
SCIENCEDOMAIN international

SDI Review Form 1.6

Journal Name:	American Chemical Science Journal
Manuscript Number:	2014_ACSj_13222
Title of the Manuscript:	Slip Effects on MHD Stagnation Point-Flow and Heat transfer over a Porous Rotating Disk
Type of the Article	Research Paper

General guideline for Peer Review process:

This journal's peer review policy states that \underline{NO} manuscript should be rejected only on the basis of 'lack of Novelty', provided the manuscript is scientifically robust and technically sound.

To know the complete guideline for Peer Review process, reviewers are requested to visit this link:

(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

SCIENCEDOMAIN international

www.sciencedomain.org

SDI Review Form 1.6

PART 1: Review Comments

	Reviewer's comment	Author's comment (if agreed
		with reviewer, correct the
		manuscript and highlight that
		part in the manuscript. It is
		mandatory that authors should
		write his/her feedback here)
Compulsory REVISION	1. MHD term should also appear in Eq. (4), see ref. (3).	
comments	2. Eqs. (1) - (5) are transformed into ODEs using similarity transformations,	
	however, the transformed system of equations consist of only four equations. It	
	does not include the equation obtained as a result of applying similarity	
	transformation to Eq. (4). That's why the effects of parameters on pressure	
	gradient, which is also an important physical quantity, are missing.	
<u>Minor</u> REVISION	1. Page 4, sign of MHD term in Eq. (2) should be negative, see ref. (3).	
comments	2. In Results and Discussion section, it is inferred that all the velocity components	
	decrease, however, figure 3 (b) shows increase in radial component of velocity. Same	
	is the case for figures 4 and 6.	
Optional/General	This is a worthwhile manuscript which investigate the MHD stagnation flow past a porous	
comments	rotating disk in	
	the presence of the velocity slip condition. The article is suitable for publication if the	
	above comments are well justified.	
	Authors discussed flow of viscous fluid over a rotating disk; they may select to refer a	
	recent studies on the topic if they wish	
	S. Asghar, M. Jalil, M. Hussan and M. Turkyilmazoglu, Lie group analysis of flow and heat	
	transfer over a stretching rotating disk, International Journal of Heat and Mass Transfer	
	69 (2014) 140–146	

Note: Anonymous Reviewer