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Zitterbewegung is the quiver motion with frequency

 
2mc 2

h
and7

Compton-wavelength amplitude

 

h
mc

discovered by Schroedinger in8
his 1930 solution of the time-dependent Dirac equation for a free9
electron.  The origin of Zitterbewegung is the interference between10
positive-energy and negative-energy states.  Zitterbewegung is11
predicted to exist for both free and bound electrons provided one12
discards Dirac’s hypothesis, known as hole theory, whereby positive-13
energy electrons are forbidden from occupying negative-energy states14
such that Zitterbewegung is suppressed.  The positive-energy spectra15
are identical whether one uses Dirac’s hypothesis, in which16
Zitterbewegung is suppressed, or whether one uses the solution in17
which electrons are not restricted from simultaneously occupying both18
positive-energy and negative-energy states such that Zitterbewegung is19
not suppressed.  Thus both the restricted and unrestricted solutions are20
confirmed by spectroscopic experimental observation such that new21
experiments are motivated to discriminate between the restricted and22
unrestricted solutions.  Restricted Dirac theory is also validated by23
electron-positron pair creation and annihilation experiments.  In this24
paper we look for pair states in the negative-energy region of the Dirac25
spectrum in order to understand if the positive-energy negative-energy26
interference solution, which correctly predicts the positive-energy27
spectrum, is also correct in the description of pair creation and28
annihilation.29303132333435

I.  Introduction and general considerations3637 A considerable literature exists on different electrodynamical theories proposed3839 for the calculation of the radiative properties of matter, for which, in order better to4041
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orient the reader to the subject matter of this paper, we give a brief review as4243 follows.  The quantization of the classical electromagnetic field, which founded4445 quantum electrodynamics (QED), was carried out by Dirac in 1927 [1].  A review of4647 the quantized radiation field (QRF), as it is called, and its use in the calculation of4849 radiative spontaneous emission and the Lamb shift is given by Louisell [2].  The QRF5051 may be criticized in the sense that its distribution of frequencies is unrelated to the5253 electron’s own distribution of frequencies and is therefore unbounded such that its5455 use in the radiation-matter interaction Hamiltonian for the electron leads to an5657 energy shift – Lamb shift – which diverges linearly in the photon frequency,  .  As5859 explained in [2] and elsewhere the linear divergence is interpreted as a permanent6061 radiant property of a free electron such that, when it is included or “added back” to6263 the calculation for a bound electron which is “bare” or undressed by the radiation6465 field in the original calculation, the linear divergence is exactly canceled.  This6667 procedure is known as mass renormalization because it contributes a radiative6869 component to the electron’s material mass.  Although a logarithmic divergence in7071 the photon frequency remains, use of a suitable cut off leads to results which agree7273 quantitatively with experiment [2-3].  Notice that the linearly-divergent contribu-7475 tion to the mass of a free electron appears to be irremovable.7677 In order to gain a more satisfactory physical picture of the radiant aspect of the787980 281 electron, pioneers have presented formulations – the neoclassical theory of Edwin8283 Jaynes and coworkers [4] and self-field quantum electrodynamics of Asim Barut8485 and coworkers [5] – in which the electromagnetic vector potential is calculated8687
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from the electron’s current.  These theories were problematic either in a8889 quantitative sense in Jaynes’ case or in the sense of possible flaws in the use of9091 Schroedinger theory to calculate the electron’s current in Barut’s case [6-7].9293 The quantization condition for the photon and electron [1-2] requires that an9495 initial higher-energy state of the electron has zero photons and that a final lower-9697 energy state of the electron has one photon.  The radiative emission rate converges9899 because it vanishes by destructive interference of the out-of-phase electron wave100101 functions of the initial and final states unless h  E fi , where E fi is the energy102103 gap between the two states and h is the photon energy.  On the other hand104105 emission of a photon from the ground state means that the photon must be re-106107 absorbed by the same state leading to a closed photon loop in which the electron108109 energy shift diverges as  .  Dirac’s relativistic-electron theory [8] leads to further110111 complications in interpretation since a set of negative-energy states lies below the112113 nominal ground state such that radiative spontaneous emission from the ground114115 state to a negative-energy state lying below it would occur, which is unobserved in116117 nature.  Dirac’s hole interpretation that the negative-energy states are filled with118119 electrons in which an absent electron or hole represents a positron avoids the120121 unphysical prediction since a positive-energy electron is forbidden by Pauli’s122123 exclusion principle from falling into a negative-energy state.  But Dirac’s hole124125 3126 theory also rules out the existence of Zitterbewegung, which arises from the127128 interference between positive-energy and negative-energy states in observables129130 in which an electron simultaneously occupies a superposition of positive-energy and131132
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negative-energy states.  The recent observation of Zitterbewegung in a simulated133134 electron experiment using a trapped-ion [9] suggests that hole theory, for all its135136 success in positron physics, should be reexamined from the point of view of its137138 reconciliation with Zitterbewegung.  What is the ground state?  A body of theory139140 exists known as 4-space Dirac theory [10-11], whose principal motivation is the141142 clear avoidance of a preferred frame of reference.  In 4-space Dirac theory the143144 positive-energy spectrum of states is identical to that of standard Dirac theory but145146 the wave function comprises contributions from both electrons and positrons,147148 which one may surmise is just a bound-state form of  Zitterbewegung, although not149150 identified as such likely owing to the fact that the original prediction of151152 Zitterbewegung [12] was made for a free electron.  Following Barut and coworkers153154 [5,13] and others, it is necessary here to pursue a first-quantization approach in155156 order to understand phenomena  usually treated within second quantization.157158 Recent work [10] suggests that the negative-energy states do not lie empty below159160 the ground state but rather actively participate with it to form a two-component161162 ground-state configuration.  If the negative-energy states do not lie empty below the163164 positive-energy states, then the quantization rules for radiative spontaneous165166 emission do not physically apply.  In [10-11] the positive-energy spectrum is167168 identical to that of standard Dirac theory, but the wave function exhibits169170171 4172 Zitterbewegung (or comprises contributions from both electrons and positrons in173174 the post-hole language of [11]).  But the original motivation and experimental175176 confirmation of Dirac theory was the spectroscopic observation of atomic fine177178
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structure. Thus standard Dirac theory and 4-space Dirac theory [10-11] are therefore179180
both confirmed by spectroscopic experiments, such that the confirmation of wave-181182
function Zitterbewegung predicted by 4-space theory requires experiments designed183184
to probe the wave function and not the energy spectrum.  In short Dirac hole theory is185186 incompatible with the experimental observation of Zitterbewegung, which exists if187188 indeed the negative-energy states do not lie empty below the positive-energy states189190 such that radiative spontaneous emission from the nominally positive-energy191192 ground state cannot exist and therefore does not need to be blocked by the artifice193194 of filling up the negative-energy levels with electrons, an absent electron from which195196 represents, in an abstract sense, a positron.197198 It seems clear from the above discussion that, while the QRF is physically correct199200 for radiative spontaneous emission, it has unphysical consequences for the201202 radiative shift of energy levels, which is corrected in practical applications by using203204 the physical argument of mass renormalization.  Indeed in his original paper [1]205206 Dirac limits the use of the QRF to the emission and absorption of radiation and207208 the derivation of the Einstein A and B coefficients.  But one can use the209210 renormalization concept that an electron permanently has radiant properties211212 which are therefore always present, such that the concept of a bare electron loses213214 meaning.  In standard QED this concept takes the form of continuously emitted215216217 5218 and reabsorbed photons by the quantum state of a free electron, whose219220 mathematical implementation, as stated above, leads to the divergent shift linear in221222
 for a free electron – the divergence which, when included in the bound-electron223224

UNDER PEER REVIEW



calculation, cancels the divergent shift linear in  for the bound electron.  One may225226 postulate that this concept can be realized by finding a first-quantized Lorentz-227228 invariant relativisitic  equation of motion which accounts for the radiant properties229230 of the electron in the same way that Dirac’s equation  accounts for the material231232 properties of the electron.  A small literature using the concept of a photon EOM233234 already exists [14], but its applications appear to be confined to experiments in235236 which the radiation-matter interaction is unimportant.237238 The concept of radiation as a permanent part of the quantum states of the239240 electron is actually introduced in renormalization theory, as discussed above.  But241242 again the field-theoretic logic of the continuous emission and absorption of virtual243244 photons by the same quantum state in a closed photon loop leads to a radiative245246 correction to the electron’s mass which diverges as  [2].  The missing concept247248 whose mathematical implementation would avoid this failure uses the logic that the249250 quantum states of matter exist simultaneously and permanently with the quantum251252
states of radiation such that the artificial boundary-value setup of virtual-photon253254 emission and absorption is averted.  Since the quantum states of matter are given255256 by Dirac’s equation, we require a supplemental wave equation to give the quantum257258 states of radiation associated with the electron.  While Dirac’s equation accounts for259260 the material properties of the electron, the supplemental radiation wave equation261262263 6264 may be considered to account for the radiant properties of the electron, as observed265266 experimentally in the Lamb shift and the electron’s anomalous magnetic moment.267268 In summary radiation-free matter does not exist in nature.  But theoretical269270
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physics  has evolved, reflecting the separate developments historically of271272 mechanics  and electrodynamics, into a radiation-free quantum theory of matter, a273274 matter-free quantum theory of radiation, and a theory of the mutual interaction of275276 radiation and matter.  This piecemeal approach leads to an infinite energy for the277278 Lamb shift and other “radiative corrections” of the electron in absence of the use of279280 physical argument and mathematical adjustments to “renormalize” the theory in281282 order to obtain a finite result which remarkably agrees with high accuracy with283284 experimental observation.  One may question however if perfect theoretical285286 agreement with a specific set of experiments should be accepted with uncritical287288 acclaim in  absence of a theory which explains the source of the infinities and289290 provides a divergence-free result.  It is hard to imagine that renormalization291292 theory with its mathematical recipes for the removal of divergent contributions293294 could be a general theory of nature, not withstanding its high degree of accuracy.295296 Indeed one may say that particle fields for matter-free photons or photon-free297298 electrons represent incomplete physical descriptions of these particles.  This is299300 the lesson which we may take away from Lamb’s experiments, which demonstrate301302 the existence of permanent radiative shifts in atomic energy levels, namely that303304 radiation-free matter does not exist in nature such that a photon-free material305306 particle field or a particle-free photon  field, however neat and pleasing this it is307308309 7310 mathematically, is not a complete picture either of the material particle or of the311312 photon.  The renormalization scheme itself confirms this  view  since infinities are313314 removed from radiation-matter calculations by postulating that photons are315316
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always present in the structure of a free electron  such that when the free-317318 electron radiative shift is added back to bound-electron calculations the319320 unphysical infinities are removed.321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 8356
II.  Equation of motion for the electron’s radiant aspect357358 It is easy to propose a radiant equation of motion (REOM) for the electron once it359360 is recognized that the electron’s material equation of motion (MEOM), which is361362
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Dirac’s equation, can be inferred from the scalar product of the electron’s 4-363364 momentum and a material 4-potential posited for the electron.  This understanding365366 of Dirac’s equation suggests that a REOM can be inferred from the photon’s 4-367368 momentum and an electromagnetic 4-potential posited for the electron.369370 Recalling that the scalar product of 4-vectors is always Lorentz invariant [15],371372 Dirac’s equation can be derived by further elucidating the close relationship373374 between Dirac’s equation and the spinorial form of Maxwell’s equation, which has375376 been studied continuously since 1928 [16-19].  Dirac’s equation can be inferred377378 from the scalar product of the electron’s 4-momentum and a material 4-potential,379380
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Dirac’s equation ,405406
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A)  0, (II-4b)409410411 follows immediately on setting h  mc 2 , r  r , r  r ,   , and   .412413 The reader may verify that Eqs. (I-4) are indeed Dirac’s equation in coupled first-414415 order form where  and  are known in the literature as the large and small416417 components of the Dirac solution.  Notice that the electron’s spin can be interpreted418419 as the polarization of the vector component of its posited material 4-potential.420421 Notice that no further proof of the Lorentz invariance of the wave equation itself is422423 required since Eqs. (I-4) have been inferred directly from a scalar product of 4-424425 vectors, which is always a Lorentz invariant [15]. As an example Dirac’s equation426427 for a hydrogen-like ion [20] is manifestly Lorentz invariant, but a fully relativistic428429 Lorentz-invariant theory for two fermions is given by the Bethe-Salpeter equation430431 [21].  As a further complication Coulomb’s law for the interelectronic interaction is432433 incompatible with Lorentz invariance such that it is represented field-theoretically434435 by the exchange of virtual photons.  If indeed future experiments show that436437 Zitterbewegung is a real physical effect arising from the simultaneous occupancy438439440 10441442 of both positive-energy and negative-energy states by an electron, then the Bethe-443444 Salpeter equation describing a positron and electron should be appealed to for a445446 proper description of annihilation and pair creation.  This point is examined further447

UNDER PEER REVIEW



448 in Section III.449450 While Eqs. (II-4) account for atomic fine structure and the anomalous Zeeman451452 effect,  whose spectroscopic observation was the motivation for Dirac’s equation453454 and its experimental confirmation, radiant properties of the electron also exist455456 which are observed as a quantum electrodynamical shift of atomic energy levels457458 and the electron’s anomalous magnetic moment.  It is assumed that an electro-459460 magnetic 4-potential exists for the electron such that a REOM can be inferred from461462 the Lorentz invariant found from the scalar product of the photon's 4-momentum463464 and the electron’s posited electromagnetic 4-potential thusly,465466467
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486 current, (c, rj ) .  Notice that in the radiant-electron theory developed above the487488 known 4-gradient is simply renormalized by the replacement
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H ,489490 which gives a Lorentz-invariant electromagnetic continuity equation since the scalar491492 product of rE or rH with the electromagnetic 3-current, rS , vanishes.  It is493494 remarkable that a photon 4-momentum seems not to have been previously495496 proposed in the literature.497498 As with the electron the photon scalar and vector potentials can be written in the499500 form of carrier-wave expansions,501502
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free Lamb shift [22] and electron’s anomalous magnetic moment [23].544545 Notice that all four of Maxwell’s equations appear in Eqs. (II-11) as radiation-546547 matter interaction terms and that the electromagnetic fields themselves and not the548549 electromagnetic potentials occur such there is no question of a gauge dependence of550551 matter-light interactions in the electron’s REOM.  The success of the use Eqs. (II-11)552553 to calculate divergence-free radiative properties of matter [22-23] suggests that the554555 concept of radiation as a permanent part of the structure of matter is a valid one.556557 Recall that this is identically the concept of mass renormalization  used in standard558559560 13561 QED used to remove infinite contributions to the electron’s energy arising from562563 unphysical logic that first-quantized states of matter exist which are totally free of564565 radiation.  As we have shown here it is possible to present a  theory in which the566
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567 electron does not exist in a bare or radiation-free state and whose material and568569 radiant properties are described by a pair of relativistic, Lorentz-invariant first-570571 quantized material and radiant EOM’s respectively.572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606 14607
III.  Pair creation and annihilation in two-body Dirac theory.608609 Toward a resolution of the paradox of the incompatibility of hole theory and610611 Zitterbewegung [9,12] a two-body Dirac theory is used to calculate the spectrum of612
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613 the positronium atom (Ps).  Countless annihilation and pair-creation experiments614615 are successfully interpreted using hole theory, which is part of Dirac’s interpretation616617 of the negative-energy states, namely that an absent electron in the set of negative-618619 energy states filled with electrons represents a positron such that annihilation and620621 pair-creation are interpreted as two-photon transitions downward to and upward622623 from a hole state respectively.  Hence a reconciliation of Zitterbewe-gung and hole624625 theory requires that the two-fermion spectrum for an electron and positron contain626627 both the known ground state and a negative-energy state with binding energy equal628629 to 2mc2.  To our knowledge two-body Dirac theory has heretofore not been used to630631 search for a bound state lying below the nominal ground state.632633 Two-body Dirac theory previously has taken two forms.  A two-body Dirac634635 equation can be written down and solved [23], but it is not Lorentz invariant owing636637 to the 6-space nature of the positron-electron Coulomb interaction.  Alternatively638639 the Bethe-Salpeter equation [6] is a fully relativistic, Lorentz-invariant equation for640641 two fermions, but Lorentz invariance requires that the Coulomb interaction must be642643 represented by the exchange of virtual photons.  The force-mediating-particle644645 picture of the interaction and the general mathematical complexity of the equation646647 suggest that the Bethe-Salpeter equation is of questionable usefulness for the648649 present bound-state problem.  Therefore the Hartree or self-consistent field650651652 15653 model will be used here.  Although the Coulomb potential between the two654655 fermions is replaced by its quantum mean with respect to either fermion and is thus656657 an approximate interaction potential, this procedure nevertheless preserves658
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659 Lorentz invariance in the form of a one-body Dirac equation for each fermion.660661 It suffices to present the Dirac equation for one of the fermions, which is given for662663 the electron by Eqs. (4).  In the present application rA  0 .  The Hartree potential is664665666
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, is given by Eq. (III-1) is calculated using the quantum density of the672673 positron as given by the sum of large-component and small component densities674675 shown in the numerator on the right side of Eq. (III-1).  Similarly the Dirac equation676677 for the positron interacting with the electron via the quantum mean of the678679 electron-positron Coulomb potential using the quantum density of the electron680681 can be written down and solved.  Each Dirac equation is of course fully relativistic682683 and Lorentz invariant, but it must be solved iteratively since the potentials depend684685 on knowing the quantum densities for each fermion.  It is found that 10 iterations686687 are sufficient to achieve convergence in the energy as given by the operator identity688689


ih

t
 E .690691 Eqs. (I-4) are solved variationally, first by separating variables using692693694 16695

(
rr) G (r) (,) and (rr)  iF (r) (,) such that696697
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

E  mc 2 drr2G
2

0



 (r) mc 2 drr2F
2

0



 (r)  drr2V (r)[G
2

0



 (r)  F
2(r)]

hc{ drr2[F (r)G
' 

0



 G (r)F
'  2

r
F (r)G ]}

(III-2)698
699 where the identities,



r
r

r r̂(

r

r
r
l
r
) , r r̂ (,)   (,) , and700



r
r
l  (,)  

 1
r
 (,) have been used, where r rl  j 2  l 2  s2 and701702

j 2 (,)  j( j 1) (,) , l 2(,)  l (l 1)(,), and703704
s2 (,) 

1
2
(
1
2
1) (,) .  For states of 1S1/ 2 symmetry,   1, 1/2 (for705706 angular momentum states j=1/2, l  0)and similarly for the positron equation707708 except that  1/2 .  Then the radial functions are represented by the trial forms709710

G1(r)  Ne
wr and


F1(r)  N

hcw
E V mc 2

ewr , where N is the normalization711 constant given by N 2{ drr2
0



 [G1
2 (r)  F1

2 (r)]} 1.  The same trial forms are used for712 both fermions, where w is a parameter which is varied to find a minimum in E.  The713714 latter step is carried out by making a first guess for E and inserting it wherever E715716 occurs in a denominator.  For a positive-energy state this guess is just E = mc2,717718 which is not updated since the positive-energy state occurs in the nonrelativistic719720 regime, in which the binding energy is much less than mc2 (Fig. 1).  For a negative-721722 energy state E is guessed to lie close to –mc2 and is updated until a minimum in E723724 found which agrees with the guessed-at denominator energy as closely as possible.725726 This match is not perfect owing to the approximate nature of the calculation, but an727728729730 17731 agreement of 99.6% is obtained (Fig. 4) for the guessed energy (-18732 au) and the732733
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energy calculated from Eq. (II-2) (-18659 au) where 1 au = 27.21 eV.734735 It is easy to understand the nature of the binding of the ee pair from analysis of736737 Eq. (III-2).  In the positive-energy region of the spectrum

F1  N

hw
mc
ewr such that738739

|F1 |G1, which means that the first term on the right side of Eq. (III-2) is nearly740741 equal to mc2, the second term is negligible, and the lowest positive-energy bound742743 state therefore lies just below mc2 (Fig. 1).  Notice that the Hartree model gives 80%744745 of the known binding energy of 0.25 au. Figs. 2-3 give the family of wave functions746747 for the values of the variational parameter, w, used in the calculation. On the other748749 hand in the negative-energy region of the spectrum the denominator E-V+mc2750751 neatly vanishes for E  mc 2such that |F1 |G1, which means that the second752753 term on the right side of Eq. (II-2) is nearly equal to –mc2, the first term is negligible,754755 and the lowest negative-energy bound state therefore lies just above –mc2 (Fig. 4).756757 (All bound states lie in the regime mc 2  E  mc 2 .)  The negative-energy bound758759 state has not heretofore been reported due to the hole interpretation of one-body760761 Dirac theory discussed at length above.  Figs. 5-6 give the family of wave functions762763 for the values of w used in the calculation.764765 Remarkably the sixth term on the right side of Eq. (III-2), which is positive and766767 therefore repulsive for   1 and opposite phases for G-1 and F-1, lifts the binding768769 energy (E-mc2) in the positive-energy region above its minimum value given by the770771 sum of the second and third terms on the right side of Eq.(III-2) and is effectively the772773774 18775776 kinetic-energy contribution to the total energy, E.  Conversely this kinetic-energy777
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778 term and to a lesser extent the fourth and fifth terms on the right side of Eq. (III-2)779780 lift the energy from a point below –mc2, which lies in the negative-energy781782 continuum, into the binding region above –mc2.  Remarkably a large kinetic energy783784 in the negative-energy region makes binding possible by overcompensating for the785786 second and third thirds term on the right side of Eq. (III-2), which are negative and787788 therefore attractive and move E in the direction of less binding in the negative-789790 energy region, in contrast to moving E in the direction of greater binding in the791792 positive-energy region.793794795
III.  Conclusion796797 In summary the Hartree model for two-body Dirac theory predicts that a bound798799 state for Ps exists in the negative-energy region of the spectrum, such that800801 annihilation and pair creation may be interpreted as ordinary two-photon emission802803 and absorption respectively between the nominal ground state and the negative-804805 energy state.  This result shows that hole theory is not unique to the explanation806807 of annihilation and pair creation and therefore lifts the ambiguity that808809 Zitterbewegung [9,12] cannot be a real physical effect due to Dirac’s hole810811 interpretation of his one-body equation.  It is hoped that this study will stimulate812813 further work using more accurate two-body Dirac theory either to confirm or falsify814815 the present Hartree-model result.816817818819 19820821822823

UNDER PEER REVIEW



References824825 [1]  P. A. M. Dirac, Proc. Roy. Soc. (London) A114, 243 (1927).826827 [2]  W. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York,828 1973).829830 [3]  W.R. Johnson and G. Soff,  Atomic and Nuclear Data Tables 33, 405 (1985).831832 [4]  M. D. Crisp and E. T. Jaynes, Phys. Rev. 179, 1253 (1969).833834 [5]  A. O. Barut and J. F. van Huele, Phys. Rev. A 32, 3187 (1985).835836 [6]  I. Bialynicki-Birula, Phys. Rev. A 34, 3500 (1986).837838 [7]  A. O. Barut, Phys. Rev. A 34, 3502 (1986).839840 [8]  P. A. M. Dirac, Proc. Roy. Soc. (London) A117, 610 (1928).841842 [9]  R. Gerritsma, G. Kirchmair, F. Zaehringer, E. Solano, R. Blatt. And C. Roos, Nature843
463, 68 (2010).844 [10]  B. Ritchie and C. Weatherford, Int. J. Quantum Chem. 2012, DOI:845 10.1002/qua.24156.846 [11]  A. B. Evans, J. Condensed Matter Nucl. Sci. 2, 7 (2009); Found. Phys. 28, 291847 (1998); Found. Phys. 21, 633 (1991); Found. Phys. 20, 309 (1990); references848 therein. This author uses the proper time from classical relativity to implement849 time-dependent Dirac theory as a 4-space theory.  It is found in [10] that a850 geometric spacetime or 4-space solution evolves naturally on solving the time-851 dependent Dirac equation in 3-space and the scaled time, ct.  The electronic density852 is positive definite in our theory.853854 [12]  E. Schroedinger, Sitzungb. Preuss. Akad. Wiss. Ohys.-Math Kl, 24, 418 (1930).855856 [13]  A. O. Barut and J. Kraus, Found. Phys. 13, 189 (1983); A. O. Barut and J. P.857 Dowling Phys. Rev A 36, 649 (1987); 36, 2550 (1987); A. O. Barut, Found. Phys. 18,858 95 (1988).859860 20861 [14]  Brian J. Smith and M. G. Raymer, New Journal of Physics, 9, 414 (2007) and862 references therein.863864 [15] P. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-865 Hill, New York, 1953), p. 208.866867

UNDER PEER REVIEW



[16]  C. G. Darwin, Proc. Roy. Soc. 118, 654-680 (1928)868869 [17]  O. Laporte and G, Uhlenbeck, Phys. Rev. 37, 1380-1397 (1931)870871 [18]  R. Armour, Jr., Found. Phys. 34, 815-842 (2004) and references therein872873 [19]  B. Ritchie, Optics Communications 262, 229-233 (2006)874875 [20]  J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics (McGraw-Hill,876 New York,1964).877878 [21] H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-879
Electron Atoms (Dover, New York, 2008), pp. 195-196.880881 [22] B. Ritchie, Optics Communications 280, 126 (2007); Int. J. Quantum Chem. 112,882 2632 (2012).883884 [23] B. Ritchie, Optics Communications 281, 3492 (2008).885886 [24]  T. C. Scott, J.  Shertzer, and R.  A. Moore, Phys. Rev. A 45, 4393 (1992).887888889890891892893894895896897898899900901902903904905 21906907
Figure Captions908909 Fig.  1. E mc 2 versus w for the lowest positive-energy state of Ps in the Hartree910 model.911912
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913 Fig. 2.  G-1(r) versus r in the positive-energy region of the spectrum for the sweep of914 w values used in the calculation.915916917 Fig. 3.  F-1(r) versus r in the positive-energy region of the spectrum for the sweep of918 w values used in the calculation.919920921 Fig.  4. E versus w for the lowest negative-energy bound state for Ps in the Hartree922 model.923924925 Fig. 5.  G-1(r) versus r in the negative-energy region of the spectrum for the sweep of926 w values used in the calculation.927928929 Fig. 6.  F-1(r) versus r in the negative-energy region of the spectrum for the sweep of930 w values used in the calculation.931932933934935936937938939940941942943944945946947948949950951 20952
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