
ELECTRO-GRAVITATIONAL TECHNOLOGY VIA CHRONON FIELD

Abstract

Matter is characterized by force fields and in non-inertial and non-geodesic motion as a result

of interactions. The measurement of how non geodesic a test particle is can be done by non-

geodesic acceleration which in 4 dimensional space-time is perpendicular to the 4-velocity. In

order to give a new meaning to matter by using such acceleration there is a need to reach a

formalism free of specific trajectories, namely by a scalar curvature field. This can be done by

an introduction of a new meaning of time that can't be realized as a coordinate. From every

event, we define the limit of the maximal possible measurable proper time back to the "big

bang" singularity or manifold of events from which we can say cosmic expansion had began.

Yet such time is not a physical observable in the sense that it can't be locally calculated and it

may exist as a limit only. The gradient of such time, however, is local and thus "physical". If

more than one curve measuring such time cross the same event then the gradient which is a

vector field can't be parallel to all such intersecting trajectories. That implies that the gradient

as a vector field will not be parallel to itself or in other words, will manifest a curvature field.

This idea leads to a new formalism of matter that replaces the conventional stress-energy-

momentum-tensor. The formalism will be mainly developed for classical but also for quantum

physics and will result in a theory of electro-gravity.

Keywords: Time; General Relativity; Electro-gravity

1. Introduction

The idea of a test particle measuring time and even transferring time is not new,

thanks to Sam Vaknin's dissertation from 1982 in which he introduced the Chronon

field [1] in an amendment to Dirac equation.
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The author asserts that any test particle that measures the maximal proper time from

near the “big bang” singularity event or manifold of events, will have to undergo non-

geodesic acceleration as it interacts with material fields, i.e. will not move along

geodesic curves unless in vacuum. An earlier incomplete paper of the author about

this inertial motion prohibition in material fields, can be found [2]. The non-inertial

motion is needed for the creation of trajectory intersections which in turn are needed

for the creation of matter. That is a strong claim that will have to be explained.

Consider a hollow ball of mass. Since this ball has a gravitational field, then by

General Relativity, the clocks tick slower on the surface of the ball and in the ball

than far from the ball. So particles measuring the upper limit of measurable time from

near the “big bang” event or events, will have to come from outside of the

gravitational field. The problem is in the center of the ball despite its zero gravity. If

an unexpected acceleration is measured at the center, it will be a negligible effect

comparing to the interactions near the atoms in the ball’s surface, although it may

affect quantum fields and move a negligible part of their energy to the center of the

hollow ball. Up to the center, the direction of the trajectory curves of test particles,

measuring the upper limit of proper time, is towards the center, so the gradient of the

upper limit of measurable time will have spatial non-zero coordinates in the reference

frame where the ball is at rest. But at the center, due to symmetry, such a gradient

will have only non zero derivative in the Schwarzschild time direction. This is only

one example of possible intersection of test particle trajectory curves and of their

influence on the scalar field of time.

(Fig. 1) The gradient of the scalar field of time is along the blue curve that is the

Schwarzschild time coordinate but slightly displaced from the center, the gradient is

along the red curves which result in discontinuity unless non-geodesic curvature is

involved, i.e. non-inertial acceleration.
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In other words, the Euler number of the gradient of the time field is not zero [3]. To

avoid such singularities, the test particles must move along non geodesic curves, i.e.

experience trajectory curvature and thus a mathematical formalism of such curvature

will have to be developed and will have to replace matter in Einstein’s field equations,

as such curvature fields become a new description of matter. It is quite known that

acceleration can be seen as a curvature and therefore acceleration field is another

interpretation of a curvature vector perpendicular to 4-velocity [4]. An acceleration

field that acts on any particle can't be expressed as a 4-vector because a 4-vector

does depend on a specific trajectory and by Tzvi Scarr and Yaakov Friedman such a

field is expressible by an anti-symmetric matrix  AA  such that if V is the 4-

velocity such that 1VV then the 4-acceleration is actually 
 VAa 

The curvature of particles that measure the upper limit of measureable time from an

event back to near the "big bang" singularity event or events will be described without

explicitly mentioning acceleration as this paper will present a geometric operator on

the gradient of the time scalar field.

2. The classical non-relativistic limit – mass at rest in a

gravitational field

Motivation beyond this section:
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For the pedant physicist there is no point in presenting a potential intrinsic to a

massive object and a non-relativistic potential energy as the classical limit of a

covariant theory. To such a reader the author will say that the purpose of this paper

is to replace the conventional energy momentum tensor T – which is part of

Einstein's field equation - by a tensor with fully geometric meaning. Recall Einstein

field equations in his writing convention as 
 RgRT
C

K
2
18

4  such that K is

the gravity constant, C , the speed of light, R the Ricci tensor, g the metric

tensor, 
 RgR  the Ricci scalar. The replacement will be with a totally geometric

tensor and thus will achieve a gravity equation which is geometric on both sides. To

give a further clue, the author will say that T will be replaced by a tensor which is

the result of a representative acceleration 2C
a . 2C

a seems as a curvature vector of

a particle’s trajectory with units of 1/length but as such, it is an intrinsic property of

the particle and not of a field. So we will have to derive our curvature vector from the

gradient of a scalar field and not from the velocity of any specific particle. Since our

new tensor will is purely geometric, the constant 4C
K

will be replaced by 1. To be

more precise, the equation will be written as


 RgR

K
termsotheraa

C
K

2
1)

_
(8

4 


and in some special cases where

electric charges are not involved, 0Q , another equation will be valid,

Raa
 4C

8


 . In any case this implies that
K
aa

K
a 


2

can be construed as

energy density and hopefully the reader is not annoyed by the sloppy notation 2a .
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The pedant reader is advised to skip to the next section to the one after the next,

where he/she will encounter another field intrinsic to an object but as a non-

relativistic limit that can’t be ignored.

Classical non-relativistic limit:

Using a potential field intrinsic to an object and gravitational pseudo-acceleration, the

author pleads guilty as charged (hopefully without charge carriers) but nevertheless,

the following will shed some light on the general intuition as to the expected relation

between energy and acceleration fields although as a physical argument, it is not

fully acceptable. We will now consider classical non-relativistic gravity and classical

non-relativistic acceleration as qualitative limits that will hint at the relationship

between non - inertial and non - geodesic acceleration fields and energy. The

following will describe the pseudo-energy of the gravitational field by means of

acceleration. A field of acceleration other than gravity has an important meaning, that

geodesic motion in that field, i.e. matter, is prohibited. We will have to present a

covariant formalism of such acceleration in more advanced sections of this paper,

however, if such an acceleration is small enough then the very existence of an

acceleration field is so fundamental that it redefines even the classical non-relativistic

physics. Estimates will be discussed in the next section. If the classical non-

relativistic and non-inertial acceleration caused by material fields is ),,( zyx aaaa  in

),,( zyx coordinates then matter at rest will observe pseudo-acceleration by the

gravity field ),,( zyx gggg  . Roughly we can consider 6 directions and

),,( zyx aaaa  can be parallel or perpendicular to the pseudo gravitational

acceleration ),,( zyx gggg  . Restricting the discussion to parallel direction yields
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the resulting non-relativistic accelerations ),,( zzyyxx gagaga  and

gggaaa  2 such that zzyyxx aaaaaaaa  etc.

Then by summation we have that the additional energy due to gravity is

zzyyxx gggggggg  . Therefore a nice test will be to see if there is a linear

relation between the integration of gg  and the classical negative potential energy.

We will calculate the integral of the square acceleration divided by the fourth power

of the speed of light 4

2

C
a

. K is the constant of gravity, M mass, r radii.

)
5
3(4

)(11 0

0 0

2

4
2

2

2

3

4
2

4  





















r

VolumeV r
KM

C
Kdrr

r

r
V
MK

C
dVa

C



(1)

Now we calculate the negative potential energy gE ,

g

r

E
r

KMdr
V
Mr

r

r
V
MK




















 )
5
3(4

)(0

0 0

2
2

3




(2)

So from (1) and (2)

4
0

2

4 5
3

C
KE

r
KM

C
K g

 (3)

(3) qualitatively implies the following relation between energy and non-inertial

acceleration where 2C is the energy density and  is the mass density

24

2

C
K

C
a 
 (4)
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In special relativity, the square norm of a normalized by C , 4-velocity of a particle is

constant 12  i
iuuN and also 0

)(
),(,2  k

i
i

k
i

ik dx
uuduuN such that

Cd
dxu

i
i 

and the normalized by C , 4-acceleration is 22

2

dC
xda

i
i  which is 1/length in units

which is the curvature of a specific particle’s trajectory. If 2N was not the norm of a

particle’s velocity, we could think of another way to describe acceleration. More or

less, that will be the subject of more advanced sections of this paper.

3. The classical non-relativistic limit – the electrostatic field

What can we say about the density of the electrostatic field? We know it is

20

2
_ EDensityEnergy 

 (5)

such that 0 is the permittivity of vacuum and E is the electrostatic field.  Now (4) has

a very deep meaning which is that acceleration of neutral charge-less test particles

should appear also within an electric field,

So by (4)

EK
C
aEK

C
a

22
0

2
20

4

2 
 (6)

(6) implies a very weak acceleration i.e. mass dependent force on small enough

charge-less neutral test particles, about 2sec/718.1 cm in a field of 1000000 volts

over 1 millimeters distance. See Timir Data et. al. work as an elegant way to focus

field lines by metal cone and plane and to observe the effect [5], however, in this

paper we shall see that the amount of charges has to be small, otherwise the force

becomes opposite in direction due to gravity and the non-geodesic acceleration field

is masked by the other effect. This acceleration exposes non-inertial, non-
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gravitational acceleration of particles that can measure proper time. On its own it is

not an interesting acceleration but it can explain the electric interaction as repulsive

when the integration of the square acceleration increases and attractive when this

integration is reduced. The author believes the acceleration of charge-less particles

in an electric field is from positive to negative.

In “Electro-gravitational engine and Dark Matter” it will be shown that there is an

electro-gravitational effect opposite in direction to the acceleration of an uncharged

particle in an electro-static field. There is at least informal evidence that the elecro-

gravitational effect shows thrust of the entire dipole towards the positive direction [6]

and the author does not imply asymmetrical capacitors of 1 - 0.1 Pico-Farad with

45000 Volts. Such capacitors according to the calculations in the section “Electro-

gravitational engine and Dark Matter” in this paper, can’t manifest any measurable

effect. Here is a testimony of Hector Luis Serrano in reply to Peter Liddicoat:

“Actually by the generally accepted definition of what constitutes high vacuum 10^-6

Torr is about in the middle. This pressure is about equal to low Earth orbit. More

importantly at this pressure the ‘Mean Free Path’ of the molecules in the chamber is

far too great to support Corona/Ion wind effects. We’ve tested from atmosphere to

10^-7 Torr with no change in performance either. However, I’m glad the results have

you thinking. It looks simple, but trust me it’s not”.

4. The non-geodesic acceleration field

It is required to achieve a curvature field without resorting to Tzvi Scarr and Yaakov

Friedman representation [4] that is required for a general acceleration

field.  AA  such that if V is the 4-velocity such that 1VV then the 4-

acceleration is actually 
 VAa  . In special relativity

 
22 /1

/,/,/,1

cv

cvcvcv
V zyx




such that zyx ,, are the well known three dimensional Cartesian coordinates,
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zyx vvv ,, are three dimensional speed coordinates , c the speed of light. The first

coordinate is 22 /1/1 cv is the speed along the time axis.

As we saw in the introduction, geodesic intersection by particles that measure the

upper limit of time from near the “big bang” singularity event or manifold of events,

causes discontinuity of the gradient  dx
dPPP , . However such conflicts can be

avoided, if geodesic motion is prohibited in material fields. In classical terms that

means an acceleration field  AA  should emerge.

The following is simply an exercise in differential geometry. Considering a scalar field

P and its gradient  dx
dPP  in covariant writing, such that dx are the coordinates,

find the second power of the curvature of the field of curves generated by  dx
dPP  .

It is a problem in differential geometry that can be left for the reader as an exercise.

However, if the reader wants to get the answer without too much effort along with

some physical interpretations, he/she should read the following.

The idea is to use a scalar field of time - that represents the maximum possible time

measured by test particles - back to near big bang singularity or to a manifold of

events from which we can say the cosmic expansion had began - and from this non -

physical observable, to generate observable local measurements.

The square curvature of a conserving vector field is defined by an arc length

parameterization t along the curves it forms.

Caution: This t may not be the time measured by any physical particle because the

scalar field from which the vector field is derived may be the result of an intersection

of multiple trajectories. However, a particle follows the gradient curves will indeed

measure t even if its trajectory is not geodesic.
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Let our time field be denoted by P and let P denote the derivative by coordinates

 dx
dPP  or in Einstein convention  PP , . Let t be the arc length measured

along the curves formed by the vector field P which may not be always geodesic

due to intersections as seen in Fig 1. By differential geometry, we know that the

second power of curvature along these curves is simply

 g
PP

P
dt
d

PP

P
dt
dCurv

k
k

k
k

)()(2  (7)

such that g is the metric tensor.  For convenience we will write k
k PPNorm 

and  P
dt
dP  . For the arc length parameter t . Here it is the main trick, Norm

may not be constant because P is NOT the 4-velocity of a specific particle due to

intersections of more than one possible particle curve.

Let W denote:







k
k

k
k

gPP
Norm

P
Norm

P

PP

P
dt
dW 



3)(  (8)

Obviously

03 
Norm

gPP
Norm

gPPgPP
Norm

gPP
Norm

gPPgPW
k

k
k

kk
k

s
s

k
kk

k





















(9)

Thus

2
2242

2 )(
Norm

PP
Norm

PPgPP
Norm

gPP
Norm

gPPWWCurv k
k

s
s





















 (10)
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Following the curves formed by  dx
dPPP  , , The term

Norm
P

dt
dx r

 is the

derivative of the normalized curve or normalized “velocity”, using the upper

Christoffel symbols, s
rsrr PP

dx
dP ;   .

Caution: Using normalized velocity, here has a differential geometry meaning but not

a physical meaning because a physical particle will not necessarily follow the lines

which are generated by the curves parallel to the gradient P unless in vacuum. P

may result from an intersection of curves along which particles move but may not be

parallel to any one of such curves intersecting with an event !!!

Norm
PP

dt
dxPP

dx
dP

dt
d r

r

r
s

rsr );()(   such that rx denotes the local

coordinates. If P is a conserving field then  ;; rr PP  and thus

 ,
2
1, 2NormPP r

r  and

))
,

(
,,

(
4
1

)(

2
3

2

4

22

2
22

2

Norm
gPNorm

Norm
gNormNorm

Norm
PP

Norm
PPCurv

sr
rs

k
k 














(11)

We define the Curvature Vector

mmm P
Norm

Norm
Norm

NormPU 4

2

2
m

2

2
i

i
i

i
m P,,

)P(P
P),P(P

PP
),P(P 










 (12)

which from [4] and simple calculations, should have the meaning mm A
C
a

U 
22

1


such that ma denotes a 4-acceleration field that will accelerates every particle that

can measure proper time and C is the speed of light and mA is a rotation matrix, i.e.
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k
k

i
i

m
m VVgVAVA 

 , mV is a vector and g is General Relativity metric

tensor. The curvature itself does not depend on any specific acceleration since it is a

scalar field.

m
mUUCurv

4
12  (13)

Obviously 0PU and therefore like 4-acceleration that is perpendicular to 4-

velocity U is perpendicular to P . In its complex form (12) becomes

)*)(*(
**;

)*)(*(

*;ˆ
L

L
k

k

ki
ik

L
L

k
k

i
i

PPPP
PPPP

PPPP

PP
U 
  (14)

and by using )ˆ*ˆ*ˆˆ(
2
1 k

k
k

k UUUU 

))ˆ*ˆ*ˆˆ(
2
1(

4
12 k

k
k

k UUUUCurv  (15)

Obviously 0* PU .

5. Invariance under different functions of P

i
i

m

μ
μm

m PP  s.t.  NP
N

P,N
N

,NU  2
4

2

2

2

(also found as Z in this paper) we can

sloppily omit the comma for the sake of brevity the same way we write iP instead of

iP, for idx
dP and write m

μ
μm

m P
N

PN
N

NU 4

2

2

2

 . Suppose that we replace P by

f(P) such that f is positive increasing, then ipiii (P)Pf
dx
dP

dp
pdf

dx
df(P)f(P) 

)(
.
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Let 
PP2 N then 222ˆ (P)fNf(P)f(P)N p 

 and k
p

ppkk p
pf
pf

N
N

N
N

)(
)(2

ˆ
ˆ

2

2

2

2

 but

also

kk

μ
μk

p

kp
s

p
s

p

pps
k

p

ppk

kp
s

psk
k

UP
N

PN
N
N

pfN
ppfppf

p
pf
pf

N
Np

pf
pf

N
N

N
ppfppf

N
N

N
NU







4

2

2

2

222

2

2

2

22

2

2

2

)(
)()(

)
)(
)(2

(
)(
)(2

ˆ
)()(

ˆ
ˆ

ˆ
ˆˆ

(16)

Consider quantum coupling between the wave function  of a particle and the time

field P , ** 2PP is as follows Where does this coupling P come

from ? It is has some common sense if we say that the sum of wave functions that

intersect/coincide with an event, influence the time measurement from near the “big

bang” singularity event or manifold of events to that specific event.









 kk N

N
N
NU )(

)ˆ(
*)(ˆ

ˆ
ˆˆ

22

j
j

2

2

k
2

 (17)

Index k , means derivative by coordinate kx , k
kN *)()(ˆ 2  , k

kN 2 .

As a special case, we replace  by a wave function that depends on  only

1-is.t. 






iE

e (18)

E is the energy of a coupled particle,  is the Barred Planck constant, so we have

)1()(


Ei
kkkk

  (19)

)1()1(ˆ
2

22
2

2

22
2



ENEN k
k

  (20)
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and

)(
2

)1(

/2

)1(

)1(

ˆ
ˆ

222

2

2

2

2
2
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2

22

2
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2

2

2

2

E
E

N
N
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NE

E
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N
N

N
N sssss


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


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














 (21)

Now we want to calculate kN
N )(

)ˆ(
*)(ˆ

22

j
j

2

 so we have
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2
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2

(
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)1(
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)
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2

(
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)ˆ(
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2
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2
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2
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2
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N

Ei

NE
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N
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N
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


































(22)

From (17), (21) and (22) we have the result
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6. General Relativity for the deterministic limit
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By General Relativity, We have to add the Hilbert-Einstein action to the negative sign

of the square curvature of the gradient of the time field. Negative means that the

curvature operator is mostly negative.
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A reader that still insists on asking on where does  come from, can understand

that L can be developed also for  and remain invariant if  is only a smooth

function of  .

R is the Ricci curvature [7], [8] and g is the determinant of the metric tensor

used for the 4-volume element as in tensor densities [9].

By Euler Lagrange,
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From (24) and (27),
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R is the Ricci tensor.  From (24),(28),(29) we have,
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A simpler solution to zero Euler Lagrange equations, is
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Which results in a special case,

0);( 
U (33)

and (30) becomes,
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The user can either refer to the following calculation or skip it.

02));((4

)(2

)(
4);

)(
(4

P4P);(4

)(
62

);
)(

(4P)4);(4(

2
m

22
m

4

2

3

3
m

2

4

2

3
m

33
m

2








































U
Z

PZP
Z
UU

Z
U

Z
PPZ

Z
Z

Z
PZ

P
Z
PZP

Z
PPZ

Z
ZZ

Z
Z

P
Z
PZ

Z
ZPZ

P
Z

PPZ
Z

ZZ
Z
Z

m
k

k

k

k

m
m

m

m
m

s
s

m

m
m

m

s
s

m

(35)

Recall that 0k
k PU , multiplication by
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and as a result of (37) the following term from (30) vanishes,
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Which yields a simpler equation (34). Recall that 2
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Which proves (33) .

7. Electro-gravitational engine and Dark Matter

The following will describe a technology that can take energy from space-time

apparently by Sciama Inertial Induction [10] and is closely related to Alcubierre Warp

Drive [11]. Electro-gravity follows from (6), (30) and (31). For several reasons we
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may assume the weak acceleration of uncharged particles mentioned in (6) is from

positive to negative charges see also [5], consider the general relativity equation
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G is the Einstein tensor. From  (4) in a weak gravitational background field,
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C is the speed of light, a is the non-relativistic weak acceleration of an uncharged

particle, 0 is the permittivity constant in vacuum, K is the gravitational constant and

E is a static non-relativistic electric field in weak gravity, assuming  that by correct

choice of coordinates,

),E,E,E(EEm 3210 0 (41)

and also
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kE (42)

From electro-magnetism
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From the electro-magnetic theory
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so for t Schwarzschild coordinate time,
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such that

K02
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behaves like mass density and therefore we can define an electro-

gravitational virtual mass as dependent on charge Q :
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We will calculate
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 for 20 Coulombs.
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Within 1 cubic meter the effect would be a feasible electro-gravitational field because

Newton's gravitational acceleration as a rough approximation yields,
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a little less than 4g. The problem is the capacitance of parallel plates,
d
A0Cap




and QVoltCap  , such that Cap denotes Capacitance, A is the area, d is the

distance, V is the voltage and Q is the charge. The solution to that problem is to use

multiple parallel capacitors stacked together one on top of the other such that the

material between two adjacent capacitors will have much higher permittivity than the

gap between each capacitor's boards and such that all capacitors will be wired in

parallel. The result is a cumulative effect of little electro-gravitational warps. This

model was developed with the help of Ran Timar, Elad Dayan and Benny Versano

who are electrical engineers.

(Fig. 2) Suchard - Dayan – Timar – Versano model, the effect in the wrong direction

from plus below to minus above is attenuated by dielectric slabs.

The idea: The charges in the dielectric molecules are either closer than between

molecules or closer between different molecules. Best results not necessarily result

from the highest possible dielectric constant. The goal is that electro-gravity will be

stronger within the aligned molecules as gravity depends on the square inverse of

distance. The polarity caused by the conducting boards nearly cancels out and a net

effect is expected.
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The calculations rule out any measurable vacuum thrust of Pico-Farad or less

asymmetrical capacitors even with 50000 volts supply, simply because the net effect

depends on the total amount of separated charges which are far from sufficient in

standard Biefeld Brown capacitors [12].

Plasma

Another idea is to use ionized plasma. Let us see what we can do with one gram of

ionized hydrogen. The number of atoms by Avogadro's number is

23106.02214129n  . The charge of the electron is

Coloumbs1051.60217656e -19 so

Coloumbs105956868859.64853364 4Q -1-13-11 seckgm106.67384K and

F/m1076..8.85418781 -12
0  so (10.23) reaches a virtual mass of

Kg.ssVirtual_Ma 151048428726663259684867780662285502  . That is far less

than the mass of the Earth KgM Earth
2410×5.97219 but the distance between two

clouds of positive and negative ionized hydrogen can be much less than the average

Earth radius and therefore a field that overcomes the Earth gravitational field is

feasible.

Dark Matter follows immediately from positively ionized gas in the galaxy and

negatively ionized gas outside or on the outskirts.

Conclusions

An upper limit on measurable time from each event backwards to the "big bang"

singularity or manifold of events may exist only as a limit and is not a practical
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physical observable in the usual sense. Since more than one curve on which such

time can be virtually measured, intersects the same event - as is the case in material

fields which prohibit inertial motion, i.e. prohibit free fall - such time can't be realized

as a coordinate. Nevertheless using such time as a scalar field enables to describe

matter as acceleration fields and it allows new physics to emerge as a replacement

of the stress-energy-momentum tensor. The punch line is electro-gravity as a neat

explanation of the Dark Matter effect and the advent of Sciama's Inertial Induction

becomes realizable by separation of high electric charges. This paper totally rules out

any measurable Biefeld Brown effectin vacuum on Pico-Farad or less, Ionocrafts due

to insufficient amount of electric charges. The electro-gravitational effect is due to

field divergence and not directly due to intensity or gradient of the square norm.

Inertial motion prohibition by material fields, e.g. intense electrostatic field, can be

measured as mass dependent force on neutral particles that have rest mass and

thus can measure proper time. Such acceleration should be measured in very low

capacitance capacitors in order to avoid electro-gravitational effect. The acceleration

should be from the positive to the negative charges. The electro-gravitational effect is

opposite in direction, requires large amounts of separated charge carriers and acts

on the entire negative to positive dipole.

Appendix – The time field in the Schwarzschild solution

Motivation: To make the user familiar with the idea of maximal proper time and to

calculate the background scalar time field of the Schwarzschild solution.

We would like to calculate 







 3

2

2 )P(P
)P),P((P

)P(P
g),P(P),P(P

i
i

m
mλ

λ

i
i

mk
ks

s
mλ

λ

in

Schwarzschild coordinates for a freely falling particle. This theory predicts that where
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there is no matter, the result must be zero. The result also must be zero along any

geodesic curve but in the middle of a hollowed ball of mass the gradient of the

absolute maximum proper time from "Big Bang" event or events, derivatives by

space must be zero due to symmetry which means the curves come from different

directions to the same event at the center. Close to the edges, gravitational lenses

due to granularity of matter become crucial. The speed U of a falling particle as

measured by an observer in the gravitational field is

22

2
2 2

rC
GM

r
R

C
UV  (48)

Where R is the Schwarzschild radius. If speed V is normalized in relation to the

speed of light then
C
UV  . For a far observer, the deltas are denoted by rddt ,' and,

)1()( 222

r
RV

dt
drr  (49)

because rRrddr /1/  and rRtddt /1 .
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dtdr
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)1(
)1(

)1(
)1(

)1(

)/()1(

Which results in,

)1(
r
R

dt
dPPt  (50)

Please note, here t is not a tensor index and it denotes derivative by t !!!

On the other hand
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R
r

dr
dPPr  (51)

Please note, here r is not a tensor index and it denotes derivative by r !!!

For the square norms of derivatives we use the inverse of the metric tensor,

So we have
)1(

1)1(

r
Rr

R


 and )1(

)1(

1
r
R

r
R
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2)1)(1(
1
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
dx
dNN

2
2  And we can calculate
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We continue to calculate
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(54)

Please note, here t is not a tensor index and it denotes derivative by t !!!
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Please note, here r is not a tensor index and it denotes derivative by r !!!
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And finally, from (53) and (57) we have,
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which shows that indeed the gradient of time measured, by a falling particle until it

hits an event in the gravitational field, has zero curvature as expected.

Appendix – Acceleration field representation

The acceleration can be expressed in coordinate dependent way by at least 3
variables cba ,,
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As the reader can see, the vectors are not perpendicular in Minkowsky geometry but

they are perpendicular in ordinary Euclidean geometry. These vectors are closely

related to Ashtekar variables [13].

Let A denote 
A . Obviously IcbaAAt )( 222  where I is the identity matrix

and the determinant is 22222 ))**(
2
1()(Det(A) i

i
i

i UUUUcba  .
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Such that iU is the complex form of the curvature vector where the scalar field p is a

multiplication of the time field of upper limit of measurable time from near the big

bang singularity event or manifold of events from which we can say the cosmos

started to expand p .  is the wave function describing the material observer

of the time field.
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