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Original Research Article 1 

Effects of Suction and Thermal Radiation on Heat transfer in a Third Grade Fluid over a 2 

Vertical Plate 3 

Abstract 4 

An analysis is presented to investigate the effects suction and thermal radiation on the  unsteady 5 

convective flow and heat transfer in a third grade fluid over an infinite vertical plate. The plate is 6 

porous to allow for possible wall suction. The governing time-based coupled partial differential 7 

equations, subjected to their boundary conditions, are solved numerically by applying an 8 

efficient and unconditionally stable Crank-Nicolson finite difference scheme. Numerical 9 

calculations are carried out for different values of dimensionless parameters in the problem. An 10 

analysis of the results obtained reveals that the flow field is appreciably influenced by suction 11 

and viscoelastic parameters. An increase in the suction parameter is observed to decrease the 12 

fluid velocity. It also shows that the temperature distribution decreases with an increase in the 13 

thermal radiation parameter.  14 

Keywords  - Suction, Thermal Radiation,Heat Transfer, Porous Plate, Third Grade Fluid. 15 

1. INTRODUCTION  16 

Non-Newtonian fluids have been a subject of great interest to researchers because of their 17 

various industrial and enginnering applications. Unlike the viscous fluids, the non-Newtonian 18 

fluids cannot be described by the single constitutive relationship between the stress and the strain 19 

rate. This is due to diverse features of such fluids in nature. Generally, the mathematical 20 

problems in non-Newtonian fluids are more complicated because of its nonlinear and higher-21 
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order than those in Newtonian fluids. Despite these complexities of non-Newtonian fluids, 22 

scientists and engineers are engaged in non-Newtonian fluid dynamics. 23 

Erdogan (1995) analyzed the flow of a third grade fluid in the vicinity of a plane wall suddenly 24 

set in motion. He observed that for a short time, a strong non-Newtonian effect was present in 25 

the velocity field. However, for a long time, the velocity field became Newtonian. The problem 26 

of peristaltic flow of MHD third order fluid in a planar channel with slip condition was 27 

investigated Hayat et al. (2011). The pumping and trapping phenomena are analyzed in the 28 

presence of MHD and slip effects. They derived the solutions under long wavelength and low 29 

Reynold’s number approximations. Hayat et al. (2006) also gave the solution for the flow of a 30 

third grade fluid bounded by two parallel porous plates using homotopy analysis method. They 31 

made a comparison with the exact numerical solution for the various values of the physical 32 

parameters. 33 

Sajid and Hayat (2007) also presented solution to two-dimensional boundary layer flow of the 34 

third grade fluid over a stretching sheet. Sajid et al. (2007) further considered heat transfer 35 

characteristics in an electrically conducting third grade fluid. Non-similar analytic solution for 36 

MHD flow and heat transfer in a third order fluid over a stretching sheet was considered by Sajid 37 

et al. (2007). Siddiqui et al. (2008) presented the heat transfer flow problem of a third grade fluid 38 

between two heated parallel plates for the constant viscosity model. Three flow problems of 39 

Couette flow, plane Poiseuille flow and plane Couette-Poiseuille flow were considered by them 40 

and they employed the homotopy perturbation technique to obtain their results. Hayat et al. 41 

(2008) presented exact solutions of the thin film flow problem for a third grade fluid on an 42 

inclined plane. They compared their results with those of Siddiqui et al. (2006) and concluded 43 

that their solutions were valid for large values of the material parameter.  44 
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Also, one can refer to some useful works of Hayat and his co-workers in [10-16], regarding the 45 

flow and heat transfer in a third grade fluid with different geometries and diverse physical 46 

characteristics. Sahoo (2009) numerically studied the problem of Heimenz flow and heat transfer 47 

of a third grade fluid using the finite difference technique with Richardson is extrapolation. 48 

Ellahi et al. (2010) examined the heat transfer analysis on the laminar flow of an incompressible 49 

third grade fluid through a porous flat channel. They provided analytical solution for temperature 50 

distribution for various values of the controlling parameters, compared the results obtained with 51 

the numerical solution and the comparison showed the fact that the accuracy is remarkable. The 52 

series solution to the unsteady boundary layer flow of the third grade fluid was developed by 53 

Abbasbandy and Hayat (2011). 54 

Ellahi and Hamed (2012) numerically investigated the steady non-Newtonian flows with heat 55 

transfer, MHD and nonslip effects. Nayat et al. (2012) studied the flow and heat transfer of a 56 

third grade fluid past a porous vertical plate. They obtained solutions through numerical 57 

approach. Sibanda et al. (2012) studied the problem of heat transfer flow of a third grade fluid 58 

between parallel plates using the spectral homotopy analysis method. Explicit analytical 59 

expressions for the non-linear momentum reaction the energy equation were solved using the 60 

homotopy perturbation method. Recently, Hayat et al. (2013) carried out an analysis for the 61 

characteristics of melting heat transfer in the boundary layer flow of third grade fluid in a region 62 

of stagnation point past a stretching sheet. They developed the series solutions by homotopy 63 

analysis method and compared their results with the previous studies. Baoku et al. (2013) 64 

reported the solution to the problem of MHD partial slip flow, heat and mass transfer of a 65 

viscoelastic third grade fluid over an insulated porous plate embedded in a porous medium. They 66 

presented numerical experiments to solve the governing coupled highly nonlinear ordinary 67 
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differential equations of momentum, energy and concentration showing the effects of the various 68 

physical parameters on the velocity, temperature and concentration distributions.  69 

The influence of thermal radiation on flow and heat transfer processes is paramount in the design 70 

of many advanced energy conversion systems operating at high temperature. [Seddeek (2002)]. 71 

Thermal radiation within such systems occurs because of the emission by the hot walls and 72 

working fluid. Plumb et al. (1981) studied the effect of horizontal cross-flow and radiation on 73 

natural convection from vertical heat surface in saturated porous media. Rosseland diffusion 74 

approximation was utilized for the convective flow with radiation. Hossain and Takhar (1996), 75 

Takhar et al. (1996), Hossain et al. (1999) extensively investigated the effect of radiation on heat 76 

transfer problems. Mansour (1997) analyzed combined forced-convective flow over a flat plate 77 

immersed in porous medium of variable viscosity. Sajid and Hayat (2008) examined the problem 78 

of radiation effects on the flow over an exponentially stretching sheet and solved the problem 79 

analytically using the homotopy analysis method. The numerical solution for the problem was 80 

then provided Bidin and Nazar (2009). Anand Rao et al. (2012) studied radiation effects on an 81 

unsteady MHD free convective flow past a vertical porous plate in the presence of soret effect. 82 

Seethamahalakshmi et al. (2011) investigated the unsteady MHD free convective flow and mass 83 

transfer near a moving vertical plate in the presence of thermal radiation. Other research works 84 

that have been carried out on this are those of Makinde et al. (2011), Srinivas and Muthuraj 85 

(2010) and Singh et al. (2010). Baoku et al. (2012) recently investigated the influence of thermal 86 

radiation on a transient magnetohydrodynamic Couette flow of a high Prandtl number fluid with 87 

temperature-dependent viscosity through a porous medium. They employed an implicit finite 88 

difference scheme of Crank-Nicolson type to investigate the effects of pertinent flow parameters. 89 
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The aim of this study is to investigate the suction and thermal radiation effects in a 90 

thermodynamically compatible viscoelastic third grade fluid on unsteady flow and convective 91 

heat transfer over an infinite plate which is set in motion with an oscillating temperature applied 92 

to the plate. The governing coupled nonlinear partial differential equations with sufficient initial 93 

and boundary conditions are solved by employing Crank-Nicolson finite different scheme with 94 

modified Newton’s method. The present problem with radiative heat flux has not been 95 

considered in the scientific literature, despite its important applications in industry and 96 

engineering. 97 

2. Mathematical Analysis  98 

We consider the transient flow and heat transfer of an incompressible fluid of a third grade past 99 

infinite porous plate. The x′ - axis is taken along the plate vertically upwards and y′ - axis is 100 

normal to it. The plate is suddenly set in motion in its own plane with a velocity U(t). An 101 

oscillating temperature is assumed to be applied on the plate in the presence of thermal radiation. 102 

We assume the plate is infinitely long, the physical variables are functions of y′  and t ′  only. 103 

Hence, from the continuity equation, the velocity field is described as:  104 

( )tyuu ′′′=′ , , 0Vv −=′      (1)          105 

where u′  and v′  are the velocities of the fluid along x′  and y′  axes respectively and 00 fV  106 

indicates suction velocity.      107 

    108 

 109 
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2.1 Flow Analysis 110 

The constitutive equation of an incompressible third grade fluid as given by Coleman and Noll 111 

(1965) is:    112 

∑
=

+−=′
3

1i

iSpIτ      (2)  113 

where 11 AS µ= , 2

12212 AAS αα +=  and ( ) ( ) 12321122313 AtrAAAAAAS βββ +++= . 114 

32121 ,,,,, βββααµ  being material constants, τ ′  the stress-tensor, p  the pressure, I the identity 115 

tensor and nA  represents the kinematical tensors defined by, IA =0 , ( )T
uuA ∇+∇=1 , 116 

 ( )T

nnnn AuAuAu
t

A ⋅∇+⋅∇+







∇⋅+

∂

∂
=+1 , 2,1=n .         117 

where u  is the velocity and t  is the time. A detailed thermodynamic analysis of the model, 118 

represented by (2) is given by Fosdick and Rajagopal (1980). It was shown that if all the motions 119 

of the fluid are to be compatible with thermodynamics in the sense that these motions meet the 120 

Clausius-Duhem inequality and if it is assumed that the specific Helmholtz free energy is a 121 

minimum when the fluid is locally at rest, then  122 

,0≥µ  01 ≥α , 321 24µβαα ≤+ ,  021 == ββ , 03 ≥β   and 123 

( ) 1

2

13

2

122111 AtrAAAApI βααµτ ++++−=′     (2
*
)  124 

 The stress components (2
*
) by virtue of equation (1) are: 125 

UNDER PEER REVIEW



7 

 

ty

u

y

u

y

u
pxx ′∂′∂

′∂

′∂

′∂
+









′∂

′∂
+−=′′

2

2

2

2 2βατ
, 126 

( ) ( )
ty

u

y

u

y

u
pyy ′∂′∂

′∂

′∂

′∂
++









′∂

′∂
++−=′′

2

21

2

21 262 ββαατ ,     127 

pzz −=′′τ ,         (3) 128 

( ) 








′∂′∂

′∂
+









′∂

′∂
++

′∂′∂

′∂
+

′∂

′∂
−

′∂

′∂
=′′ 2

3

1

3

32

2

12

2

01 2
ty

u

y

u

ty

u

y

u
V

y

u
yx βββααµτ    129 

0== ′′′′ yzzx ττ
        

130 

where  xyyx ′′′′ = ττ
, xzzx ′′′′ = ττ

, yzzy ′′′′ = ττ
    

131 

Inserting the stress components and velocity given by (1) in the equation of motion: 132 

jjiii

i X
Dt

Dv
,, τρτρ ++−=         (4) 133 

where 
Dt

D
 denotes the material derivative and iX  is the external force per unit mass in th

i  134 

direction, the governing equation of free convective flow field under the physical conditions of 135 

the problem is obtained as: 136 
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2.2 Heat Transfer Analysis 139 

Neglecting viscous dissipation, the heat transport equation is obtained as:  140 

rp qTK
Dt

DT
C ∇−∇= 2ρ         (6) 141 

Assuming the conditions of optically thin environment that the radiative heat flux, 
y

q
′∂

′∂
 in the 142 

energy equation takes the form Takhar, et al.(1996): ( )∞
′−′=

′∂

′∂
TT

y

q 24η  where ∫
∞









′∂

∂
=

0

2

T

B
δλη ; 143 

2η , δ , λ  and B  are respectively absorption coefficient, radiation absorption coefficient, 144 

frequency and Planck’s constant, the governing equation of temperature flow field is obtained as: 145 
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2

2

0 4ηρ      (7) 146 

In the energy equation (6), the term representing viscous and joule dissipation are assumed to be 147 

neglected as they are really very small in slow motion free convection flows. 148 

The initial and boundary conditions are: 149 

,0,0,0:0 =′=′=≤′ Tuyt  150 

( ) 0,:0
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For computing the solution, we choose ( ) nta
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 where 
ρ

µ
ν =  is the kinematic 155 

coefficient of viscosity. We introduce the following dimensionless variables: 156 
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Using the above equation parameters, equations (5) and (7) reduce to: 159 
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The initial and boundary conditions now become: 162 

0,0,0:0 ===≤ θuyt ; 163 
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3. Numerical Procedure 167 

The governing nonlinear coupled partial differential equations (9) and (10) with the initial and 168 

boundary conditions (11) are solved by employing Crank-Nicolson finite difference scheme 169 

which has been discussed by Ganesan and Palani (2002), Conte and De Boor (1980), Jain (1984) 170 

and Baoku, et al. (2012). We therfore discretized the governing equations based on the unsteady 171 

state conditions. The numerical method of Crank-Nicolson type does not restrict the value of r  172 

to be chosen. The finite difference equations corresponding to these equations are given as: 173 
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where i  dessignates the grip point along y -direction, j  along t -direction and 2
h

tr ∆= . Hence, 180 

the equations of motion and energy are reduced to system of algebraic nonlinear coupled-181 
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equations. The mesh size h  is 05.0  with time step 1.0=t . The values of ( )tyu ,   and ( )ty,θ  are 182 

known at all grip points when 0=t  from the initial conditions. Modified Newton’s iterative 183 

technique is used to solve the system of nonlinear algebraic equations. Computations are carried 184 

out by moving along y -direction. After computing values corresponding to each i  at a time 185 

level, the values at the next time level are determined in similar manner. 186 

The implicit nature of Crank-Nicolson method is unconditionally stable and has local truncation 187 

error ( )[ ]22
,htO ∆  which tends to zero as t∆  and 2

h  tend to zero. There is no drawback of 188 

conditionally stability from one level to the next. The implicit method gives stable solutions and 189 

requires iterative procedure which we did at step forward in time because this problem is an 190 

initial-boundary value problem with a finite number of spatial grip points. Though, the 191 

corresponding difference equations do not automatically guarantee the convergence of the mesh 192 

0→h  . To achieve maximum numerical efficiency, we used the tridiagonal procedure to solve 193 

the two point conditions for (10) and four point conditions for (9). We tansformed the above 194 

procedure into Maple code as described by Heck (2003), the convergence of the process was 195 

quite satisfactory and the numerical stability of the method was guaranteed by the implicit nature 196 

of the scheme. Hence, the scheme is consistent; stability and consistency ensure convergence. 197 

4. Discussion of Results 198 

The investigation focuses on the flow fields when a vertically upward plate suddenly starts 199 

moving with a velocity in its own plane and temperature fields assumed to be oscillating applied 200 

to the plate in the presence of suction and thermal radiation. The governing equations of the flow 201 

and temperature fields are solved using Crank-Nicolson implicit finite difference scheme with 202 
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modified Newton’s method and approximate solutions are obtained for the velocity and 203 

tempearture profiles. The effects of the pertinent parameters on the flow and temperature fields 204 

are analyzed and discussed with the help of velocity profiles (Figures 1 - 5) and temperature 205 

profiles (Figures 6 - 8).  206 

4.1 Velocity Profiles 207 

The effects of various parameters on the velocity field are investigated through simulations using 208 

the method above and results are produced as graphs for two major cases; 8.0=n , i.e. when the 209 

plate starts moving with variable accceleration and 1=n , i.e. when the plate starts with a 210 

constant acceleration. Figure 1 analyzes the influence of suction parameter ω  for cases 8.0=n  211 

and 1=n . It is observed that an increase in the suction parameter ω  decreases the fluid velocity 212 

at any point of the fluid, and higher velocity profile is attained when 8.0=n . Figures 2 and 3 213 

depict the effect of viscoelastic parameters α  and β  on the velocity field. It is observed that as a 214 

growing viscoelastic parameter α  increases, the velocity field increases. The influence of β  on 215 

the velocity profile is noticeable when there is small increment in time interval. An increase in 216 

β  corresponds to a growing in the velocity profiles for both cases of constant and variable 217 

accelerations.  As the free convection current exists by virtue of temperature difference ( )∞
′−′ TT , 218 

the Grashof number Gr  can realistically take any real number when
2

0
π

≤≤ b . 0fGr  219 

corresponds to cooling of the plate and 0pGr  corresponds to heating of the plate due to free 220 

convection current. Therefore, we have chosen both positive and negative values of Grashof 221 

number. An increase in Grashof number Gr  increases the fluid velocity near the plate when the 222 

plate is being heated for both 8.0=n  and 1=n  in Figure 4. However, when the plate is being 223 
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cooled, the fluid velocity decreases as the Grashof number increases.   Also, Figures 5 shows that 224 

an increase in Prandtl number Pr  increases the fluid velocity in both cases of constant and 225 

variable accelerations. 226 

Figures 1-5 should be here. 227 

4.2 Temperature Fields 228 

The temperature of the flow field suffers a substantial change with the variation of the flow 229 

parameters such as suction parameter ω , Prandtl number Pr  and thermal radiation 230 

parameter dR . These variations are shown in Figures 6 – 8. Figure 6 depicts the influence of 231 

suction parameter ω  on the temperature profile. A growing ω  is found to decrease the 232 

temperature of the flow field at all points in the domain. Similarly, it is observed in Figure 7 that 233 

the effect of increasing Pr  reduces the temperature field. Lastly, it is evident from Figure 8 that 234 

at lower value of dR , there little or no influence of dR  on the temperature profile whereas at 235 

higher value of dR , the effect of dR  on temperature distribution is noticeable. Hence, the 236 

consequence of increasing dR  has the influence of decreasing the temperature of the flow field. 237 

Figures 6-8 238 

5. Conclusions 239 

In this study, we investigate the influence of suction and thermal radiation on the transient flow 240 

and heat transfer of a third grade viscoelastic fluid through a vertical porous plate employing an 241 

implicit finite difference numerical scheme of Crank-Nicolson type to discretize the system of 242 

coupled partial diffential equations and modified Newton’s method to solve the system of 243 
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algebraic nonlinear equations obtained after discretization. The above scheme is transformed into 244 

the Maple code to simulate the solutions of the problem. This solution procedure is valid for all 245 

values of viscoelastic parameters unlike perturbation and power series methods that are only 246 

valid for small values of viscoelastic parameters. 247 

We therefore summarize below the following results of physical interest on the velocity and 248 

temperature distribution of the flow field: 249 

� The fluid velocity increases when the value of the second grade viscoelastic parameter α  250 

increases. Also, it increases with an increase in the third grade viscoelastic parameter β  251 

for small increment in the time interval.  252 

� The suction parameter ω  has the influence of reducing the velocity and temperature 253 

field. 254 

� As the Prandtl number increases, it also increases the velocity field but it reduces the 255 

temperature distribution of the flow field. 256 

� The fluid velocity increases when the plate is being heated and decreases when the plate 257 

is being cooled with higher velocity profile noticeable when the plate starts moving with 258 

variable acceleration. 259 

� The effect of increasing the thermal radiation parameter dR  decreases the temperature 260 

distribution of the flow field.  261 
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Figure 1: Effect of ω on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 10=Gr , 383 

10Pr = . 384 
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 385 

Figure 2: Effect of α on velocity field when 8.0=n  and 1=n  with 5=ω , 1=β , 10=Gr , 386 

10Pr = . 387 

 388 

Figure 3: Effect of β  on velocity field when 8.0=n  and 1=n  with 389 

1=α , 5=ω , 10=Gr , 10Pr = . 390 
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 391 

Figure 4: Effect of Gr on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 10=ω , 392 

10Pr = . 393 

    394 

Figure 5: Effect of Pr on velocity field when 8.0=n  and 1=n  with 1=α , 1=β , 10=Gr , 395 

5=ω . 396 
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 397 

Figure 6: Effect of ω on temperature field when 5=dR  and 10Pr = .  398 

 399 

Figure 7: Effect of Pr on temperature field when 5=dR  and 5=ω .  400 
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 401 

Figure 8: Effect of dR on temperature field when 5=ω  and 10Pr = . 402 
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