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Finite-time combination-combination synchronization
of hyperchaotic systems and its application in secure

communication

Abstract: Global finite time synchronization of a class of combination- combination
chaotic systems via master-slave coupling is investigated. A nonlinear feedback
controller and a continuous generalized linear state-error feedback controller with
simple structure are introduced into the synchronization scheme. They are applied to a
practical master-slave synchronization scheme for combination- combination systems,
which consists of the Chen chaotic systems, hyperchaotic Chen systems and
hyperchaotic Lorenz systems. Numerical simulations are provided to illustrate the
effectiveness of the new synchronization criteria. Based on the proposed
synchronization, a scheme of secure communication is then established and the
continuous or digital signals are transmitted by the chaotic mask method. Finally,
simulation examples show that the transmitted message can be recovered successfully
in the receiver end.

Keywords: Chaos synchronization, combination-combination chaotic systems,

finite-time stability, feedback control, secure communication

1 Introduction

Chaos is really an interesting phenomenon in nonlinear science. It is especially high
sensitive to the initial conditions and attracts many researchers’ attentions. In the past
two decades, many methods of chaos asymptotical synchronization have been
investigated, such as active control!'), adaptive control®’ state feedback control™)
backstepping control™, and sliding mode control®. The asymptotical synchronization
mentioned here means that two (or many) chaotic systems actually evolve and
consentaneously reach the defined conditions, e.g., equality of the systems’ state

variables, as the time goes to infinity.
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In real-world applications, however, it is often desired that synchronization of
chaotic systems should be achieved in finite-time as small as possible. Recently, some
finite-time control techniques have been applied to synchronize the master-slave
chaotic systems in finite-time, e.g., Yang and Wu investigates the global finite time
synchronization of a class of the second-order nonautonomous chaotic systems via a
master-slave coupling and a continuous generalized linear state-error feedback
controller with simple structure is introduced into the synchronization scheme!®, the
terminal sliding-mode control technique!”’, the active control technique!®, and the
observer-based control technique'™, and so forth.

This paper introduces a nonlinear feedback controller and a so-called generalized
linear state-error feedback controller into a master-slave synchronization scheme for
the high-order (third and forth) chaotic systems to make the scheme synchronize in
finite-time. Much different from the other synchronization of chaotic systems, we
propose three chaotic systems as the master systems, and slave systems are also
combined by three chaotic systems.They will complete combination-combination
synchronization in finite time by the designed controllers. As an effective approach,
combination-combination synchronization of the high-order chaotic systems has
potential applications to many scientific and technological fields such as secure digital
communication. Hence, a secure communication scheme is proposed based on
combination- combination synchronization of hyperchaotic systems. Continuous
signals and digital signals are taken as the transmitted signals, and numerical
simulations show that the original information can be recovered correctly in the

receiver end.

2 The combination-combination synchronization scheme
We consider three chaotic systems as the master systems, let A4,B,C e R"™ be a

constant matrix, M(¢)=(m(t)),, €R"™ a bounded time-varying matrix and

f:R" > R" acontinuous nonlinear function such that

JX)=f¥)=M@)(X-Y),
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and 0“:R" — R" is defined as:
54X, Y)=|X -Y|" sign(X -Y),a €(0,1),
where X,Y € R" are the state vectors of master and slave systems respectively.

Consider a master-slave synchronization scheme for two autonomous chaotic
systems coupled by a generalized linear feedback controller as follows:
X, = AX, + £,(X)
Master systems X, =BX,+ f,(X,), (1)
X, =CX, + f,(X,)

Y, =AY+ [(H)+U, ()
Slave systems Y, = BY, + £,(Y,)+ U, (1), )
Y, =CY,+ £,(Y,) + U, ()

Controllers U@)=F(X,Y)+u/(t),i=12,3,
where u(t)=K(X-Y)+S6“(X -Y), 3)
and X,,X,,X,.,Y,Y,,Y, are the subsystems of X,Y respectively, and K,S € R""

are constant feedback gain matrices to be determined.

Letting the error state vectors E =X, + X, + X, —¢@Y, - BY, —yY,, we can get the
error systems
E=(G(A(t),B(t),C(t)) + M(t)-K ) E - S5“(E). 4)
where G(A(t), B(t),C(t)) € R* is a matrix connected with subsystems linear
matrix 4, B,C . If we can design suitable feedback gain matrices K . S that the error
systems with different initial values x(0), y(0),z(0) satisfies

lim |[E(0)] = im X, () + X, (6)+ X,(0) = 0¥, (1) = BY,(0) = 0] > 0,91 > T,

where ||0|| denotes the Euclidean norm of the vectors.

Lemma 1 ([10]) (Gerschgorin disc theorem) Let H =(4,),,, € R™" and

nxn

n

= Z ‘hz'j

J=Li%j

,i=1,2,---n. Then all eigenvalues of H are located in the union of n

discsas G(H)= U {zeC: |z - hl.,.| <r},where C is the set of complex numbers.
i=1

Lemma 2 ([11]) Assume D(t)=(G+M (1)) +(G+M(¢)) = (d;(1),., is bounded.

nxn
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That is, we haved, (1)=d, (1), <d.d.()<d,vt>0, fori,j=12,---n, and

lj,

dij(t)

i # j. Then synchronization among master-slave systems (1)-(3) can be achieved in
finite time, if the feedback gain matrix S =diag(s,,s,,---s,) 1is positive definite and

the feedback gain matrix K =diag(k,,k,,---k,) satisfies

<0. %)
d:z o d
Furthermore, the corresponding settling time satisfies

T(e(0) <— 2 - ’1;8 V(e(0)?|, (6)

A (1= )
e(0) = x(0) - y(0), 7 (e(0)) = e(0)" e(0), & € (0,1), s = min {sl,s2 . --,sn}, and

where

A <0 1s the maximal eigenvalue of the matrix Dk defined above.

3 Implementation of combination-combination synchronization

Based on the definitions and Lemmas in section 2, controllers (3) are designed to
synchronize the combination-combination chaotic systems.

The master systems consist of the Chen chaotic systems, hyperchaotic Chen

systems and hyperchaotic Lorenz systems. It’s given as follow

X =a,(x, —x,)

subsystem 1 <x,=-Tx —xx;,+¢x,

X, = xx, —bx,

X, =a,(x, —x,)+x,

Xy =d,x, + x5 — X, X,
subsystem 2 <
X = X, X5 — b, X (7)

X, = XsXg + X,

Xy = a3 (X —xg) +x,
Xy = C3Xg — X9 — Xg Xy
subsystem 3 < .

Xyg = XgXo —Dyx

Xy = —XgXy +d3xy
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wherea, =35,b, =3,¢, =28,a, =35,b, =3,¢c, =12,d, =7,0.0085 <, <0.798,a, =10,
b, =8/3,c,=28,-1.52 <d, <-0.06. Under these parameters the master systems all
are chaotic. Similarly, the slave systems are in the form of

n=a(y,-y)+U,
subsystem 1 1y, ==Ty, =y y;+¢y,+U,
V3=, —by+U;

Vi=a,(ys—y)+y; +U,

subsystem 2 ):’5 =d,y, + 6, Y5 = Y,y +Us ’ ®)
Vo =VsYs —byys +Us

Yy =Ysys 1y, +U;

Vs = a3 (Vo = ¥g) + 1, + U

Vo = €35 =X = Vs ¥io T U,

Vio = YsYo —biyiy +U

Vi =Yoo sy, +Uy,

subsystem 3

U

1

where U(¢) = U =F(x,y)+u(t),u(t)=KE+So0“(E),x €(0,1) are designed to
10

Ul 1
synchronize the combination-combination chaotic systems respectively.
In the first, the errors are defined as
E =x+x,+X =@y, = By, — 1V
E, =X+ x5+ X =00, = Boys =72V,
Ey=x;+ X+ X0 =095 — ByVs = V3 V1o .
E,=x+X,+x,=0,0 = By, = ViV

)

In order to prove the error equation (9) is asymptotically stable, we just need to

synchronize the combination master systems (7) and slave systems (8). We have
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-a, a 0 0
-7 ¢ O
0 0 -p
-a, a, 0 1
d, ¢ 0 0
108 G(A(1),B(t),C(t)) = 0 0 -b O :
0 0 0 =n 0
-a, a 1
¢ -1 0 0
0 -b O
0 w000 dy,
0 0 0 e 0]
0 0 -—x
0 x O
: 0 0 0 O
0 0 —x, O
109 M(?) = 0 x, 0 0
0 0 x; O :
0 0 0 O
0 0 —x O
0 x, 0 O
RUNEES 00 -x 0],

110  If we choose controllers as

U, =, —@)ay, +k,(x — 0, y) +5,0(x, -9, y) /¢,

U, =(1(0, = 03, + 35 (5,0, = 0, ¥) + hy (3, — 0, ¥,) + 5,0 (X, — 0, ¥,) [0,
Uy = (0%, =0, Y)Y, + k(5 — 0, y3) + 5,8 (x5 — 0, ;) /0,

U, =((B = B)ayy, + v, (B = B+ ky(x, = B y,) + 5,8 (x, — 0, y )/ B

Us =((B, = By, + v (Byx, — Bix,) + ks (x5 = B, y5) +558° (x5 — 905 y5)) | B,
11 Us = (05(Byxs = Biy) + ko (xg = By Yo) + 5.0 (X — 05 Y5 ) By

U, = (05 (Byxs = Buys) +ky(x, = B y,) + 5,0 (x, — 0, y,) [ By

Uy = (95 (7, = 1)+ (7a = 7)00 + ks (5 = 7 ¥9) + 550 (% — 0, Y)) /7,

Uy = (&5(7, = 7)Y = Yo (75X = 7205) + ko (%5 = 7, ) + 5507 (X5 = 04 ¥5)) /7,
Uyo = s (1% = 755) + o (510 = 75 Y1) + 5100 (X0 = B0 Y1)/ 5

Uy, = 0o (7ads = 75%) +hyy (4 =7, Y1) +5,8% (5, =9, 1)) 74

112  Based on the Lemma 2, we have
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2a-2%  a-7 0
a-7T 62 0
0 0 2k-2h
20,-2%, a+d, 0 1
a+d, 2%-2% 0 0
Dic= 0 0 2h-2% x
1 0 X -2
20,2k ay+e
a+e, 2=k
0 0
| 1 0

3 3
k1>%‘711+2Lplj=;$]pjd1/ 1( =7),k, >%‘7 +2_pZJ=IZ;;2 d
k3>l_33+Lip = (2b)k>l‘7 +LZ4‘,P/ d,; =

2 2py 15 2 2py i

- 1 7. 13
k5>5 22+2p2 j:lzj‘;zpj (262+a2+d ), kg >Ed +2p3 Flz’j:ﬁp
k7>l_44+ Ly pjd3j (1+x5+2r2)k >lj +L i pfdl/

2 2p, A 2 2p) 25a
k9>l_22+ ! 24: pid,; = (a3+C3 2), k10>l‘7 +L 24: p

2 2p, A5 2 2ps 450
ko>Ld, z pd, = (1 x,+2d,),

2 P4J =1, j#4

0 1
0 0
2h, 2%k, X
X 2k, 42, |

. 1
J 2 :5(C1+a1_7)3

( a,+d,+1),

« 1
s, = 5(—2])2 +x5) 5

1
—E(—a3+c3+l),

.1
sy =5 (2b =),

Then the master systems (7) and slave systems (8) can be synchronized in finite time,

E, X, H X, X =0y — By, =1V
.|l E X H X+ X =@,y = B Vs — V2V
1.e.lim =1lim =0,
=1 ST X+ Xg + X0 — @3 Y3 = ByVe — V3o
E, X+ X+ X =@ = By, — Y
and the synchronization time satisfies
2 A
T(e(0)) < In|l — 2 17 ((0)) 2.

4 (I-a) 2s

max

Case 1 If we choose
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@ =diag(@,,Q,,P5,P,) = B =diag(p, p,, 5. B,) =

2
y=diag(y,,7,,75:74) = 3 ,S:diag(l,l,-~-,1)eR”X”,a=O.5.
4

and the variables of chaotic systems are bounded as

-23<x,<31,-32<x,<37,0<x;,<60,-19<x, <22,-23<x,<24,0< x, <38,,
=184 <x, <102,-22 < x, <25,-24 < x, <28,0< x,, <48,-166 < x,, <193.

Therefore, the feedback gains can be taken as follow,

k= max(% (=a,=7+¢))=-T,k, = max(% (¢, +a,—=7))=56,k, = max(% (=2b))) =-3,

k4 = maX(%(_az +d2 +1)) = _13'57k5 = max(%(zcz +a2 +d2)) = 33)

Ky = max (3 (-2b, + ) =9, ks = max(- (26, +a +d;) =33,
1 1
k8 = maX(E (_a3 + C; + 1)) = 97 k9 = maX(E (613 + G~ 2)) = 8’

iy = max( (26, ~3,)) =10k, =max( (1-x +2d,) =13,

Based on the Lemma 2, the master systems (12) and slave systems (13) will be
synchronized in finite time. It’s synchronized in finite time as

2 A
T(e(0)) < In|l =222 7 (e(0)) 2 2 1.0.
(O € sl ==V (e(0)

The simulation result of combination-combination synchronization of chaotic

systems is showed in figure 1.
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Fig. 1 Errors of combination-combination synchronization of chaotic systems

Remark 1 If we choose £,(i=1,---,11) large enough, the synchronizations of chaotic
systems will be much quicker than the small one. But these values of gain coefficients
k.(i=1,---,11) can not get too large to keep the initial systems stable, i.e. it may lead
the simulation results to overflow.

Remark 2 In the simulations, there are so many available values of gain coefficients
k(i=1,---,11)to be set, because the k;(i=1.---,11) all connect with the bounded
variables of master system that are changing by the time. So we just choose the proper
maximal values of gain coefficients &, (i=1,---,11) that will keep the stability of

slave systems.

4 The application of secure communication

In this section, we apply the proposed combination-combination synchronization to
secure communication, for example, the continuous signals of sine functions and the
digital signals. The secure communication scheme is sketched as figure 2. In the
transmitter side, the master systems are combined with three chaotic subsystems,

which will produce high random sequences x(¢) . Then the message m(¢) is masked

by the random sequences x(¢), and x(¢) is transmitted through the public channels.
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161  In the receiver side, the combination-combination synchronization chaotic systems

162 will recover the original message S,(¢) from the random chaotic signals x(¢) .

.....................................................................................

i
Channel
o

L S— TraHSMl“er .................................. H . R———
163 Receiver
164 Fig. 2 Secure communication scheme of combination-combination synchronization
165
166 Here the chaotic mask method is used for secure communication, S(¢)is the

167  original signals, and it’s masked by the pseudorandom sequence produced by the
168  combination chaotic systems. Finally, the original signals are recovered by the

169  synchronization of combined chaotic systems in the receiver side.

170 The originals are given as follow
1.

171 S(t) = E(a sin(f) +bcos(t)), where  d =|a|+|p|,
172 Here parametera =1, = 2,d =3 . The results are showed in Fig. 3.

- ; . -

P P P

b b b
1 7 3 o 5 10 I 20 2 30 o 5 10 5 E) 2 30 5 5 10 5 F) 2 30
174 a) Original signals b) Transmitted signals ¢) Recovered signals.
175 Fig. 3 Process of transmitted signals and recovered signals.
176 Then we choose the digital signals, such as square signals

1

177 S@)= E(square(t)), where d =max(square(t)),

178  The results are showed in Fig. 4.
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a) Original signals b) Transmitted signals ¢) Recovered signals.

Fig. 4 Process of transmitted signals and recovered signals.

4 Conclusions

This paper has developed a unified method for analyzing the global finite-time
synchronization of a large class of the high-order autonomous chaotic systems under
the master-slave scheme. Combination-combination synchronization of chaotic
systems has been proposed by a nonlinear feedback controller and a continuous linear
state-error feedback controller. Then a secure communication scheme of chaotic mask
method is given based on the combination-combination synchronization of
hyperchaotic systems. The original information signal is masked into the random
sequences of the chaotic systems and the resulting system is still chaotic. In the
receiver end, the information signal can also be recovered accurately. Theoretical

analysis and numerical simulations are shown to verify the results.
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