
Multidimensional   Treatment of the Expanding Universe

Abstract

The simplest six-dimensional treatment of the expanding Universe in the form a three-dimensional sphere appeared
as a result of the intersection of three simplest geometrical objects of finite sizes in the six-dimensional Euclidean
space – of three uniformly expanding five-dimensional spheres – with account of an increase of speed of light in
cosmic time (a measure of expansion of five-dimensional spheres) is given. Its effect on redshift for distant sources
and theoretical redshift dependencies compared with observed data are demonstrated. A scenario in which the
speed of elementary particles, including photons, in the six-dimensional space is constant in cosmic time is consi-
dered. This scenario corresponds to the energy conservation condition in that space. Some difficulties of standard
cosmology are discussed on the base of six-dimensional cosmology. Recurrent formulas generalized the theory on
the case when three original perturbations in the form of )1( N - dimensional spheres expand in N -dimensional
space.
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1. Introduction

The space-time in which the true Lorentz transformations, is commonly considered to be pseudo-Euclidean and
the interval of the theory of relativity − element of the particle trajectory in space-time. However, in Euclidean spaces
with the number of spatial dimensions of a large three the Lorentz transformations are obtained elementarily, if the
proper time of an elementary particle assumed to be proportional to the path traversed by it in the extra space (Y), sup-
plementing the observed three-dimensional space (X) until a multidimensional space, provided that the elementary par-
ticles like photons, moving at the speed of light in the whole space [1]. This explains the paradox of twins: the faster the
object moves in a X, the slower its speed in the complementary subspace Y of the total space, and hence the slower the
flow of his own time.

Widely it is discussed indefinite question ‘What is time?’ However, in the formulas of the theory of relativity ap-
pears only the proper time, various in different reference frames. In this context, it makes sense to only the question
‘What is the proper time?’ The proper time is an integral measure of the movement of elementary particles in the com-
plementary subspace of multidimensional space, while the proper energy and the proper momentum are differential
measures of movement in the complementary subspace Y in the case when movement in X is absent. The proper time
is proportional to the path traversed by the particle in the complementary subspace, and the velocity of the particles in
the whole Euclidean (not pseudo-Euclidean!) space equal to the speed of light.

However, it does not follow that the speed of light is constant in time and even has always been different from ze-
ro. Cosmological time should not be to define through the speed of light, if this speed can be equal to zero. Cosmologi-
cal time used to describe the evolution of the Universe, should determine on the basis of the initial cosmological process
that led to the observed occurrence of a three-dimensional universe and allowing the process to establish a link between
the expansion rate of the universe and the speed of light. Cosmological time should be defined so that we can answer the
question: ‘What was before the emergence of the observed three-dimensional Universe and what has led to its emer-
gence?’ However, we need to know the number of dimensions of space in which there is an evolution of the universe.
The geometric model of the universe must be constructed in accordance with the principle of simplicity [2]. The multi-
dimensional interpretation of the Lorentz transformation opens the opportunity of an adequate multidimensional treat-
ment of the origin and evolution of the three-dimensional Universe. The need for a multidimensional cosmology is seen
from the fact that the Universe is very homogeneous in a large cosmological scale. Therefore, it is a three-dimensional
sphere. This sphere can be expanded, and only in the space of a higher number of dimensions than 3. Similarly, N-
dimensional sphere may only expand in the space of a higher number of dimensions than N. Homogeneous universe can
expand in itself only if it has the shape of a plane or hyper-plane. Such universe has no beginning, her age is endless, but
the question is why, however, the density of matter in it during its expansion is finite if it is our world, and it exists inde-
finitely, has no answer.

Note that the volume of a three-dimensional universe from a geometric point of view, there is a three-
dimensional hyper-area corresponding area on the three-dimensional sphere.
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The evolution of the three-dimensional universe depends on the dimensionality of the total space. A simple ex-
planation of the spin and isotopic spin requires six spatial dimensions [1, 3-5]. Therefore, in cosmology, based on the
principle of simplicity, the number of spatial dimensions also can not less than six.

The light and particulate substance has both wave and particle-properties. Electron diffraction and photo effect in-
dicate that the basic properties of substance particles and the light is the same. The basic property of light is that in the
absence of gravity, it propagates with equal velocity in any frame of reference. Therefore, the particles of the substance
must move at the speed of light, what is only possible in a multidimensional space.

Figure 1: Projections ds and dx of displacement
cdt of a particle moving at the speed of light in
the whole space. These three quantities are re-
lated to the Pythagorean theorem.

All directions in the subspace Y of the Euclidean multidi-
mensional space are perpendicular to any direction in the
three-dimensional subspace X. For this reason, projections
ds and dx of a displacement of the particle moving at the
speed of light in the whole space of any number of di-
mensions, respectively on the subspace Y and X, are con-

nected by Pythagorean theorem:, 222)( dxdscdt  where cdt is displacement of the particle in the whole space per

the time dt (See Fig. 1). Hence, we obtain the metric of the special theory of relativity:   222 dxcdtds  .
Elementary particles can’t be removed from the three-dimensional universe at large Compton distances and must be

held near universe by forces of cosmological nature. Otherwise, the trajectory of the elementary particles in additional to

the three-dimensional subspace of the universe would not be compact and macroscopic bodies would not be possible.

These forces (sort of the Lorentz force, which particle mass plays the role of the charge) are perpendicular to all direc-

tions of the three-dimensional subspace. They cause compactification of particle trajectories in the complementary sub-

space, resistance to centrifugal forces in it, but leaving the possibility of free movement of particles in the three-

dimensional subspace. This provides the possibility of the existence of elementary particles and the formation of atoms,

molecules and macroscopic bodies.

For any acceptable cosmological model the maximum of distribution of galaxies on redshift is of the order of one

(actually there is a maximum at a redshift 0.7). The average density of galaxies for any acceptable model will be of the

same order of magnitude as the observed value.

Metagalaxy radius is of the order 104 of average distances between galaxies. Therefore, non-uniform on angular

coordinate part of the microwave background should be as many times smaller than the homogeneous part, what is real-

ly observed. Moreover, the inhomogeneous part of the microwave background must be due to the component of the spa-

tial spectrum distribution of galaxies. It was detected the periodicity in the distribution of galaxies with a period of about

100 Mpc [6]. The observed maximum of 200-th spherical harmonics in the angular spectrum of the non-uniform micro-

wave background corresponds to the spatial period of the same order. Of course, comparative periods do not have to be

exactly equal to each other, as the microwave background is analyzed in the projection of the celestial sphere.

To compare the observed data with the theoretical, it needs to know the value of the Hubble constant ( 0H ). According
to [7], it amounts to 74.2 +/- 3.6 km/s Mpc. However, this value is obtained using the equations of Einstein's cosmology.
Indeed, the paper [7] is divided into two parts. In the first part, on the observations of cosmologically near supernova is
found the value of the Hubble constant 14

120 47H km/s Mpc. At this stage, the Einstein’s equations are not used. At
the second stage, with a view to verifying the result the authors of [7] used limitations based on the use of Einstein's eq-
uations in cosmology. This restriction was chosen in preference to the result of the first phase of the work. In the end,
the result of 74.2 +/- 3.6 km/s Mpc turned up far beyond of the upper limit 47 + 14 = 61 km/s Mpc for the confidence
interval of the Hubble constant on the first phase of work.

cdt

dx

ds
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Six-dimensional interpretation of the expansion of the universe is not using the Einstein equations and contains
five independent parameters, in contrast to the six parameters of the standard cosmology. In the 6D cosmology the Hub-
ble constant is consistent with the result of 14

120 47 H km/s Mpc obtained in the first phase of work [7] without the

use of Einstein's equations. In fact, almost the same result ( 7
70 55H km/s Mpc) was obtained earlier by G. A.

Tamman [8].
Standard cosmology has other contradictions and shortcomings.
● In 1997, a supernova SN 1997ff was discovered at redshift 1.7 and a brightness of 1.5 times less than the pre-

scribed standard cosmology. To resolve this discrepancy between theory and experiment had the cosmological constant
set equal to the value at which the deceleration parameter expansion of the universe 0q was negative, which corres-
ponds to the acceleration of the expansion of the universe, rather than slowing down as previously thought [9]. Howev-
er, according to Kellermann [10] , who measured the angular dependence of a size double radio sources, the linear size
of which is estimated at 41 pc, with redshift z and compare it with the corresponding results of theoretical curves, it is
clear that a satisfactory agreement with the observations is achieved only at 0q = 0.5. For the remaining two values of

0q the discrepancy between theory and observations is unacceptably high (see Fig. 2). If 0q < 0 it more. Therefore,
the introduction into the equations of the theory of cosmological term does not help. However, the opinion of experts
was confirmed that ‘Gurvits corrected this error of Kellermann’ and that in the subsequent joint publications the prob-
lem is removed. However, in a joint paper [11] of these authors, published six years after [10], it is noted that all the
previous results on the subject remain in force. In fact, in [11] to the previous data added new data relating to the radio
sources are smaller in size (consider the cases for which h 9.6 pc and 22.7 pc, where  the linear size, h is the
Hubble constant carried to 100 km/s Mpc.

In [11] it used 330 sources to 79 in [10]. The less a linear size the greater the error in measuring the angular
size of the source. As a result of ‘dilution’ of previous data with new, confidence intervals are increased so much
that they went to the bottom edges of the range of angles corresponding to negative values 0q . This created the
appearance of well-being. However, the data of [10] are statistically self-sufficient, have smaller confidence inter-

vals and clearly demonstrate
the impossibility of matching
the standard theory for nega-
tive values

0q with the obser-
vations.

Figure 2: The dependence of
the angular size of the double
radio sources (in angular mil-
liseconds) with the linear size
of 41 parsecs on redshift z .

● The maximum of distribution of
galaxies on the redshift 72.0z
is observed at [12]. In the book [13]
a formula is given for the density of
matter in the universe  ,zn ,

     
  zz

zzzn





11
1124, 33

2
,   depending on redshift z and the ratio  of the density

of matter to the critical density, but calculations according to this formula were not performed. At the critical density the
maximum of this function is placed at too large value 7.1z of the redshift compared with the corresponding observa-
tions, 72.0z . According to this formula, the maximum is in the right place at the relative density 4.6 unaccept-
ably large for the standard cosmology, considering that the density is critical. Accounting for the cosmological constant
does not help, as its increase (starting in the zero) acts opposite to increase the density of matter, so that the discrepancy
between theory and observation will only increase.
● Observations show that at high redshifts the metallicity of galaxies and intergalactic gas – the relative density of the
chemical elements more massive than hydrogen and helium – does not depend on redshift [14]. These chemical elements
are formed by supernova explosions, the formation and heating of which need sufficient time. According to standard
cosmology, the time corresponding to a given value z and measured from the beginning of the expansion of the un-
iverse tends to zero as z growth. When at the same time to supernovae occur and prepare for an explosion? Without the
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answer to this question it gives the impression that there were galaxies in the universe is in a ready state. With respect to
quasars it is clearly indicated by the impression [15] already in 1995.
● According to [16], the maximum rate of star formation is observed at 1.1z . Explanation of this fact, the standard
cosmology does not and does not contain any mechanism that could be responsible for this fact.

2.  Six-dimensional physics capabilities

Before discussing the results of the six-dimensional cosmological assumptions give a six-dimensional interpreta-
tion of physics. Note that the same dispersion equation holds for electromagnetic and acoustic waveguide, and for the de
Broglie waves: 2cvv gph  where phv is the phase velocity of the waves, c is the speed of the waves in an infinite

medium, the group velocity of the de Broglie waves gv is equal to the particle velocity. The main characteristic of any

waveguide is that it has finite cross-section sizes. They are responsible for the wave dispersion. This indicates that the
portion of the space, with which we are dealing in the experiment, is only approximately three-dimensional one, with a
very small dimensions (Compton, as is evident from a consideration of the properties of spin and isotopic spin) of the
additional subspace. The equation of wave dispersion is a consequence of the perpendicularity of rays to the wave fronts.

Six-dimensional interpretation of physics, including gravity, based on the principle of simplicity [2]. It fits Eins-
tein's assertion that ‘nature saves on the principles’, and the assumption of the identity of the basic properties of matter
and light, as exemplified by the diffraction of electrons and the photoelectric effect. This assumption goes back to the
idea of F. Klein [17-19] of the motion of the particles with the speed of light in a multidimensional space in which the
mechanics are presented as quasi-optics. The first justification of a six-dimensional space is given by di Bartini in [20],
where the fundamental physical constants are calculated.

The main property of light is that, in the absence of gravity, it propagates at the same speed in every frame of refer-
ence. If the main properties of substance and light are the same, which corresponds to the principle of simplicity, then
the particles of matter must move at the speed of light, which is only possible in a multidimensional space. Further as-
sume that the substance particle travel at the speed of light in a multidimensional space in the Compton neighborhood of
three-dimensional sphere. This means that each elementary particle is acted by a cosmological force orthogonal to the
three-dimensional sphere. It holds a particle at Compton distance from this sphere. Without such a force there would be
no macroscopic bodies. Whole space is considered to be Euclidean and at least a six-dimensional one, because for it the
simple interpretation of the spin and isotopic spin is possible.

We believe that in the whole multidimensional space the formulas of Newtonian mechanics are applicable for a suita-
ble choice of the proper time specified below, and that the position of the particle is fixed by an observer in three-
dimensional projection on the subspace 1x 2x 3x  X tangent to the three-dimensional universe as a three-dimensional
sphere in 6R at the location of the observer. In this case, the Newton’s formulas referred to 6R , when projected of the
events  on X , give the formulas of relativistic mechanics, the Lorentz transformations, the interval of the theory of rela-
tivity, spin and isotopic spin, the proper magnetic moment, the de Broglie waves and wavelength, the fine structure for-
mula, the Klein − Gordon equation, CPT-symmetry, the quark model of particles composed of u- and d-quark, the de-
scription of gravity [ 1, 3-5 , 21, 22]. For this description, it uses a small section of the universe in the cosmological
scale, neglecting the curvature of the universe. Six-dimensional interpretation of the evolution of the universe at a stage
where its radius is large compared to the distances between the centers of the perturbations in the whole space, which led
to the formation of the universe, is given in [23, 24].

A particle fixed in a projection on X in an inertial frame of reference K of the  ‘fixed’ observer is moving at the
speed of light с , in the simplest case, on a circle in a three-dimensional subspace 1y 2y 3y  Y , supplementing X to

6R , with the center of the circle in X . In any other inertial reference system the particle moves along a helical line
(curve 1 in Fig. 3) on the cylindrical surface (tube of motion, TM) in 6R with the axis belonging to X . The proper time

of the particle is considered to be proportional to the length of its path in Y . This length is proportional to |cos| 
where  is the angle of the slope of the helical line to the directrix of the tube (see Fig. 3).

If the particle makes one revolution for proper time  , then, by the clock of  ‘fixed’ observer relative to which the
particle moves along the tube at a speed sincv  , it will happen over time |cos|/ t , where cv /sin  ,

 2/1cos cv . Here and below, a positive sign refers to a particle revolving around the tube axis in the posi-
tive direction, negative − to antiparticle, revolving in the opposite direction.  Oppositely charged particles revolving
around the axis of the tube move in opposite directions. Antiparticles have opposite charges and rotate in opposite direc-
tions. Under time reversal particle must be moving backwards in its path on the same helical line and therefore rotate in
the opposite direction. Hence, the sign of its charge should be changed so that the particle must be transformed into its
antiparticle. The motion of the particle will be mirrored. Taken together, these properties of the particles and anti-
particles constitute the content of CPT-theorem.
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The lapses of the proper time of particle (or antiparticle), d , and the time of fixed observer, dt , are connected by
the relationship

  cos/ddt   ./1 2cvτd  (2.1)
In the fixed frame of reference, K , a particle has a velocity component cosc along the directrix. The proper time

of the particle in terms of a stationary observer, according to (2.1) is also proportional to cos , so that the particle and
in its own reference frame K  is moving with the speed c . The displacement of particle to the interval ds on the direc-
trix of TM and corresponding to it a turning to the angle a/dsd  around the axis of TM, where a is a radius of
TM, are identical in any frame of reference. Designating through dx , in the systemK , the projection of displacement
d of particle over the surface of TM on its generatrix and using the Pythagoras theorem, we obtain that

  222 dxcdtds  . But if we consider this relation as initial, then from it follows cdtd  , i.e., that particle moves in

6R with the speed с .
A particle located at rest in X moves in Y with the speed of light. Therefore it has in Y the rest momentum (i.e.

the proper momentum) mcp y  , and the rest energy (i.e. the proper energy) 2mccpE y  , where m is the

mass of particle. It travels an interval cdds  on the directrix per proper time d .  In general, the total momen-
tum of a particle is a vector directed along the tangent to its helical path on the tube motion and in magnitude p equal
to the product of the particle mass m on the ratio of the path cdtd  traversed by it in the whole space to spent on

this path the proper time d :  21
cos

cvmcmc
d
dmp 


 . This is a relativistic formula for the total momen-

tum of the particle [25]. While its total energy is  222 1cos cvmcmcpcE   .

Figure 3: 1 − helical trajectory of a particle moving in a
six-dimensional space with the speed of light on the
cylindrical surface of Compton radius  mc with
axis in the subspace X and the directrix in the subspace
Y ; 2 – helical line intersects the helical trajectory at
right angles and passes through the particle. It moves
along the tube at the speed of de Broglie waves. Its step
is the de Broglie wavelength. This is the line of the
same proper time of the particle.

The rest energy must also be equal to h , by virtue of the
principle of the identity of the basic properties of substance and light, where  is the frequency of rotation of particle
around the axis of TM, h is the Planck constant. This implies that the radius of the tube is a mc , and the length of
the directrix is equal to Compton wavelength, which corresponds to the period h of the action coordinate in the 5-optics
[19]. Another helical line intersects the helical trajectory at right angles and passes through the particle. It moves along
the tube at the speed of de Broglie waves. Its step is the de Broglie wavelength. This is the line of the same proper time
of the particle [3-5].

3. Multidimensional geometric model of the universe

Six-dimensional interpretation of the expanding universe is also built on the principle of simplicity. The simplest
geometric object of finite size in the six-dimensional Euclidean space is a five-dimensional sphere. Therefore, the sim-
plest six-dimensional interpretation of the expanding three-dimensional sphere is its representation as the intersection of
three five-dimensional spheres expanding in the six-dimensional Euclidean space − three five-dimensional spherical
frontiers of disturbances propagating in this space. Thus it is assumed that these perturbations occurred as a result of
three separate ‘explosions’ in the centers of these five-dimensional spheres. Point of first contact of the three five-
dimensional spheres corresponds to the location of the center of the three-dimensional universe in the six-dimensional
space.

However, we can’t exclude that the space is a seven-dimensional. In this case, the primary cosmological perturba-
tions will take the form of six-dimensional spheres. While the question of the number of dimensions involved in the
primary spherical perturbations, remains open, it is preferable to build a multidimensional cosmological model, assum-
ing these perturbations N -dimensional.
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These N -dimensional (ND) spheres are described by equations

  2
1

1

2
Nj

N

j Rzz 





, (3.1)

where z are the Cartesian coordinates in the )( 1N -dimensional space, jz the center coordinates of the j -th

sphere, NjR its radius,  1, 2, ... N. The centers of spheres can be considered located in the plane Nz 1Nz , so that

0... )1(21   jNjj zzz .

Intersection of two ND spheres is (N – 1)D sphere. Its center is located on a line passing through the centers of
these ND spheres. The intersection of each pair of (N – 1)D spheres is (N – 2)D sphere centered on the line passing
through the centers of these (N – 1)D spheres, etc. Thus, the intersections of three ND spheres are three (N – 1)D spheres
which, in turn, intersect to form a three (N – 2)D sphere, etc.

In a plane passing through the centers of the three ND spheres, the distance jl between the centers are linked by

the cosines theorem jkijkikij srrrrrrl 4)(cos2 2222   , where
2

sin2 j
kij rrs


 , 3,2,1j , jr are

radii of these spheres at the intersection of all three spheres at one point on this plane (Fig. 4). Here, j is the angle
between the ends of the segment jl visible from this point, 3,2,1, ki , jk  , jik  .

Unlimited expansion of 3D sphere can only occur at the same rate of expansion of the 3D spheres, it formed is.
Otherwise expanding 3D sphere will change by compression, contraction and disappearance. Then simply confine our-
selves to the case of expansion of three ND spheres with the same constant speed Nc , where the radii NjR are

represented in the form jNj rRR  . Equality tcR N introduces the cosmological time, measured from the moment of
intersection of all 3D spheres in one point on the triangle with vertices at the center of the sphere. At this point, R = 0,
and all spheres are sequential intersections of three ND spheres and spheres of lower dimension, have formed. For small

jr compared with the radii of ND spheres, arising (N – 2)D spheres have at time t = 0  respective small radii and pass
through above point on the triangle.

Figure 4: The radii jr of three ND
spheres in the plane on which   the
centers of spheres placed when the
intersection of all three spheres is at
one point. Centers of ND spheres are
located at the vertices of the large
triangle, jl the distances between
the centers, 3,2,1j . In the case of
the 6D space 5N .

Consistent appearance of nD
spheres with consequent reduction of n
is described by recurrent formulas ob-

tained from Fig. 5 in a plane passing through the centers niO and njO of two nD spheres. It is evident that equalities

 
22222

1 njinjnijnikn dRdRR  , nknjinij ldd  , where nijd and njid the distances from the center  of ( n –1)D

spheres to the centers of the i -th and j -th n -dimensional spheres , respectively, give a consequence of the formulas:

 
22

122 nk

nk
njninij

l
l

RRd  ,  
nk

njninjinij l
RRdd 122  , (3.2)

1r
2r

3r

1
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   
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








 


nk

nk

njni
njnikn

l
l

RR
RRR . (3.3)

Applying the law of cosines to that shown in Fig. 5 triangle with vertices niO at the centers of nD spheres, similar
to that shown in Fig. 4, and triangles, one of the vertices of which are also placed in these centers, and the remaining
vertices − in centers  of ( n –1)D spheres, we can express the distance inl )1(  between the centers of the ( n –1)D

spheres through the radii of nD spheres and the distance nil between their centers.

Figure 5.

We obtain

niniknijniknijin ddddl cos2222
)1(  ,

ninknjnknjni lllll cos2222  , ni is the

angle at the apex niO of the triangle with

sides nil ,

  
nknj

niknij
nknjniniknijin ll

dd
lllddl 222222
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4
1

2
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4
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njnkni
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l

RR  . (3.4)

In particular, when Nn  we have:
22
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k

jiji
Nij

l
l

rrrr
Rd 
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
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ji

k
ji

Nij
lrr
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Ra
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Rd 







 
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





 
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Right sides of (3.5)-(3.7) are quadratic in variable tcR N . The right-hand side of formula (3.3) with

1 Nn is a function of R, only asymptotically quadratic:
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Derivatives of (3.6-3.8) in R are of the form:     kjiiN rrRaR
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From the formula (3.3), we find that the deceleration parameter of expansion of i -th )( 2N -dimensional sphere
in )1( N -dimensional space is:
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. (3.11)

Here, tcR N , t is the cosmological time elapsed since the intersection of the 3D spheres at one point. Further restrict

ourselves to the case 5N of the expansion of 5D spheres in the 6D space with the same constant speed 5c .
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From (3.11) and when 2i and tcR 5 we find the deceleration parameter of expansion of the 3D sphere of

primary interest for comparison of observations: 2
3232320 RRRq  that equals 0.038 – the value obtained in [26]

by the method of EMN (Evrard, Metzler, Navarro), not associated with Hubble constant.
Finding the parameters of the theory under which the results with acceptable accuracy would accord with observa-

tions, it is convenient to take place in two stages. At the first stage we put )(2
3 RR i  approximately quadratic function in

the variable R actually being only asymptotically quadratic in R . In this approximation in the theory will be only two
independent parameters. In the second stage it is expected to clarify the parameters of the theory.

In the simplest scenario, the value of the speed of light and elementary particles 6c in the six-dimensional space is
constant over time in the reference frame associated with the center of the three-dimensional sphere. Restrict ourselves
to this case.

4. Increasing the speed of light in an expanding universe

All directions on the 3D sphere at any point are perpendicular to the direction of expansion of the sphere. There-

fore, the speed of light  Rci  on this sphere and the speed of its radial expanding 5
33 )()( c
Rd

RdR
dt

RdR




 are connected

by Pythagorean theorem: constcc
Rd

RdRRc i
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 2
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2
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2
32 )()( , R is the difference of the current radius of a 5D

sphere, and its value at the time of the first crossing of the three spheres. Thus the equality tcR 5 introduces the cos-
mological time, measured from the moment of the first intersection of the three 5D spheres, with today's value  Rci for
a suitable index i is the observed velocity of light c . The speed of light in 3D universe depends on radii of 5D spheres.
However, being a real quantity, it satisfies the Pythagorean theorem only if

    2
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where for i = 2
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By the definition of the Hubble constant, we have
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Numerical calculations were performed for the following choice of parameters of the theory: 115.01 Rr ,

179.02 Rr , 278.03 Rr , 94.11  , 85.12  . In this 875.00 tH , 104.1)(32 
R

RR .  In [24] it is ob-

tained that A
qc

c










112
5

2
6 , where 8.1q , A is the coefficient at 2R in an approximate representation

  RARRR 222
32  . In the exact representation (3.8)
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)
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  431.112

2
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c
cRR

c
H . (4.4)

The speed of light is no longer a zero and begins to grow from the time for which
2
5

2
6

22
32
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1
c
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RdR

RR








 ,

0)(2 Rc .  Value R is determined by parameters of the theory.
Relationship between the cosmological time 5)( cRRt  and the time by Einstein's light clock )(Rte  (the in-

dices i, j, k later in inessential cases omitted) is defined by (3.13), dtRccdte )(  and 5cRddt  , whence it fol-
lows that

5)( cRdRccdte  , 

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1Re1)( , and the passage of light to

the light hours of the astronomical object under consideration to the observer is equal to
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)(4
11)( , R > R . Here and below, respectively, the value is marked with

an asterisk in a place of radiation.
Light clock starts ticking from the moment when the speed of light becomes different from zero, i.e. when R > R .

When R < R 0)( Rte , so look back over time )(RTe , the light clock opportunities do not give. Even greater re-
striction on the range of observation establishes the requirement that the redshift is finite and positive. It is violated when
the observed object is removed with velocity greater than the speed of light. Thus, the age of the universe is equal to

)(RTe by the light clock. Same cosmological age of the universe, if it is measured from the intersection of the three 5D

spheres at one point is equal to
22

32
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c
Rt , where )(32 RR is the radius of the 3D sphere

today.

5. Redshift in an expanding universe

Beam of light came out of a point of the expanding 3D sphere and describes helix unwinding in a plane passing
through the center of the sphere, the point of the source and the observation point. In this way d a photon is rotated in
said plane at an angle

3Rdd   . (5.1)
The angle between the point source and the observation point, drawn from the center 3D sphere is

      RdRRRc
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tdRRRcR
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5
3 . (5.2)

According to (4.2), it reduces to
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In this
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d  (5.4)

Distance on the three-dimensional sphere of radius 3R from its pole to the point with the angular coordinate 
is 3R . Let the observer at the pole, and at any point of the 3D sphere with a fixed angular position  of light source.
When extending the 3D sphere removal rate of the source from the observer on it is proportional to this removal (Hub-
ble's law) and is 0333 )(/)()( sHRRRRsRRv  

 where  )(3 RRs . However, the observer sees
the light source not there where this source there is (3D sphere of radius )(3 RR ), and not such as this source is at the

UNDER PEER REVIEW



11

11

time of observation, but where this source was (in a 3D sphere of radius  RR3 ) and such as  this source was at the time
of radiation.

From (5.3) it follows that the light from a source away from the observer at a fixed angular distance in this plane

passes through the expanding 3D sphere path   




0 3dR . From this and (5.4) we have
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When  RR << R (5.2) follows
35 R
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c 




 ,

   RR
c
cR
5

3 . (5.5)

Figure 6: Depending on RRr  , the
relative cosmological time.
1 – the relative velocity of light,
2 – its square,
3 – the relative radius of 3D sphere,
4 – redshift  rz , 5 –   10rz , 6 – rela-
tive time by the light clock, 7 – the
same closer then the particle horizon.

Removal rate of the source from the ob-
server u according to (5.3) and (5.4)
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Whence, for  RR << R we obtain
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Redshift due to the Doppler’ effect only (we denote dz while leaving the standard notation z for the cosmology of

magnitude), satisfies          1111 22  dd zzRcRu [12], which implies
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RcRu
zd 1

211 2 ,
     1

1
21 




 RcRu
zd , (5.9)

And when  RR << R we have
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According to (5.5) and (5.10) the distance  is expressed through the Hubble constant 0H :


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, where z << 1.

Fig. 6 shows, depending on RRr  , the relative cosmological time: the relative velocity of light )()( 22 RcRrc
(curve 1), 2 − the square of it, 3 − relative radius    RRRrR 3232 of the 3D sphere, 4 − redshift z , 5 −   10rz , 6 − the

relative time tRrte )( by the light clock (on the dotted portion of the curve 6 object of observation  is hidden from the
observation), 7 – the same closer then the particle horizon.

The energy of each elementary particle, including photons, increases in proportion to the square of the speed of
light. This effect is due to the constancy of the total energy of elementary particles in the 6D space and slowing expan-
sion of the three-dimensional sphere. Thus the energy of a photon in the time of arrival at the observation point, taking
into account the cosmological expansion of three-dimensional sphere will be equal to

   dzhcch   12  , (5.11)

where  is the frequency of the radiation and h is Planck's constant near the source from the point of view of a dis-
tant observer, )(   Rcc . In observational cosmology redshift z determined from the relation

 zlab  1 (5.12)

between registered frequency  of characteristic radiation and respective frequency radiation lab received in the labor-
atory. From (5.11) and (5.12) it follows

     zhzhcc labd  112  . (5.13)
For frequencies characteristic radiation of a hydrogen atom in the transition of an electron with the m -th energy level to

the n -th, we have      hcmnsms elab
2 ,        hcmnsms e

2 , where

   21 mZms  ,    21 mZms    , Z is  the atomic number of the nucleus of the atom, em is the

electron mass, ce 2 is the fine structure constant. From (5.10), (5.13) we find      
   nsms

nsmszz d
 


 11 . It

follows that if the fine structure constant does not change over time, and this with great accuracy confirmed by observa-
tions, then zzd  , that more and accepted.

6. Radiation power density and brightness of cosmological distant source

For the power density U of the radiation source as a black body, given that according to Planck emissivity of the
black body independent of the speed of light U in the radiation spot, we have [13, 27-31] at the temperature T of the
radiating surface and a distant point of view of the observer:

U     432
5

0

1
2

3

15
21exp2 















 kT
hc

dkTh
c
h  , (6.1)

where k is the Boltzmann constant. Power stellar radiation of a star as blackbody is  432

5
22

15
244 


  kT

hc
aUa  ,

where a is its radius. Light is distributed over the surface of the two-dimensional sphere of radius sin)(32 RR , and

because of the increase in the speed of light towards the observer photon energy increases in 22
cc time, and the Dopp-

ler-effect due to the expansion of the universe decreases in z1 time. With increasing speed of light, not only increases
the velocity of particles along helical trajectories, but also the projection of the velocity, in the same proportion. There-
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fore, the temperature being proportional to the mean square of the velocity of the Brownian motion of the particles is
proportional to 2

c . Whence we have  2ccTT   , where T is the temperature of the radiating surface of the same
source at cosmologically close distance. As well, according to the principle of equal basic properties of substance and
light, the energy of a photon h is also proportional to 2

c .The frequency of the radiation  is proportional to c as
well. From this it follows

cchh   , cclab   , (6.2)

so that the intensity of light produced by this star near the observer equals

   
      c

c
RzRR

cua
kT

hc
S 










1sin
1

15
2

2
32

22
4

32
5


 .

If the power density to determine a radiation energy per unit area and per unit time by light clock, given the ratio
dtccdte  , this intensity is equal to

 
     

 
       2sin111sin4
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c
c

RzRR
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Se
, (6.3)

where   24
32

5 4
15

2 akT
hc

L  is the luminosity of the same source at cosmologically close distance. Here,

 232 sin)(4  RR is the surface area of a sphere over which flowed radiation at the time of observation;   11  z

accounts for the decrease of the photon energy due to the Doppler effect,  21  cu accounts for the decrease of the

number of photons due to time dilation in the source system, the factor  2cc in (5.11) describes the relative increase

in energy of the photon due to increasing the speed of light during the journey. In this     
   11

121 2
2








 Rz

Rzcu .

And (6.2) also implies (5.13). Since   3

3
24

32
5 4

15
2

c
cLakT

hc





 , the luminosity of the distant source L is less

luminosity L:   LccL 3
  . If the luminosity eL is defined as the radiation energy per unit time for light clock, then

  LccLe
4

  .

From (6.2) and constant over time the fine structure constant   che2 , it follows that the charge is proportion-
al to the speed of light: ccee   . Substituting (6.2) into (5.11) gives  dlab z 1 , a comparison of which

with the formula (5.13) again leads to the result zzd  . At z 1.7 (for SN1997ff)   456.14 cc . From this and
(6.4) shows that the lack of brightness of distant cosmological sources explained by an increase in the speed of light over
time [23, 24], so that in the distant cosmological past corresponding to large z the speed of light was smaller. For the
most distant supernovae discovered from z 1.914,   486.14   ccLL e . Note that since the gravitational con-

stant and the temperature is proportional to 2
c , the force of gravity in deep space, ceteris paribus is smaller, it is ba-

lanced by the smaller pressure gradient within the star.
Note that in the formulas of the standard cosmology, the received intensity is generally assumed inversely propor-

tional to  21 z : Doppler-effect weakens it in z1 time and in the same time it is considered weakened by reducing
the frequency of arrival of photons to the observer [13]. Disagreement with this expressed in [27-30], where reduction in

intensity is accounted by the factor   11  z , and not   21  z , so that reducing the frequency of arrival of photons to
the observer not taken into account. In formula (6.3), a decrease in the number of photons due to time dilation in the

source system described by the factor  
     1

2

11
21 







RzRz
cu . At large z , it twice multiplier   11  z

used in the standard cosmology to account for reducing the frequency of arrival of photons to the observer. Fig. 7 is a
function z weakly depending on the argument   LSRRM e

2
32log512.2  at large redshifts. So brightness of

cosmological distant quasars weakly depend in z .

7. Metagalaxy as part of the expanding universe which is available to observations
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Particles on the horizon z ∞,     1 RcRu ,  rr ,   . The selected parameters of the theory we

have     398.03232  RRRrR , r 0.3258,  0.595, 56.0sin  . Metagalaxy radius is equal to

sin)(32 RR . Affordable to monitoring portion of the volume of the Universe is equal to

   





  

23

5
11

3
2

2
12sin2 


 . (7.1)

It is 4.2% of its total capacity of the Universe. History of the Universe when  rr is hidden from observation.
Expression (7.1) can be obtained as follows. Equation of 3D sphere of radius 3R has Cartesian view

2
3

2
4

2
3

2
2

2
1 Rzzzz  . Coordinate 4z (as well as other location) varies in limits 343 RzR  . Therefore, it can be

expressed as cos34 Rz  so that at a fixed angle  the equation reduces to the 2D sphere 22
3

2
3

2
2

2
1 sinRzzz  . Its

surface area is  22
3 sin4 R . Integrating this area to range from zero to  find the volume of the section of 3D sphere

under consideration:     





  233

3
3
3 5

11
3

42sin2  RRV ,   3
3

22 RV   ,  which implies (7.1). Full vo-

lume amount of Metagalaxy by the selected parameters is     113
3 10943.22sin2   RV  cubic Mpc.

Figure 7: Dependence z on M. For large
z the brightness of stars, quasars and ga-
laxies is weakly dependent in z , since near
the particles horizon small variations in
distance from the source corresponds to a
large range of changes in z .

8. The angular size of the distant double source
The angle subtended by a linear object − double radio source, removed by a distance corresponding to redshift

 Rz  and 3D sphere radius  RR 3 is equal to

   
     RRRRc

RcR






sin3

 , (8.1)

where  is the linear size of the object at cosmologically close distances. This relation follows from the fact that each
beam is in its meridional plane passing through the source, the observation point and the center of the 3D sphere, and the
angle between the meridian planes does not change with time. Double radio source components are gravitationally
bound. Gravitational constant is proportional to the square of the speed of light, and the force of attraction between them
is inversely proportional to the square of the distance between the components. The speed of light is decreasing with red
shift increasing. Therefore, the distance between the components increases as the source is removed, and at sufficiently
high z − faster than the distance to the source, which leads to an increase in the angular size of the double source for

6 4 2 0 2 4 6
0

2

4

6

8

z

M
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sufficiently large z . This factor, )()( RcRc  , takes into account the right-hand side of equation (8.1). Thus, the curve
)(z has a minimum that was observed experimentally by Kellermann and they specifically noted [10].

This experiment can be considered as an argument in favor of increasing the speed of light in time and as a way
to more accurately determine the Hubble constant.

Right side of (8.1) with  z << 1 and  <<  reduces to  czH0 that does not depend on the parameters of the
theory, which is useful for determining the Hubble constant from measurements  z for the cosmologically close
sources. If  R present in the angular milliseconds, then in the case 41 pc right side of (8.1) must be multiplied by

)1000(21641 h . In this case the Hubble constant is determined from the condition that at small cosmological dis-

tances function  czH 0 is an asymptote for the function  z . With setting in the theory it will be 604.0h .

From this and (4.3), given that the 1110778.9 
skm

Mpc years, we find the age of the Universe 91017.14  years by

cosmological time and 91044.11  years by the light clock and according to (4.4) we obtain 7103)(32 RR Mpc and

6432R Mpc. Radius accessible to observation of the Universe is equal to 3980sin)(32 RR Mpc.

Figure 8: Dependence on
z the angular size (in mil-
liarcseconds) double
source having at cosmolog-
ically close distances linear
size of 41 pc.

In Fig. 8 double loga-
rithmic function  z is
represented by the solid curve
in the angular milliseconds
using the relation (8.1) for
 41 pc. With increasing z

it tends to a constant non-zero
value, which is consistent with
the observed dependence of

the angular dimensions of similar sources [10, 32] and because the particle horizon is at a finite distance from the ob-
server on the line of sight. The dotted line shows the function  czH 0 .

Only when R > R , when the speed of light becomes nonzero, it become possible interactions between particles,
and density inhomogeneities of the Universe begin to growth, followed by star formation. At this point, its relative ra-
dius reached a fairly large value of 0.18. For such a large radius of the Universe significant irregularities gravitational
interaction is possible only within a relatively small area of the Universe, so that the evolution of inhomogeneities in
each area is weakly linked with the evolution in the neighboring areas. Therefore, in large volumes, containing many
such areas, the distribution of matter in space must be very uniform, and consistent with the observed distribution of
galaxies. Starting growth inhomogeneities hidden from observation by particle horizon, so that on the horizon inhomo-
geneities may already be present in the form of stars. In [27-30], it is actually adopted.

9. Distribution of galaxies on redshift
With a uniform distribution of matter over three-dimensional sphere its amount in small angle range d is propor-

tional to 2sin d , the average number of galaxies in the range d is proportional to the same magnitude, if at the time
of the observed light emission formation of galaxies is completed.

Relative density distribution of the number of sources on R and z are given by:

log z

2 1.5 1 0.5 0 0.50.5

1

1.5
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z

log z
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Figure 9a: Relative density distribution of num-
ber of galaxies at redshift z : calculated (solid
line) and measured (dashed) [12].

Function  zn is shown in Fig. 9 by the solid
curve. Dashed curve reproduced obtained from obser-
vations in the near infrared range density distribution
on z of low-luminous galaxies tens of thousands [12],
it is normalized so that the maxima of the two curves
coincide. Steeper decline of the right branch of the
curve at large z compared to the theoretical may be in
the result a greater likelihood of shading sources by
closer galaxies and dust clouds. If galaxies were dis-
tributed uniformly across the sky, then at each galaxy
it would have a portion of the celestial sphere, roughly
equal to one square arc second. The angular size of
distant galaxies is approximately equal to one arc

second, so that approximately half of the galaxies with large z are shaded by closer galaxies. However, there are no
catalogs of galaxies with the same angular coordinates.

It is essential that  zn decreases as

  31  z with increasing z , decreasing, unlike

the law   231  z on the standard cosmology
[13]. According to the observations of the two
groups of researchers [15], the density distribu-
tion of quasars over z decreases as 3z [34] or
  75.21  z [35].

Figure 9b: The same theoretical curve in
comparison with the later experimental curve
[33].
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Gamma-ray bursts are in galaxies, so they are evenly distributed over the 3D sphere with the same distribution
function N . Obviously, for the same type of sources

  NCN   2sin2loglog , where S is the recorded flow of energy, NC and SC are constant. In Fig. 10 for

1878 GRBs dependence of Nlog in Slog is represented by the solid curve for NC 3.74 and SC -5.36. The
dashed curve (here expressed in units of erg/cm2) presents the observational data [36].

Shading of gamma-ray bursts is very little in comparison with the shading of galaxies even at large z . In Fig. 10 at
large z shading of gamma-ray bursts is not observed.

Figure 10 Logarithm of the distribution func-
tion of gamma-ray bursts as a function of the
logarithm of the detected energy flux: calcu-
lated (solid line) and measured (dotted)

10. Increasing the speed of light and the
energy flow into the universe as a consequence
of slowing down of its expansion

Increase in kinetic energy of particles caused
by an increase in the speed of light, as well as the
increase in potential energy due to an increase in
the gravitational constant, it would seem, is a clear
violation of the law of conservation of energy.
However, in the preparation of the energy balance
in a multidimensional space is necessary to con-
sider the energy of all kinds of movement, includ-
ing the movement along a helical path placed on
the Compton distance mca  around the
three-dimensional projection of the particle trajec-

tory, as well as movement in the extra space caused by the expansion of three-dimensional universe. Total particle ve-
locity in the six-dimensional space remains constant in magnitude, irrespective of the trajectory in three-dimensional
space as well in whole space. Therefore, the law of conservation of energy in the whole space is not violated.

When slowing down the expansion of the universe, three-dimensional velocity of light increases while when acce-
lerating expansion – decreases. Note that the relatively recent withdrawal of standard cosmology accelerated expansion
of the Universe is made in the implicit assumption of the applicability of the Einstein equations to cosmology. In the six-
dimensional interpretation of the expanding Universe, this assumption is not involved.

The growth speed of light is limited. But when the cosmological age of the Universe will double, speed of light
squared increase by 0.061 of its current of magnitude. This corresponds with nothing comparable amount of energy that
has yet to enter into the Universe, 6.1% of the current energy of all types, including the energy of particle motion with
the speed of light at a specified helical line [1, 3-5]. Energy flow per unit time, which basically determines the observed
rate of star formation in galaxies continuously throughout their history, is proportional to the magnitude
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When the radius of the universe doubles, the energy flow will decrease 6.65 times. In an era when the radius
was half the current, which corresponds to the red shift 53.1z , the flow was 4.2 times greater than the current one.
Redshift z corresponds to the relative value of the radius     398.03232  RRRrR and the flow of energy in 6.34
times more than the current inflow. At even smaller radii, the inflow was much more: in the moment when he started, it
was 95.6 times greater than the current one. At that moment, the radius of the Universe and its cosmological age were
respectively 5.56 and 10 times less than the current, and only joined the light clock.

Density distribution in z of inflow of total energy in the Universe per unit time, including the proper energy of
the particles 2

 mcE , is proportional to the function edtdcn 2
 . Its maximum is reached at 134.1z . According to

[16], the maximum rate of star formation is observed at 1.1z .
Even earlier, it was found [15] that at the same redshift is observed maximum growth of metallicity of the intergalactic
gas. This coincidence is natural, since the formation of stellar explosions and metals occurs, and the more energy flow in
the stars, the more often they explode.

Function   2
0

2 cHdtdcnE e
depending on z as shown in Fig. 11, decreases with
increasing z simply because the distribution densi-
ty of the galaxies by z of this ratio decreases, al-
though the flow of energy in each galaxy is in-
creased.

Figure 11: 2
0

2

сH
dtdcnE e

Fig. 6 shows that the values change
RRr  and  Rrte attributable to a region of

large redshift are relatively small. For such a small
period of time a significant metallicity evolution of
galaxies and other characteristics not happen in
time. But from the moment  Rte corresponding to

the value of  RRr 0.100, from which the
speed of light began to grow from zero to a time corresponding to  rr 0.326 and redshift z , it passed a lot of
time:    RtRtRrt 226.0)(  and     202.0807.0163.0  RtRrt ee . That is, 22.6 and 20.2% of the age of the
Universe, respectively, by the cosmological and light clocks. This time is sufficient for the formation of galaxies. More-
over,   by the time   the Universe has received 76% of the current energy.

Metagalaxy – observable part of a three-dimensional sphere – is expanding along with the three-dimensional sphere,
though only from the time when the speed of light has ceased to be equal to zero. In the process of expanding, Metaga-
laxy covers all new and new volumes of space with galaxies formed at least sufficiently large cosmological time
 Rrt . Thus, to the observer's eye galaxies appear in his field of vision as really ready-made, though, of course, the

formation of galaxies does not occur before the emergence of the Universe, but it occur for cosmological sufficiently
long time after the speed of light has ceased to be equal to zero, and the Universe expanded to cosmologically large siz-
es.
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The energy of motion of the particle 2
 mcE in the complementary subspace is proportional to 2

c . Its increment

per unit time is equal to EdtdcmdtdE ee  
2 , where, taking into account dtccdte  ,
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The same applies to the photon energy h and the kinetic energy, and hence the density U of the thermal energy.
Therefore UdtdU e  . Thus, in unit volume per unit time it is inflated energy equal to U . For the case when
pumping occurs quasi-stationary, so that the energy radiating by surface of a star or planet is almost equal to the energy
pumped, integrating over the volume of the celestial body of radius sR , we obtain the relationship between  and  pow-
er density w of radiation by the surface of the body:

  wRrdrUr s
R s 2

0
2  , (10.1)

where r is the distance from the center of a celestial body.   Today 191005.3  1/s. In an age appropriate to 1z , 
there was more the current value in 4.15 times, at 2z in 8.34 times, at 3z in 7.36 times, at z in  9.56 times.

With respect to thermal radiation of the Earth we have, according to (10.1) for the volume-averaged quantities:
2
11

3
11 3 RwRU  ,    33

1
3

2
3
11 3 ss wRRRURU   ,

where 1R is the radius of the Earth's core, 1U and 2U are averaged respectively in terms of the core and shell of the
Earth thermal energy density, 1w is power density of the nucleus. Eliminating 1U we obtain

 
   wwRR

RRURw
s

s
s

1
2

1

3
1

2 1
1

3 



 for 6371sR km, 531.01 sRR , 191005.3  1/s. Light pressure in the

shell of the Earth can be neglected. According to [37] 27131 ww , the heat capacity in the shell is 1.5 kal/cm3, aver-
age temperature can be taken as 4500K. Thus 10

2 1083.2 U J/m3, 8.16w mW/m2, which is 20% of the total density
of the observed flux equal to 87 mW/m2 [38]. Since the cosmological component of the geothermal heat decreases slow-
er than release of energy due to radioactive decay, the share of cosmological radiation power from the Earth will in-
crease.

For the Sun 810960.6 R m, the luminosity 2610846.3  W, 710318.6 w W/m2, 1710560.9 U J/m3 =
1110283.2  cal/cm3. Temperature T corresponding to U we find from the equation TRTU gl 


2
34  [13], where

 is the molecular weight of the gas, 3145.8gR J/cm3 deg is the gas constant,  3342 15 ckl   ; k , , c are
fundamental constants. For the Sun, consisting mostly of hydrogen − a monatomic gas, the equation reduces to

42210566.756.17 TTU   J/cm3. Its solution KT 61096.5  is a typical temperature for the standard solar
model [34].

Equation (10.1) by a known power density [39] allows us to estimate the average density of the thermal energy
within the celestial bodies, if the radiated power is mainly due to an increase in the speed of light: sRwU 3 . For the
Moon 1737R km, 2.2w mW/m2, density 344.3ρ g/cm3, specific heat 0.3 cal/(g deg) = 1 cal/(cm3 deg). At the

same time 1010245.1 U J/m3 = 2974 cal/cm3, average temperature 2965T K.
Range of luminosities of quasars is 4038 1010 L W at radii of a few light-days. Assuming for the quasar

4010L W and radius equal to one light day, 131059.2 R m, we obtain 121018.1 w W/m2, 171081.4 U J/m3, so
that the average energy density in quasars is of the order solar. This is evident from the formula LU  for the total
thermal energy in the quasi-steady energy pumping.

With the accumulation of power, massive star can not expand all the time quasi-stationary. With increasing radius
of the star, photons travel from the center to the periphery (in the scattering medium) occupies more time. Because ener-
gy accumulating faster. When due to the increase luminosity L and thermal energy  for slowly expanding of the star,
the pressure gradient of light on its periphery exceeds the density of gravity force, and t L he substance will be carried
away from the stellar surface by light pressure. And the gradient of light pressure on the renewed periphery of the star
grows in accordance with the higher temperature of its deeper layers, and then the star explodes as a supernova or new.
Sparse in the explosion stellar matter again aggregates by gravitational forces, and the process of star formation in the
universe continues until the square of the speed of light increases with time not too slow.
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