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Abstract 
 
The main interest is to study the salient features of ion- acoustic wave in a simple plasma under 

the influences of Coriolis. Nonlinear Sagdeev like-wave equation has been derived by the use of 

pseudopotential analysis, which in turn, becomes the tool in studying the different nature of 

solitons plasmas.  Main emphasis has been given to the interaction of Coriolis force, which 

influence the coherent structure of solitons of different kinds as the existences of compressive 

and rarefactive solitary waves along with their explosions or collapses. Further the effects of  

nonlinearity have shown  shock waves, double layers, sinh-wave and finally approaching the 

formation of sheath  structure in plasmas. The observations expect the merit on waves to be 

related in astrophysical  plasmas. 
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The study of soliton propagation in plasma dynamics has received a great deal of attention in 

connection with the problems related to laboratory and astrophysical phenomena. Since the 

observations on  soliton   in water wave (Scott [1]), and thereafter such  nonlinear wave have 

been derived  through the augmentation of   Korteweg-de Vries [2] equation (called as K-dV 

equation). Later, the  use of a special  reductive perturbation technique derives the K-dV 

equation in plasmas by Washimi and Taniuti [3] and the steady state solution of which  were 

describes solitary waves (solitons).  In the same decade, another pioneer method derived the 

nonlinear wave phenomena in terms of an energy integral equation by Sagdeev [4 and analyzed 

rigorously soliton in plasmas. Both the equations are made an unique platform and  successfully 

bridges the oretical observations with experiments   laboratory [5, 6] as well as with the satellite 

observations in spaces [7, 8] . Many other authors have studied the soliton dynamics in various 

plasma models among which  Das [9], probably for the first time, observed the   new  nature of 

solitary waves causes by the presence of an additional negative ions in plasmas as of the heuristic   

milestone in soliton dynamics and get success in  confirmation in space (Wu et al. [7]) and 

laboratory plasmas (Watanabe [10], Lonngren [11]). Parallel work has been seen later in 

discharges (Jones et al.[12]) showing the constituent effect, even for small percentage of 

additional multi temperature electrons, exhibits new features in plasma as similar to those could 

be observed by Das[9] in negative ion-plasmas. Further advancements have been  done by many 

authors through the derivation of nonlinear wave equation  (Chanteur et al.[13], Raadu [14], Das 

et al.[15])  showing the occurrences of compressive and rarefactive solitons in spaces as well as 

in experiments  (Nishida et al.[16]).  Study furthered again for the  findings new  features as 

spiky and explosive solitary waves along with double layers (Nejoh et al. [17], Das et al. [18]). 

Again the interest on solitons has widened in presence of and finds  magnetic field  interaction 

yields  the formation of compressive and rarefactive solitons (Kakutani et al.[19], Kawahara 

[20]). Such works have  encouraged the authors (Haas [21], Sabry et al.[22], Chatterjee et al. 

[23]) to study interesting nonlinear features in the  areas of  Quantum plasma.  

 
Recently, study has been focusing for new findings in astroplasmas to support the satellite 

observations, which are still now in growing interest, even though fewer observations made by 

the Freja Scientific satellite [7] and manmade satellites has supported the existences of nonlinear 

waves like solitons in ionosphere. Das and Nag [24, 25] widen the interest following the reality 
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on the effect of  rotation in astrophysical problems (Chandrashekar[26], Lehnert [27], 

Chandrashekar [28], Lehnert [29]) observable in slow rotating stars as well as  in cosmic physics. 

Their overall studies on the low frequency Alfven [30] waves find, the Coriolis force yields new 

findings related to the explanation of solar sunspot cycle. Latter, Uberoi and Das [31],  based on 

the linear wave analysis,   studied the plasma wave dynamics to show the interaction of Coriolis 

force evaluated in an ideal lower ionosphere  and conclude that, however small might be the  

magnitude of rotation, it can not be ignored otherwise observations might be erroneous.  Das and 

Nag [24,25] have shown the formation of rarefactive and compressive solitons in rotating plasma 

along with the yield of a narrow wave packet leading to the creation of high electric force and 

thus magnetic force as well and the density depression thereby causing radiation termed as 

soliton radiation. Again, based on the observation of a rotating star, especially with high rotation 

neutron star or pulsar, Mamun [32] has studied the evolution of small amplitude waves showing 

the formation of narrow wave packet with the increase of rotation which causes the soliton 

radiation termed as pulsar radiation. Moslem et al.[33] regarded such observations convincingly 

in rotating e-p-i plasma, showing the soliton pulses collapse by the interaction of rotation, 

relevant in pulsar magnetospheres.  

 
Based on all observation, we have considered plasma rotating with a uniform angular velocity 

around the axis at an angle  with the direction of plasma-acoustic wave propagation. In sequel 

to earlier works, the present paper rekindles with the expectations of new findings as on solitons, 

shock waves, double layers etc. 

 
 
 
 
Basic Equations and Derivation of Nonlinear Wave Equation  
 
We have considered an unmagnetised plasma consisting of electrons and singly charged ions 

(under the assumption Te >> Ti). Without loss of generality,  acoustic wave propagation has  

assumes  to be unidirectional propagating along x-direction. Further the plasma is having under 

the influence of Coriolis force generated from slow rotation with  angular velocity  at an angle 

  with   propagation direction. Following Das et al. [31], the basic equations for ions are written, 

with respect to a rotating frame of reference, in normalized forms as  
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where the normalized parameters are  defined as  
 
n = ni / n0,      x = x /,    vx,y,z = (vi)x,y,z / Cs,   t = t ci ,   = Cs / ci , Cs = ( kTe/mi )1/2,  ci = 

eĦ/mi  with =2.  ωci and   denote respectively  the ion-gyro frequency and ion-gyro radius, 

Cs  is the ion acoustic speed.   Ħ =2m/q  has been due to rotation,   where    is the angular 

velocity mi is the mass of the ions moving with velocity vx,y,z ,  and n be the  density.  

The basic equations are supplemented by Poisson equation which relates the potential  to the 

mobility of the charges as  
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   is the Debye length                                                                                                

 
For the sake of mathematical simplicity, equations for electrons are simplified to the Boltzman 
relation as  
 
                                  exp( )en                                                                                                   (6)                                                       
 
where  = e/kTe is the normalized electrostatic potential and  ne is the electron density 

normalized by n0 (= ni0 = ne0).                                                                                                   
 

Now to derive the Sagdeev potential equation, pseudopotential method has been employed which  

needs to describe plasma parameters  as the function of     [ =  (x −Mt)] with respect to a 
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frame moving with M (Mach number) and −1 is the width of wave. Now using the 

transformation along with appropriate boundary conditions at   [34], 
(i) 0v   (  = x,y,z) 

(ii) 0  

(iii) 0d
d


  

(iv) 1n  , 

 
Eqs. (1) – (4)  are then reduced finally to a modified Sagdeev potential equation as  
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  where 
2

3( ) 1 M dnA n
dn

 


  and  ( , )V M  is known  as classical Sagdeev potential.    

 
Mathematical manipulation followed  once integrating in the limit  = 0 to ,  Eq.(7) takes as  
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A(n), which is a function of plasma constituents,  plays the main role in finding the different 

nature of  soliton solution from  Eq.(8). But due to the presence of A(n),  Eq.(8) cannot be 

evaluated analytically, and consequently as for  the desired observations in astrophysical 

problems, we make a crucial approximation of small amplitude wave followed by the assumption 

on  electron Debye length to be much  smaller than ion gyro radius. Based on this, ion density is 

approximated as  

 
                               exp( )n                                                                                                        (9) 
 
and A(n) can be written explicitly as 
 
                              2( ) 1 exp( 2 )A n M                                                                                   (10) 
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Now Eq. (8), with the substitution of Eqs.(9) and (10),  reads  as 
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Set of equations, d/d can be evaluated from Eq. (11), and  leads to a nonlinear equation in 

F(). But the solution of modified nonlinear equation requires some numerical values of plasma 

parameters. Again  F() has been  expanded in power series of  up to the desired order which, 

in turns,  exhibits  different nature of solitary waves. 

 
First, we consider     1 i.e. small amplitude wave approximation and Eq. (8) derives as 
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and correspondingly A(n) finds, following  Das et al. [35], as    

 
2( ) 1 exp( 2 )A n M     1 M2                                                                                                (14) 

 
 
Derivation of Soliton Solution with Second order Nonlinearity in  
 
To analyze the existences of  nonlinear acoustic waves, we have used sech-method based on 

which wave equation derives  soliton solution in the form of sech( ) or might be in any other 

hyperbolic function and . extended the results successfully in the astrophysical problems [36] and 

in plasma dynamics [37]. To derive soliton solution by sech-method, transformation as () = 

W(z) with z = sech has been used to  modified Sagdeev potential equation (Eq.(13)). The 
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specialty of this method has an easier success and merit as well for obtaining soliton propagation. 

Use of sech-method to   Eq.(13) finds   a Fuchsian type  differential equation as 

2
2 2 2 2 2 2
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                                                (15) 

 

Eq.(15) urges  to  use  Frobenius method at the singularity z = 0 and a series solution of the form   

W (z)  as 
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has been used  and derives recurrence relation as      
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The solution determines the different features of solitary wave. In order to find so, it is essential 

to determine  ar and . For the sake of mathematical simplicity, we adopt a simplified series for 

W(z), by truncating it into a finite  (N+1) terms along with   = 0. Later, the actual number N in 

series W(z) has been determined by balancing the leading order of the linear term with that of the 

nonlinear term in Eq. (17). The process determines N = 2 and W (z) becomes  

 
                                       2

0 1 2( )W z a a z a z                                                                             (18)                                      
 
Substituting expression(18) in Eq.(17) and  some mathematical manipulation in algebra 

(following Das et al. [24,25]), we obtain the value of a’s and  as 

a0 = 0,         a1 = 0,         1
2

2

3
2

Aa
A

 
  
 

,         1

4
A
A

       

and consequently the solution obtains as  
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where   
1

4A
A

         is the width of the wave.                                         

 
The solution represents solitary wave profile and its nature depends on the variation of A1 and 

A2. 

 
 
 
Results and Discussions 
 
Study on the soliton solution, derives from the first order approximation on  Sagdeev potential 

equation, is fully depend on the variation of A1 and A2,  which, in turn,  depend on the variation 

of rotational (dependable on ) and Mach number M and we plot the variation of A1 and A2  
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Fig 1:- Variation of A1and A2 with Mach number for different angles of rotation. 
 

in Fig. 1 Variation of A1 , for some  typical  prescribed plasmas parameters remains always 

positive and causeway the soliton profile yields a  schematic variation with changes of A1. But 

the amplitude crucially depends on A2 as it could be  positive or  negative depending on  and M, 

and thereby respectively highlight compressive soliton in the case of A2 is having positive  while 

it shows the rarefactive nature in the case of A1 and A2 having opposite signs. Fig.2 shows that 

rarefactive soliton observes  in the case of small Mach number (i.e.  when A2 < 0    and with the 

increase it change from rarefactive to compressive soliton leaving behind a critical point at which 

A2 goes to zero where existences of soliton profile  breaks down. 
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Fig 2:- Variation of Amplitude with Mach number for different angles of rotation. 
 
Thus rotation introduces a critical point at which A2 disappears and at the neighborhood of theis 

critical point, the width of the solitary wave narrows down (amplitude will be growing) because 

of which soliton collapses or explodes depend respectively  on the conservation of energy in 

soliton wave profile. This is described by the fact that, due to formation of a narrow wave packet, 

there is a generation of high electric force and consequently high magnetic force generates within 

the profile of soliton. Because of high energy the profile, electrons charge the neutral and other 

particles as a result density depression occurs and phenomena term as soliton radiation [37, 38]. 

Such phenomena on solitons and radiation do expect similar occurrences of solar radio burst. 

In order to get rid of such observations on soliton propagation or properly to say to know more 

about the soliton derivable from the Sagdeev wave equation, we  incorporate next higher order in 

the expansion in  and third order effect in  , derives Eq. (8) as 
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Eq. (20), under linear transformation, F =   +  with  =1 and 2
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type of  Duffing equation as 
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where B1 = A1 – 2 A2 +3 A3 

2 , B2 = - A3  are used and a relation A1 – A2 + A3 2 = 0 must be 

followed to get a stable solution of the wave equation. 

 

Now to get the results on acoustic modes,   Duffing equation has been  by tanh-method.   That 

needs a transformations () = W(z) with z = tanh   to Duffing equation causeway gets a  

standard Fuschian equation as 
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Forbenius series solution method derives a trivial solution with  N = 1, which does not ensure to 

derive the soliton solution. This necessitates the consideration of an infinite series which after a 

straightforward mathematical manipulation derives the solution as 

 
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0( ) 1F z a z                                                                                                                        (23) 

Following the earlier procedure, the substituting of Eq.(23) in Eq. (22) evaluates the soliton 

solution as 
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where B1 = A1- 2 A2 + 3 A3  
2 and  B2 = - A3 

The solution depends on the variation of B1, B2 and on A2, A3 which are  varying with rotation 

B1 and B2 are plotted in Fig.3 with the variation of Mach number and  . It is evident that the 

soliton existences and propagation are controlled by rotation. For slow rotation, B1 and B2 both 

are negative and confirm the evolution of solitary wave propagation while it has been noticed 

that  wave equation fails to represent soliton dynamics. (±) signs represent respectively 

compressive and rarefactive solitons appeared in the same region. The required condition for the 
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existence of soliton propagation must be as B1 < 0, i.e. A1 + 3 A3  
2 < 2 A2 , other wise the 

solution will generate a shock wave occurs  for high rotation. Thus the role of slow rotation is 

justified for the propagation of solitary wave to be yielded in astroplasmas. 
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Fig 3:- Variation of B1 and B2 with Mach number for different angles of rotation  
 

Now to find analytical soliton, equation (20) has been integrated and evaluates as  
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Using some  mathematical simplification with   = 1/ , solution derives   
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Solution depends on the variation of A1, A2 and A3  which are functions of angular velocity, 

Mach number and angle of rotation. It is clear that the solution yields the solitary wave 

propagation provided (2 A2
2 – 9A1A3) to be positive. The negative value of (2 A2

2 – 9A1A3) 

leads to a shock wave. 

Again Eq.(20) can be  further modified as Sagdeev potential equation as 
2

2 ( ) 0d V
d




 
   

 
                                                                                                                (27) 
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The Sagdeev potential like equation could reveal the double layers which has important 

dynamical features in plasmas. Eq. (20) has been transformed as  

 

 r
d p
d




 
    

 
                                                                                                             (28) 

 
where the new parameters have been defined as  
 

3

2
Ap  and 2

3

2
3r

A
A

 
   

 
 along with the double layer condition 2A2

2 = 9A1A3,   for A3 > 0.  

 
And  are the functions of  rotation. 
 

Following tanh-method[37], double layer solution has been obtained as 
 

( )1( ) 1 tanh
2 r

x Mt


 
  

                                                                                                  (29) 

 
Fig. 4 shows that for lower value of the Mach number and for smaller rotation, A3 takes only 

negative values, while it flips over to positive value on increase in angle of rotation. This may 

influence the formation of double layers in the rotating plasma of  interest.  
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Fig. 4: Variation of A3 with Mach number for different angles of rotation. 
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Thus, rotation plays controlling role in exhibiting different nature of soliton in rotating plasma 

which could be relying the interest to astrophysical problems. 

 
In order to investigate further nonlinear wave equation is analyzed for the next higher order of 

potential  . As a result Eq (11) is written as  
2

2 2 3 3 4
1 2 3 4

d
A A A A

d






      

 
 
 

                                                                                    (30) 

where,  
2

2
1 21 cosA

M


 
 
 

  , 
2 2

2 2

31
2

cosA
M

  
  

 
and 

2 2

3 2

7
1

6

cos
A

M

 
 

 
 
 

 

 and 
2 2

4 2
151

24
cosA
M

  
 
 

   

 

Using the transformation F =  +  with  =1 and 3

44
A
A

    Eq. (30) has been simplified as   

2
4

2 0d Fa bF cF
d

                                                                                                                    (31) 

 
where 2a  ,  2 3

1 2 3 42 3 4b A A A A      , and 4c A  , supported by two additional 

conditions  2 3
1 2 34 4 3 0A A A      and   2 32 3 0A A    

 

Eq. (30) with higher order nonlinearity resembles very much to Painleve equation. To follow the 

proposed tanh method, the process encounters a problem of dealing at N = 2/3 obtainable  from 

balancing the order of linear and nonlinear terms. Thus the alternate choice is adopted by 

considering the solution to be some higher order of sech- nature. Thereby  solution is obtained as  
1

22 3 3
3 1 2 3 4 3

4 4

2 3 4
( , )

4 2
A A A A A x Mtx t sech
A A

  


               
                                           (32) 

 
The mathematical analysis reveals that, Sagdeev potential equation with higher-order 

nonlinearity admits the compressive solitary wave or double layers depending on the nature of 

the expression under the radical sign 
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Fig. 5 shows that slow rotation maintains the evenness of the solitary wave propagation while the 

increases in magnitude of rotation (signified by higher values of the angle of rotation  ) the 

amplitude shows a discontinuity, which might explain  the explosion or collapse in solitary wave 

in plasma. In such phenomena, there is either conservation of energy (collapse of solitary wave), 

or dissipation of energy (as in case of explosion) which may be related as the similar cause of 

occurrences of  solar flares, sunspots and other topics of astrophysical interest. 
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Fig 5:- Variation of amplitude of the solitary wave with Mach number. 
 
The procedure ensures that one can continue finding the features of soliton propagation in a wide 

range of configurations, along with the existences of  narrow region in which a shock like wave 

is expected and study has been further  by using the order effect in  nonlinearity. To generalize 

the analysis, Sagdeev potential equation is expanded up to the n-th order nonlinearity and 

following Das and Sarma [37]  the solution is obtained  as 

  

1
21

1 1( , )
n

n n

n n

x Mts
A Mx t ech
nA A 


 

   
   

  
   


                                                                      (33) 

 

where   = M1/2   and M is a linear combination of A1, A2,  …………, An 

Eq. (33) gives shock wave solution depending on the sign of the quantity under the radical. 
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Now to find out how the higher order solution of Sagdeev potential equation expects other 

possible acoustic modes, we integrate the Eq. (30) to obtain  

 
2

2 2 3 4 4
1 2 3 4

2 1 2
3 2 5

d A A A A
d




 
 
 

                                                                           (34)                                                                 

 
Next suitable mathematical transformation and using proper boundary conditions, the Equation 

can be transformed to the following form 

  
2

2 2 3( )p
d
d




    
 
 
 

                                                                                                 (35) 

 
Comparing  Eqs. (35) and (34) we obtain the following relations 

4
2
5

A    and   3

4

5
12

A
p

A
 , which are supported by the condition 2

3 2 4
16
5

A A A  

Finally the solution comes out with a new feature showing sinh- nature. 
1

32
2 2

2
( ) psinh p

p
p 


  

           

                                                                                    (36) 
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Fig 6:- Variation of nature of the Sinh- wave for different angles of rotation. 
 

Fig.6 shows the analysis of the fourth order nonlinear approximation in plasma potential, 

Sagdeev potential equation derives the  new wave propagation  whose nature is identical to sin-
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hyperbolic curve. The wave is also influenced by the impact of rotation parameters and the 

magnitude of the wave shows an increase with the decrease in value of   and  thereby showing 

the influence of slow rotation on the existence of nonlinear waves in plasma. 

 
 

Conclusion  

The overall studies exhibit the evolution of different nature of solitons by the interaction of 

coriolis force. The model is taken under the approximation of slow rotation appropriate to 

astrophysical plasmas. Thus the observations could be an advanced theoretical knowledge to 

yield the studies inspce plasmas incorporated  with slow rotation plasma and variation of Mach 

number. The small amplitude approximation derives the different plasma acoustic modes 

depending on the plasma parameters and shows of rotation due to which the nature of 

compressive and rarefactive solitary waves are observed. Later it has been derived  other 

acoustic modes like double layers, shock waves and sin-hyperbolic waves with the interaction of 

increasing nonlinear effect in the dynamical system. It has been observed that the  Mach number 

does not show any new observation on the existences on  solitary wave rather it reflects 

schematic variation on the nature of the soliton wave),  while Coriolis interaction generated from 

the slow rotation, how ever small might be, exhibits different salient features of acoustic modes.  

 

We have shown that Sagdeev potential equation, under certain conditions, describes the features 

of various solitary waves. In comparison to a non-rotating plasma, rotation brings into highlight 

all the characteristic of nonlinear plasma waves and  the wave phenomena can be related to their 

existence  in various space regions like the soliton radiation similar to those in rotating pulsar 

magnetosphere as well as in high rotation neutron stars.  
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