61

Some of the electrical faulty condition symptoms are motor current signature, voltage, flux,62
power and so on. Probable faults can be detected by comparison between electrical signals63
in healthy and unknown conditions.64
Some of the electrical methods are based on signal injection and response analysis. For65
instance, a method based on signal injection with high-frequency proposed in [9] for fault66
detection in closed-loop drives, but it’s difficult to implement for many applications due to67
invasiveness and hardware limitations.68
Akin et al. in [10] reported that the reference frame theory directly added into the main motor69
control subroutine in DSP program can successfully be applied to real-time fault diagnosis of70
electric machinery systems to find the magnitude and phase quantities of fault signatures71
even though in nonideal conditions such as offset, unbalance, etc.72
In the rated rotor flux test by applying an ac voltage source across each side of the shaft,73
high shaft current and yoke flux have been utilized. This induces circulating current between74
the rotor bars and shaft, and the current or flux of each bar is indirectly monitored using iron75
filings/magnetic viewer or a thermal imaging camera. The influence of a cracked or broken76
bar or shorted rotor laminations can be observed by this test [11]. These methods are being77
done under standstill condition and don’t seem efficient for online condition monitoring.78
An automated technique for monitoring of rotor condition of voltage source inverter-fed79
induction machines at standstill has been proposed in [11]. In this algorithm, the motor is80
excited with a set of pulsating fields at a number of angular positions for observing the81
change in the impedance pattern for broken bar detection. This technique can be performed82
without any extra hardware but it’s still an offline test.83

84
2.1.1. Motor Current Signature Analysis (MCSA)85

MCSA is one of the most popular approaches since it provides sensor less diagnosis of rotor86
and bearing problems [11, 12, 13]. MCSA requires the measurement and manipulation of87
lengthy steady-state data and an accurate measurement/estimate of the rotor speed for88
obtaining a reliable and high-resolution assessment but MCSA is not so effective for89
applications where the load constantly changes.90
The prior MCSA techniques assume stationary and high SNR for signal. The nonstationary91
of stator current is accommodated by the commonly used windowing techniques [14]. The92
highly transient and dynamic nature of the induction motor stator current during fault93
conditions demand analysis through algorithms and techniques fit to analyze nonstationary94
and nonlocalized signals, such as wavelet transform or other time-frequency techniques.95
The availability of the advanced signal processing tools, such as higher order spectrum96
analysis [15], high-resolution or subspace methods [16] and wavelet analysis [17,18] have97
revolutionized the signal processing for fault detection in electrical motors.98
MCSA usually has been attempted looking at fs)21(  and fs)21(  frequencies, lower99
sideband (LSB), and upper sideband (USB), which s is slip and f is main frequency [19].100
The sideband amplitudes are affected by load level and power rating, constructive details,101
and by manufacturing asymmetries [20].102
Because of the vicinity of signal main frequency to produced components and sidebands,103
broken bar detection may be difficult by this method [21]. Also, this problem exists under low104
slip operation. MCSA-based online rotor fault detection is not very effective since the current105
regulator masks the fault signatures in the current [22-24]. In addition, online monitoring106
techniques can fail if the operating frequency constantly changes due to adjustable speed107
operation. In [23,24], spectrum analysis of variable speed controller was proposed for rotor108
fault detection in field-oriented drives, but the methods can only be applied for a specific109
control scheme and are strongly influenced by controller parameters [25].110
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In [19] some new fault indicators for bar-breakage detection are exposed based on the111
sidebands of phase-current upper harmonics; the ratios

f
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I
5

)27(  and
f

fs
I

I
7
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of such indicators, and they are independent on load torque and drive inertia. This method113
has low independence with respect to machine parameters and has linear dependence on114
fault gravity.115
Jung et al. in [26] conducted an advanced online diagnosis system using MCSA and made116
up of the optimal slip-estimation algorithm, the proper sample selection algorithm, and the117
frequency auto search algorithm for more productivity.118
In [27] have been compared different fault diagnosis methods like three phase current119
vector, the instantaneous torque, and the outer magnetic field. Finally, it’s declared that120
MCSA can be the best method for diagnosis the rotor faults.121
As a basic tool, various reference-frame-theory-based applications are reported in the recent122
studies, like finding deviation in an actual Concordia pattern used to determine the types and123
magnitude of faults in drive systems and stator, respectively [28, 29], obtaining negative-124
sequence stator-fault-related indices from the line current [30], and detecting negative-125
frequency rotor asymmetry signatures at standstill based on complex fault signature vectors126
[31].127
Time-frequency analysis has been investigated vastly in recent years but its complexity and128
heavy hardware requirements are limitations for simple low-cost drive systems [22].129
There are several ways for data comparison in signal processing like Kolmogorov–Smirnov130
(KS) technique, Plateau algorithm, Holf–Winters (HW) technique and Mark–Burgess (MB)131
technique. If two time data series or distributions are at a significant variance the KS132
technique [32, 33], a nonparametric and distribution-free technique [34] is best choice. They133
are being used for comparison motor current signal with reference signal. The reference134
signal is motor current signal in healthy condition. The KS parameter is evaluated by taking135
the vertical difference between the two data distributions under test into consideration. The136
Plateau algorithm is apposite for handling long-term deviations and seems not suitable for137
condition monitoring. Holf–Winters (HW) algorithm is a forecasting technique needs a138
spontaneously event detection procedure, and Mark–Burgess (MB) technique is intended for139
detecting real-time changes. The KS technique is the best known of several distribution-free140
techniques that test general differences between data distributions. It is more valuable for141
applications, which are responsive to data distributions [14].142

143
2.1.1.1. Order Tracking Method144

145
Similar to vibration analysis in nonstationary condition or in variable speed motors instead of146
tracking absolute frequency, frequencies can be explained by multiple of a base frequency147
that is usually power source frequency. For instance this method in [35] used for detection148
inter-turn in Permanent Magnet Synchronous Motor (PMSM). In [35] by applying a Vold-149
Kalman Filter (VKF) [36] tried to use order tracking method for selected voltage and current150
harmonics and detect inter-turn in PMSM. Vold-Kalman Filter Order tracking (VKF-OT)151
beneficiary is that allows extracting both the amplitude and phase of the analyzed orders at152
each time instant directly from the original data. Furthermore, its tracking performance does153
not depend on the slew rate (rotational speed rate of change) [35] and make order tracking154
on noisy signal easy.155

156
2.1.1.2. Time and Frequency Domain Analysis157

158
There are some restrictions of the Fourier transform, for example it cannot be used for non159
periodic or nonstationary signals; otherwise, the resulting FFT spectrum will make little160
physical sense [17, 37, 38].161
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However, for machinery operating under unsteady conditions, because of variation in the162
rotating speed and operating load, even if the machine is in the normal state, the spectrum163
of the vibration signal is always altering in sampling time. When a nonstationary signal is164
transformed into the frequency domain, most of the information about the transient165
components of the signal will be lost [39], hence, a hybrid method has been proposed in166
[40].167
Time-frequency analysis [41] methods can simultaneously generate both time and frequency168
information from a signal. Therefore, in later studies, time-frequency analysis methods are169
widely used to detect faults since they can determine not only the time of occurrence but170
also the frequency ranges of the location [42]. Time-frequency methods mostly use in171
vibration analysis and MCSA. There are several time-frequency analysis methods, such as172
the Short-Time Fourier Transform (STFT), Wavelet Analysis (WA), and the Wigner-Ville173
Distribution (WVD), which may be used for condition monitoring of rotating machinery in174
transient and unsteady operating conditions. Those time-frequency techniques have been175
applied to fault diagnosis and condition monitoring in practical plant machinery [18, 43 and176
44]. Also Hilbert transform and Zhao–Atlas–Marks distribution in [45] applied to fault177
diagnosis of motors in nonstationary conditions but this method is not as common as prior178
methods.179
Misalignment detection using STFT and WA signal processing techniques is shown in Fig. 2180
[25].181

182

183
(a) (b)184

Fig.2. Misalignment detection using STFT and the wavelet technique :(a) STFT. (b)185
STFT and wavelet technique [3].186

187
In the field of machinery fault monitoring, Wavelet Analysis (WA) has been used widely in188
the diagnosis of rolling bearings, gearbox and compressors. This technique also has been189
used for feature extraction and noise cancellation of the various signals [18, 43-46].190
In [18, 43 and 47], a fault diagnostic technique for rotating machinery is investigated based191
on discrete wavelet transform. In Reference [48] a time-averaged WA according to Morlet192
continues wavelet used for fault diagnosis of a gear set. Also, reference [49] presents a193
combination of Continuous Wavelet Transform (CWT) and Kolmogorov-Smirnov test for fault194
detection of the bearings and gear box in transient conditions. In [46, 50] CWT is used for195
extract the features of roller bearing fault signals. Reference [51] used CWT for fault signal196
diagnosis in an internal combustion engine.197
In [52], the application of the Wigner-Ville distribution is reported to detect a broken tooth in a198
spur gear. Reference [53] shows that the WVD can be applied to the description of machine199
conditions and it is an effective method in machinery fault diagnosis. Reference [44] applies200
a PWVD to identifying the influence of the fluctuating load conditions for gearbox. A Digital201
Signal Processing (DSP) implementation is presented in [54] to detect mechanical load202
faults in induction motors during speed transients based on WVD and stator current analysis.203

204
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2.1.2. Flux Monitoring205
206

Magnetic flux can be a fault indicator and monitored both inside the machine (search coils)207
or outside (axial coils). Coil installation and noisy spectra are the main difficulties [19]. One208
of the most applications of this algorithm is fault detection in rotor cage. The estimated rotor209
flux in [24] suggested for the diagnosis of rotor faults in vector-controlled drives. In [84]210
Dorell et al. showed a relation between air gap eccentricity and air gap flux and vibration211
signals.212
Cruz et al. in [55] presented an algorithm for diagnosis of rotor faults which starts with the213
measurement of the amplitude of the rotor flux oscillations. It’s showed that the ratio214
between dsi and the average value of qsi , current changes in d and q axis respectively,215
gives the degree of asymmetry of the motor or the number of adjacent broken bars, if the216
total number of rotor bars is known. But this algorithm needs some additional modules for217
calculating the current average values and tracks the amplitude of currents.218

219
2.1.3. Motor Power Monitoring220

221
Motor power signature analysis is focused on the detection of double-slip frequencies222
present in the electric input power spectrum [56] similar to MCSA. These harmonics are223
evaluated with respect to the average power (dc component), thus obtaining some fault224
severity factors. In addition, this method needs to acquire both currents and voltages. Also225
the dependence on the drive inertia is another limitation of this fault indicator [57]. Bellini et226
al. in [57] tried to detect rotor broken bar by this approach.227

228
2.1.4. Partial Discharge (PD) Monitoring229

230
This test mainly used in high voltage motors and generator stator windings. By using Partial231
Discharge Analyzer (PDA) sensors placed within the winding or at the winding terminals,232
stator winding PD pulses will separate from electrical interference (usually harmless) based233
on pulse arrival time or pulse shape and easily can be detected [58]. PD is a symptom of234
many stator winding insulation failure mechanisms. IEEE 1434-2000 reviews all types of PD235
measurement methods used in rotating machines [59].236
There are several discharge monitoring techniques. Among these methods RF coupling237
method, capacitive coupling method and broad-band RF method [60] are more known. A238
Radio Frequency Current Transformer (RFCT) installed on neutral point of winding can239
detect Radio Interference Frequency Intensity (RIFI) caused by PD. Arcs occurred at any240
location cause RF current flow into the neutral point because of its low potential. The RIFI241
meter had a narrow bandwidth of about 10 kHz centered at 1MHz [60]. By using a242
frequency-based method with low power hardware, it is possible to take advantage of the RF243
technique without the need for wideband signal capture and its associated overheads [61].244
Second method use specialized pulse height analyzer with bandwidth 80 MHz. In this245
approach connection to the winding is made through coupling capacitors at the machine line246
terminals [60]. Initially, the capacitors were connected to the machine during an outage, but247
latterly described how the capacitors could be permanently built into the phase rings of the248
machine and the measurements can be made without service interruption. In [62] showed249
that the pulse has a rise time (defined as 10%–90% of peak) of 4 ns and the frequency250
content of this pulse extends to over 100 MHz, thus, an 80-pF capacitor installed on high-251
voltage machine terminals can be used as the coupling device.252
It has been shown that serious PD, sparking or arcing, has faster rise-times than the253
background corona and PD activity, and therefore produce a much higher bandwidth of254
electromagnetic energy, up to 350 MHz. If this energy is detected, at as high a frequency as255
possible, the ratio of damaging discharge signal to background noise is increased.256
Frequencies above 0.4 MHz do not propagate from the discharge place along the winding,257
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as with the lower frequency techniques, but by radiation from the winding [60]. This radiation258
can be detected by an RF aerial located inside the enclosure of the machine or outside,259
close to an aperture in it and it is basic concepts of broad-band RF monitoring method.260

261
2.1.5. Voltage spectrum analysis262

263
The Growler test and rated rotor flux test with high current ac excitation are another264
commonly used offline tests for rotor testing [63-67]. A Growler is an electrical device used265
for testing insulation of a motor for shorted coils with an iron core and excited by AC current266
for detection insulation problem.267
The method consists of inserting an auxiliary small winding which is a coil “sneak’’ that268
forms an angle 0 with the A stator phase as shown in Fig. 3 [68]. This coil has no269
conductive contact with the other phases but it is mutually coupled with all the other circuits270
on both the stator and rotor sides [69].271

272

273
Fig. 3. Auxiliary winding emplacement [69]274

275
Mirimani et al. in [70] investigated the effect of static eccentricity on the back EMF of an Axial276
Flux Permanent magnet (AFPM) through 3D-FEM (Finite Element Method) as shown in Fig.277
4 [68]. The back EMF of the four coils of one phase is obtained to propose a suitable278
criterion for precise eccentricity fault detection.279

280

281
Fig. 4. 3D-FEM model of the axial flux permanent magnet motor [68]282

283



* Tel.: +98 21 73223500;
E-mail address: sm_mousavi@iust.ac.ir.

In the case of a healthy motor the auxiliary winding voltage Park components spectra284
contain one peak at the motor main supply frequency. The Lissajous curve is an ellipse as285
shown in Fig. 5 [71]. In the different cases of voltage unbalances, the Lissajous curves are286
also ellipses that have different angles as shown in Fig. 6 [71]. In comparison with damaged287
and non defected motor, the value of their superior and inferior radiuses will increase [68].288
It is also well known that the effects of stator winding inter-turn faults may be detected by289
monitoring the Zero-Sequence Voltage Component (ZSVC) [72,73]. This method benefit is290
that it’s separate from motor drive against some other methods like MCSA, but it needs to291
access to stator winding neural point. In [35] attempted to detect inter-turn fault in PMSM by292
first harmonic amplitude of ZSVC and stator currents third harmonic. Briz et al. [74] used293
voltage and current zero-sequence components for recognition of faults in induction294
machine.295

296

297
298

Fig. 5. Park’s Currents Vector of a healthy motor [71]299
300
301

302
Fig.6. Park’s Currents Vector for a motor with coils in shortcut [71]303

304
2.2. Mechanical Analysis305

306
There are several mechanical symptoms for faulty condition of electrical machine, such as:307
vibration, noise, torque and so on.308

309
310
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2.2.1. Vibration Monitoring311
312

As almost 80 percent of common rotating equipments problems are related to misalignment313
and unbalance, vibration analysis is an important tool that can be used to eliminate recurring314
problems [75, 76]. In many cases, the overall vibration level of the machine is sufficient to315
diagnose mechanical failures [77, 78], but in [2] showed that this is not an efficient method316
for all faults. In [79] showed that the electromagnetic force is the most sensitive indicator of317
air gap eccentricity. Therefore identifiable signatures should be found in the vibration pattern318
of rotating electrical machines. The only drawback of this indicator is its low accessibility.319
Nevertheless, since vibrations are the consequences of the forces on the machine structure,320
identifiable signatures should be found in the vibration pattern. The measured vibration and321
associated current harmonics are closely correlated [14].322
Literature survey [80-83] shows that most of the bearing fault diagnoses are based on323
vibration analyses like wavelet transform and Hilbert–Huang transforms or current-based324
analysis.325
In [84] illustrated how eccentricity faults can be identified from vibration analysis using326
condition monitoring techniques.327
The overall RMS of vibration can be calculated by different definition based on the spectrum328
in frequency domain across all of the effective frequency range, i.e., from DC to maximum329
analysis frequency range. One of the suggested formulas is [85]:330

BW

fpower
overallRMS

sf






45.0

0
)(

(1)
331

In above equation, BW is noise power bandwidth of window, f is analysis frequency band332

and sf is sampling frequency band.333
Another special frequency analysis is Cepstrum that defined:334

221 )})}({{log()( tfFFC 
(2)

335

This can be used for examining behavior of gearboxes [21].336
337

2.2.1.1. Frequency-Domain Analysis338
339

The most common tools of vibration monitoring in industrial plants is frequency analysis.340
Finley et al. [86] compiled a resume table with a comprehensive list of electrically and341
mechanically induced components in the vibration pattern. Their analysis is based on342
analytical formulas.343
In [87], a strategy presented based on monitoring slot passing frequencies in high frequency344
vibration components. Their presented analysis was based on rotating wave approach345
whereby the magnetic flux waves in the air gap are taken as the product of permeance and346
Magneto Motive Force (MMF).347
Vibration pattern for the healthy motor and with dynamic eccentricity has been compared in348
[88] as shown in Fig. 7. In paper [88] has been showed that the low frequency components349
of vibration (measured by accelerometers fixed on the outer casing of motor) can be used as350
signatures for the detection of eccentricity in induction motors.351

352
2.2.1.2. Order Tracking Methods353

354
The advantages of order tracking over the other vibration techniques mainly lie in analyzing355
non stationery noise and vibrations which will vary in frequency and amplitude with the356
rotation of a reference shaft. The analysis of non stationery conditions needs additional357
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information, as compared to steady state conditions, for an accurate result to be obtained.358
Order domain analysis relates the vibration signal to the rotating speed of the shaft, instead359
of an absolute frequency base [21].360

361

362
Fig. 7. Vibration pattern for healthy motor (top) and with 37% dynamic eccentricity363

(bottom), 1.9% and motor fed at 100Hz in both cases [89]364
365

2.2.2. Noise Monitoring366
367

Measuring and analyzing the acoustic noise spectrum [90] is another method of condition368
monitoring in rotating electrical machinery which require special consideration. Acoustic369
noise emitted from air gap can be an indicator of probably eccentricity in induction motor.370
But, the application of noise measurement in a noisy environment like a plant is not so371
efficient. In [89] an approach for air gap eccentricity detection presented and a test carried372
out in an anechoic chamber. Slot harmonics in the acoustic noise spectra were introduced373
as an indicator of static eccentricity. Li and He [1] used Hilbert-Huang Transform (HHT) for374
analyzing nonstationary noise signals incorporates a threshold-based denoising technique to375
increase the SNR for health monitoring in electrical machines.376
Reference [91] examines whether acoustic signal can be used effectively to detect the377
various local faults in gearboxes using the smoothed Pseudo Winger-Ville Distribution378
(PWVD).379
Scanlon et al. [92] showed that by extraction hide information of acoustic noise signal can380
predict machinery resident life time.381
Defects in the roller element bearings cause particular frequencies to be excited. These382
frequencies can be detected in acoustic noise spectrum. In [93], an automated approach to383
degradation analysis is proposed that uses the acoustic noise signal from a rotating machine384
to determine the remaining useful life of the machines.385

386
2.2.3. Torque Monitoring387

388
By comparison between the estimated torque from the model and measured torque can389
detect some faults in electrical motors, so it’s necessary to have a good model and an390
algorithm to be aware of air gap real torque. The electromagnetic torque estimation has391
been commonly used in electrical drives to control the torque and the rotor speed of AC392
electrical machines. So, it is needed to compute stator flux or rotor flux exactly in which the393
accuracy and the robustness are directly related to electrical machine parameters [94]. In394
addition, the flux estimation needs to have knowledge about only two parameters of these395
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three parameters: stator phase voltages, currents, and the rotor speed by using an396
appropriate model [95].397
In reference [96] torque estimation beside torsional vibration analysis used for gearbox fault398
detection in traction system and by measuring the torque their work has been validated.399
Guzinski et al. in [97] for identification problems related to transmission system in High400
Speed Train (HST) used the load torque observer without adding any additional sensors.401
The presented observer system was able to detect the meshing frequency of the test bench402
which has very small amplitude in the tested healthy gear.403
From the input terminals, the instantaneous power includes the charging and discharging404
energy in the windings. Therefore, the instantaneous power cannot represent the405
instantaneous torque. From the output terminals, the rotor, shaft and the mechanical load of406
a rotating machine constitute a torsional spring system. This torsional spring system has its407
own natural frequency [98]. The attenuation of the components of the air gap torque408
transmitted through the torsional spring system is different for different harmonic orders of409
torque components [99, 100].410
The locked-rotor torque and breakdown torque will decrease in unbalanced voltage situation.411
If the unbalanced voltage was extremely severe, the torque might not be adequate for the412
application although the full-load speed is reduced slightly when the motor operates with413
unbalanced voltages [101] and it can be an indicator of unbalance voltage condition.414

415
2.3. Chemical Indicators416

417
Insulation degradation can be monitored chemically by the presence of special matter in the418
coolant gas or by detection some particular gases such as ozone, carbon monoxide or even419
more complex hydrocarbons, like acetylene and ethylene [60]. Electrical discharge activity,420
heat and some other electrical and mechanical faults may lead to insulation degradation.421
The product materials can be gas, liquid or solid. Each of them needs a particular detection422
method.423
An ion chamber was designed in [102] to detect the products of heated insulation and it was424
applied to a large turbo generator.425
The metal wear debris in oil can be classified ferromagnetic wear debris and426
unferromagnetic wear debris. When wear debris is in the coil of inductive wear debris427
sensor, the magnetic field distribution of the coil is changed, and then the equivalent428
inductance of the coil was changed. This technique for metal wear debris in oil is a429
noncontacting and quick method and can be off-line and on-line [103].430
In addition oil particle can be detected for fault diagnosis. With modern diagnostic tools, oil431
analysis is used to monitor the condition of equipment as well as condition of a lubricant.432
Various faults such as misalignment, unbalance, overload or accelerated heating condition433
may lead to wearing in electrical machinery. The different types of wear are: abrasive wear,434
adhesive wear, cavitations, corrosive wear, cutting wear, fatigue wear and sliding wear [75].435
Some types of oil analyses are: viscosity, solids content, water content, total acid number,436
total base number and flash point [75].437
As mentioned, wear particles are the prime indicators of the machine’s health. There are438
many techniques to evaluate the type and concentration of such particles. The techniques439
include: spectrometric analysis, infrared analysis, X-ray fluorescence (XRF) spectroscopy,440
particle counting, direct reading ferrography and analytical ferrography [75].441

442
2.3.1. Spectrometric analysis443

444
This is one of the main techniques that typically reported in PPM (Parts Per Million). This445
technique generally monitors the smaller particles and large wear metal particles present in446
the oil will not be detected.447
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For larger wear particles, there are available techniques such as: acid digestion method,448
microwave digestion method, direct read (DR) ferrography and Rotrode filter spectroscopy449
(RFS).450

451
2.3.2. Infrared analysis452

453
Specific groups of atoms called functional groups by this method can be detected. An454
appropriate wavelength is directed at the sample being analyzed, and the amount of energy455
absorbed by the sample is measured. The amount of absorbed energy is an indication of the456
extent of presence for that particular functional group in the sample. It is hence possible to457
quantify the results. This analysis was first introduced in 1979. After several years a new458
method extracted from this analysis named Fourier Transform-Infrared Analysis (FT-IR). By459
this technique, a beam of light is focused through a film of used oil and the wavelengths are460
then compared to light transmitted through new oil of the same type. The differences in461
readings provide information with respect to the degradation of the used oil [75].462

463
464

2.3.3. Wear Particle Analysis (WPA) or Ferrography465
466

Ferrography or WPA utilizes microscopic analysis to evaluate the particles type, shape, size467
and quantity. The components specifications allow a process of elimination in which the468
abnormal wear can be identified. This analysis is used in two ways: A routine monitoring and469
trending of the solid contents, Observing and analyzing the type of wears [75,104].470

471
2.3.4. XRF (X-ray fluorescence) spectroscopy472

473
The XRF spectroscopy entails the excitation of electrons from their orbits. This leads to474
emission of UV rays with characteristic frequencies, which can be analyzed. During Rotrode475
atomic emission spectroscopy, an electrical discharge produces plasma, causing thermal476
emission. When the atoms return to the normal state, the excess energy is emitted as light.477
Each element emits light at different frequencies on the electromagnetic spectrum. The478
amount of light emitted at a given frequency corresponds to the concentration of the element479
present in the sample. Also atoms can be excited by bombardment of X-rays [75].480

481
2.3.5. Image Processing482
The image processing and computer vision system reveals more information in the form of483
quantitative data not revealed by the human eye. This technique is used to collect484
quantitative information from wear particle images. Image analysis system is developed to485
process and store the information of particle shape and edge detail features. In [105]486
particles have been defined as regular, irregular, circular and elongated. So, an image487
processing technique is applied for analyzing wear debris.488

489
2.4. Thermal Monitoring490

491
Due to thermal limitation of various parts of rotating electrical machines such as insulations,492
coil and so on, it’s necessary to have a good idea about machine parts temperature.493
Thermal monitoring for electrical machines has two aspects, measuring the temperature and494
thermal modeling, which each one of them has been illustrated shortly.495
Also recently a new wireless sensor for bearing temperature monitoring presented [106].496
This sensor is a combination of a ring-shaped permanent magnet and a Hall Effect sensor497
that detect variation in magnetic field because of growing in temperature.498

499
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2.4.1. Temperature Measurement500
501

There are three main approaches for temperature measurement in electrical machines: 1)502
Measuring local point temperatures by embedded temperature detectors (ETD) or resistance503
temperature detectors (RTD); 2) Using thermal images, fed with suitable variables, to504
monitor the temperature of the perceived hottest spot in the machine; 3) Measuring505
distributed temperatures of the machine or bulk temperatures of the coolant fluid [60].506
These demonstrate the fundamental difficulty of temperature monitoring; the conflict507
between easily made point measurements, which give only local information, and bulk508
measurements that are more difficult and run the risk of overlooking local hot-spots.509
Choosing location of settling detectors requires careful consideration during specification.510
Bulk measurement can be found from the measurement of the internal and external coolant511
temperature rises, obtained from thermocouples located.512
Milic and Srechovic in [107] presented a new non-contact measurement system for hotspot513
and bearing fault detection in railway traction system (RTS).514
Of course, due to rotating parts in electrical motors, these methods are not efficient and515
thermal modeling is inevitable.516

517
2.4.2. Thermal Modeling518

519
Generally, thermal models of electric machines are classified into two categories [98,108]:520
1) Finite Element Analysis (FEA) based model521
2) Lumped Parameter (LP) thermal model522
Finite Element Method (FEM) or Finite Difference Method (FDM) tools have traditionally523
been used to model the thermal performance of electric machines. Their applications have524
been limited only to small sectors of the stator and rotor and have not shown full-scale525
simulation for motors with complicated geometry. The accuracy of model is generally526
dependent on the number of thermally homogenous bodies used in model [109, 110]. By this527
work, researcher may simplify the complicated geometry and shorten computational time for528
constructing elements and calculating large system matrices.529
On the other hand lumped parameter equivalent thermal circuit is easy to solve and gives a530
good overall view of the temperature rise in different parts of the machine without much531
computational time [111]. Chowdhury claimed that the lumped parameter thermal equivalent532
circuit proposed in [112] is easy to visualize as all the parameters are directly derived from533
the machine geometry. Boglietti et al. [108] compared the LP and FEA for thermal modeling534
of electrical machines.535
There are two ways for extraction parameters of lumped parameter model. The first one is536
by using comprehensive knowledge of the motors, physical dimensions and construction537
materials. The second one is to identify the parameters from extensive temperature538
measurement at different locations in the motor explained in previous session. Even though539
an electric machine is made up of various materials that have different characteristics, the540
machine can be assumed to consist of several thermally homogenous lumped bodies [98].541
For example, a simplified model of an induction model and a PMSM consisting of two542
lumped thermal bodies are presented in [113, 114]. Likewise in [115], Milanfar and Lang543
developed a thermal model of electric machine to estimate the temperature of the motor and544
to identify faults like turn-to-turn faults and bearing faults.545
A time-domain lumped thermal model of an induction motor obtained in [116]. The546
temperature distribution and the energy destruction are shown in Fig. 8.547
Nategh et al. in [117] presented a lumped parameter thermal model for a permanent-magnet548
assisted synchronous reluctance machine (PMaSRM) developed for propulsion in a hybrid549
electric vehicle. They divided the stator slot into a number of elliptical copper and550
impregnation layers and modeled stator winding by some approximation.551

552
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553
(a)554

555
(b)556

Fig. 8. Thermal model of an induction motor in the flow loop 3 h after startup. The557
temperature distribution is shown in (a), and the energy destruction is shown in (b)558

[116]559
560

Jankowski et al. [116] described the development of a time-dependent lumped-parameter561
thermal model of an induction motor, and showed that how this thermal model can be used562
to minimize the internal temperature during operation.563
Kolondzovski et al. in [118] discussed about thermal issues of different types of electric564
motors and different rotor types. Similarly, EL-Refaie et al. in [119] presented multibarrier565
interior permanent magnet machines lumped parameter model.566
Idoughy et al. [120] proved that the analytical techniques may risk underestimating the567
hotspot winding temperature, especially when the fill factor is below 0.3. In addition, the568
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temperature variation in the axial direction is not considered and hotspot temperatures often569
arise in the end windings.570
In [121,122] it’s claimed that they can calculate rotor and stator respectively under the571
steady state and transient steady by off-line experiment and their model can respond to572
changes in the cooling conditions. However, their models are generally sensitive to unknown573
machine parameters and their variation. Also, by DC signal injection thermal parameter of574
electrical machines components can be achieved [123,124]. This method applied for575
induction motors fed by closed-loop inverter drives in [125].576

577
3. MODEL BASED & AI-BASED METHODS578

579
A model-based fault monitoring method presented in [126] for variable speed drives without580
frequency analysis. Nowadays, AI-based which use fuzzy logic, neural network, particle581
swarm optimization [127] and so on are so popular for researchers. Some of them are582
explained in this paper.583

584
3.1. Artificial Neural Network585

586
Nejjari et al. in [128] used learning Park’s vector pattern based on artificial neural network to587
discern healthy and faulty patterns. Also, Wang et al. in [129] used combination of these two588
algorithms for condition monitoring of rolling bearings.589
Tag Eldin et al. [130] used Artificial Neural Network and applied result of the RMS590
measurement of stator voltages, currents and motor speed to train a neural network to591
monitor and diagnosis external motor faults.592
Asiri [131] decided to detect six different types of PD using neural networks and classify593
different types of PD according to the location of PD activity.594

595
3.2. Fuzzy logic596

597
The fuzzy logic tool provides a technique to deal with imprecision and recently attracted598
researchers attention for different applications like fault diagnosis. The utility of fuzzy sets599
lies in their ability to model uncertain and vague data. Fuzziness in a fuzzy set is600
characterized by its membership functions [132].601
An extraction method based on the Relative Crossing Information (RCI) in [133] proposed for602
condition monitoring of a machine under the variable rotating speed, by which the603
instantaneous feature spectrum can be automatically extracted from the time-frequency604
distribution of the fault signal. The performance of this approach is evaluated using three605
time-frequency techniques, namely STFT, WA, PWVD and finally using a sequential fuzzy606
diagnosis method.607
Reference [134] claimed that using fuzzy sets and uncertainty phenomena with possibility608
theory may help in fault diagnosis of satellite applications. A combination of neural network609
and fuzzy logic used in [129] for condition monitoring of rolling bearings. Also, [135]610
propounds an intelligent condition diagnosis method for rotating machinery developed using611
least squares mapping (LSM) and a fuzzy neural network. In [133], possibility theory is also612
applied to combine with PWVD technique for fault diagnosis.613

614
4. CONCLUSIONS615

616
Condition monitoring methods for rotating electrical machines have been surveyed in four617
groups. These groups consisted of: electrical analysis, mechanical analysis, chemical618
analysis and thermal analysis. In each group, there are several symptoms that faulty619
condition in machines can be detected by them.620
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Methods based on signal injection seem profit for fault detection in closed-loop drives, but621
it’s difficult to implement for many applications due to invasiveness and hardware limitations.622
MCSA, the most popular technique, provides sensor less diagnosis of some motor problems623
but it’s not so effective for applications where the load constantly changes. Time-frequency624
analysis has been investigated vastly in recent years but its complexity and heavy hardware625
requirements are limitations for simple low-cost drive systems.626
Motor power analysis because of need to both currents and voltages simultaneously and627
dependence on the drive inertia has some limitation. PD monitoring mainly used in high628
voltage motors and generator stator windings. Most of recurring problems in rotating629
machinery like misalignments can be detected by vibration analysis. The measured vibration630
and associated current harmonics are closely correlated. By detection ozone, carbon631
monoxide and others in the coolant gas or oil analysis, some faults like insulation632
degradation can be detected easily. Also thermal measurement and thermal modeling are633
introduced as efficient tools for motors condition monitoring. Finally, AI- based algorithms634
combined of one or more explained methods were studied.635
Besides these methods and algorithms, nowadays web-based monitoring approaches are636
interesting. They are using one or more of these mentioned procedures in softwares like637
LabVIEW, as you see in [136] and shown in Fig. 9.638

639
640

641
Fig. 9. Diagnosis session panel with decision method menu presented in [136]642

643
644

Appendix645
646

Time-Frequency Analysis method equations which discussed at this paper are explained in647
this session.648

649
650
651
652
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1) Short-Time Fourier Transform (STFT):653
The short-time Fourier transform (STFT) [41] by breaking signal into short blocks and654
applying an FFT to each part can determine the sinusoidal frequency and phase component655
of the its local time domain.656
Mathematically, the STFT of a signal )(tx is explained as follows [42]:657






 


 dtjthtxtSTFTx )exp()()(
2
1),(

(3)
658

In the above equation ω is an angular frequency, and )(h is the window function. With the659
technique of windowing (such as Gaussian, Hamming, Hanning …), the STFT can provide660
information about both time and frequency of the signal, since the time-varying concentration661
information is required for real-time applications. STFT analysis may lose the transient and662
temporal information and it is not good, but the STFT is simpler than the other methods. The663
STFT spectrum can be defined as follows [40]:664






 


 djthxtSTFTtP xx )exp()()(
2
1),(),( 2

(4)
665

Of course other studies [137,138] showed that the techniques such as short-time Fourier666
transform, where a nonstationary signal is divided into short pseudo-stationary segments,667
are not suitable for the analysis of signals with complex time–frequency characteristics.668

669
2) Wavelet Analysis (WA)670
WA is another time-frequency signal analysis method that has been widely used and671
developed recent decade. It has the local characteristic of the time domain as well as the672
frequency domain, and its time-frequency window is changeable. The Continuous Wavelet673
Transform (CWT) of )(tx is a timescale method of signal processing that can be defined674
mathematically as the sum over all time of the signal multiplied by scaled and shifted675
versions of the wavelet function )(t [42]:676

dt
a
bttx

a
baCWTx 






 )()(1),( * Rba , (5)677

Where )(* t is the complex conjugate of which denotes the mother wavelet or basic678
wavelet. a & b are parameters related to scale and time respectively. If a is small, higher-679
frequency components can be analyzed, and when it is large, lower-frequency components680
can be analyzed. When b is given a value, the fundamental function can be shifted by a681
distance in the direction in which time advances. The CWT spectrum is considered as682
follows. Wavelet transform has the isometric characteristic.683

684
3) Winger-Ville Distribution (WVD):685
The Wigner-Ville Distribution (WVD) [41] is a very important quadratic-form time-frequency686
distribution with optimized resolution in both the time and frequency domains. The WVD is687
matched to linear chirps and can represent it effectively. The instantaneous frequency of688
such signals can be estimated easily by picking the peak in the time-frequency plane 40..689
However, the WVD does not yield a localized distribution for frequency variations that are690
not linear [44,133].691
The instantaneous frequency within the window can be considered to be nearly linear692
because the VWD variants need windowing.693
The Pseudo-Wigner-Ville distribution (PWVD) has better resolution and provides a more694
accurate estimate of the instantaneous frequency. Therefore, it has been used extensively in695
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various applications to display time-frequency spectral information [17]. The PWVD equation696
defined as follows [98,155]:697






 


  dehtxtxtPWVD j
x )()

2
1()

2
1(

2
1),( *

(6)
698

In this equation is an angular frequency and )(h is the windows function.699
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
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2
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2
1(

2
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desS js)

2
1()

2
1(

2
1 *

(7)
700

Winger-Ville distribution of a motor in healthy condition and with faulty bearing is shown at701
Fig. 10 [98].702

703
704

705
(a)706

707
(b)708

Fig. 10. Winger-Ville distribution of motor (a) in healthy condition (b) Winger-Ville709
distribution of motor with faulty bearing [98]710

711
712
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