
APPENDIX – Acceleration Field Representation

Motivation: To describe a field that interacts with all particles that have rest masses and not

only with a particle that follows the gradient
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The acceleration can be expressed in coordinate dependent way by at least 3 variables
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As the reader can see, the vectors are not perpendicular in Minkowsky geometry but they are

perpendicular in ordinary Euclidean geometry. These vectors are closely related to Ashtekar

variables [19].

Let A denote 
A . Obviously IccbbaaAA *)**(*  where I is the identity matrix and

if cba ,, are real numbers then the determinant is
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2
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Such that iU is the complex form of the curvature vector where the scalar field p is a

multiplication of the time field of upper limit of measurable time from near the big bang

singularity event or manifold of events from which we can say the cosmos started to expand

p .  is the wave function describing the material observer of the time field.



We can write a representation of 
A as a linear combination of Quaternions,
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321 AAA  , 231 AAA  , 132 AAA  , 312 AAA  , 213 AAA  , 123 AAA  ,
IAA  11 , IAA  22 , IAA  33 .

We now need a proof of concept. Our research will not focus on
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We check the transpose operator of  AA  invertible matrix
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By choice of coordinates we obtain the Quaternion representation:
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
 is the Kronecker delta.

Some Linear Algebra work will reveal that invertible anti-symmetric matrixes with even

dimension of rows and columns have eigenvalues and eigenvectors in pairs. The eigenvalues

of 
A have the form i such that *  i.e. real numbers and the for each eigenvector

 ViVA k
k  and also   ** ViVA k

k  form which we can easily infer that the

determinant of 
A is always positive if it is not a singular matrix. Writing the matrix in its

diagonal form we have
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Such that D is diagonal with eigenvalues and B is coordinate transformation.

It is easily verifiable for the transposed matrix that
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So from (63) (64) and (65) we have
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Well, that leaves us with only two types of eigenvalues of the original matrix A ,
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In the real case such that
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(62).

So we create a new complex vector,
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Such that .1i

So we check,
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Obviously  since 0
WP and also 0

WU , V is not in the rotation plane of P

and U and is thus perpendicular to this plane, and therefore the following conditions are

fulfilled:
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APPENDIX – a conditional additive degree of freedom, Vaknin's Chronon Field
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Consider the eigenvector V the eigenvalue )( 222 cbai  of 
A from (70).
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So as long as (31)  holds also for  VPP  this equation (73) manifests a degree of

freedom.


